用户名: 密码: 验证码:
电渣重熔过程磁场和渣池发热的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电渣冶金技术的不断发展,为了进一步优化工艺,降低成本,提高生产效率和产品质量,需要研究人员对整个重熔过程的物理化学现象和传输过程有更加精确的把握和理解。在这样的背景下,数值模拟就成为了电渣重熔研究中一种非常重要的研究手段。本文以某公司小型电渣炉为研究对象,对该设备生产过程中产生的磁场和渣池发热过程进行了数值模拟。
     本文针对电渣重熔过程的磁场和渣池发热过程分别建立模型,使用通用有限元分析软件ANSYS 11.0作为工具,在给定的重熔条件下,对给定模型的磁场和渣池发热进行了计算和数值模拟。
     磁场模拟部分,整个渣池区域内,磁感应强度的值约在1.904x10-3T-2.4052x10-2T范围内。渣池发热模拟部分,渣池区域内温度范围为1490℃-1800℃。数值模拟结果与前人的研究结果及厂方提供的实测数据吻合较好,从而验证了模拟结果的可靠性。
     研究表明,在电极轴向位置上各点的磁感应强度在两端处大并且变化较大,中间磁感应强度最小,磁感应强度的总体趋势是随距离的增加而减弱,电渣重熔过程中渣池的温度场分布和电场分布直接相关,电渣炉的电流密度和温度最大的区域在电极下部。随着对模型的进一步研究,其模拟准确性可以进一步提高。本文提出的模型和计算的数值模拟结果可以作为一个基础的理论研究,为后续实验研究和实际生产提供指导,并作为研究电渣重熔电磁搅拌工艺优化的基础。
With the development of Electroslag metallurgy technology, it is necessary for the relative researchers to care more about remelting process to get a better understanding on its Physical & Chemical phenomena and transmitting process, which aims to optimize process, keep down the coast of production, and increase productive efficiency and product quality. However, which came from the traditional measurements and experimental methods would not provide sufficient data and theory. Under the circumstances, Numerical simulation bloomed into an important method for electroslag remelting research. Therefore, in this thesis, attention is concentrated that the rule of magnetic field and heat generation of slag bath was investigated by numerical simulation based on a small electro-slag furnace offered by a certain company.
     For the project, two of models were built for magnetic field and heat generation of slag bath respectively which were simulated by ANSYS 11.0 under the given remelting condition.
     During the experimentation, the value of magnetic flux density is about from 1.904x10-3T to 2.4052x10-2T and the temperature of Heat Generation of Slag Bath is about 1490℃to 1800℃in the region of whole slag bath. The results of Numerical Simulation tally with the data provided by the company which prove the reliability of simulation.
     Research indicates that the magnetic induction intensity changes in the way of biggest in the ends and smallest in the middle, in general, it is weaken along with the distance increase in the axial position. In the Electro-slag Remelting process, the slag bath temperature field distribution related directly with the electric field distribution and the biggest region of the current density and temperature of electroslag is distrib- uted in electrode lower part. The simulation accuracy could be improved by the deep research to these models. The results got from this project provide a guide for the related experiment and production in fact and give some basic information for investigating the technological optimization of Electro-slag remelting.
引文
1.姜周华.电渣冶金的物理化学及冶金现象[M],沈阳:东北大学出版社,2000.
    2.李正邦.国外电渣熔炼概况及进展[J],新金属材料,1973,(1):20-22.
    3.李正邦.国外电渣冶金现况及发展趋势[J],新金属材料,1978,(3):17-20.
    4.李正邦.电渣冶金的回顾与展望[J],特殊钢,1999,20(5):1-6.
    5.陆锡才,刘新,赵德春.电渣重熔与熔铸[M],沈阳:东北大学出版社,2002,56-71.
    6. DeVries R P. Consumable electroslag remelting-the Hopkins process[J], Ind heating,1996.9(l): 49-54.
    7.陈希春,冯涤,傅杰,等.电渣冶金的最新进展[J],钢铁研究学报,2003,15(2):62-67.
    8.李正邦,傅杰.电渣重熔技术在中国的应用和发展[J],特殊钢,1999,20(2):56-60.
    9.陆锡才,赵渭国,译.电渣重熔原理与实践[M],沈阳:东北工学院出版社,1990,2-3.
    10. Nafaziger R H. Electroslag melting process Bulletin[M], United. States Bureau of Mines,1976, 43-45.
    11.李正邦.电渣熔铸[M],北京:国防工业出版社,1981,240-268.
    12.贾光霖,庞维成.电磁冶金原理与工艺[M],东北大学出版社,2003,143-146.
    13.赫冀成.电磁场对改善钢材质量的作用[J],钢铁,2005,40(1):24-31.
    14.赵治浩,张北江,崔建忠.线材水平电磁连铸过程中磁场分布的数值模拟[J],材料与冶金学报,2002,1(2):154-160.
    15.蔡晖,余刚.冶金炉的磁场模拟[J],稀有金属与硬质合金,2000,4(2):18-23.
    16. Dilawari A H, Szekely J. A mathematical model of slag and metal flow in the ESR process[J], Metallurgical Transactions B,1977; 8B:227.
    17.魏季和,任永莉.电渣重熔体系内磁场的数学模拟[J],金属学报,1995,31(2):51-60.
    18.王开力,马廷温.50t直流电弧炉主电路磁场实验研究[J],钢铁,1998,33(5):29-31.
    19.葛良伟,葛华山.直流电弧炉大电流母线回路磁场的计算和分析[J],工业加热,1999(3):9-16.
    20.郝桂盛.二次短网支撑结构的极值设计[J],工业炉,1998,20(3),59-61.
    21. Clough R W. The Finite Element Method of Structural Analysis. Proc. [A] 2nd Conf. Electronic Computation[C], ASCE, Pittsburgh, Pa.,1960.
    22. Sun R. C. and Pridegeon J. W., Proe Second Int Symp on ESR[C], Pittsburgh,1969.
    23. Carvajal L. F. and Gerger G. E. Fluid Flow and Droplet Formation in the Electroslag Remelting Process J of Metals[J], Met. Trans.,1971,2y:2087.
    24. Paton B. E. and Medover B. I. etal, Electroslag Refining[M], London,1973.
    25. A. Mitchell, S. Joshi. The Thermal Characteristics of the Electroslag Process. Metallurgical Transactions[J],1973,4:631-642.
    26. Elliott J. F. and Maulvault M., Proc.4th Inter. Symp. On ESR,1973:69.
    27. Ballantyne A. S. and Mitchell A., Ironmaking and Steelmaking,1977, (4):222-239.
    28. Ballantyne A. S. and Mitchell A.,Proc 5th Inter. Symp. On ESR and Other. Spe. Tech. Pittsburgh,1974, part 1:345.
    29. Medovar B. I. etal, Proc.5th Inter. Symp. On Vao. Met. And ESR,1976:153.
    30. Kou S., Poirier D. R. and Hemings M. C., Elec. Furnace Proceeding,1977:221.
    31. Ridder S. D. etal, Met. Trans.1978,9B:415.
    32. Choudhary M, Szekely J. Modeling of Profiles, Temperature Profiles and Velocity Fields in ESR Systems [J]. Metallurgical Transactions,1980,11B:439-453.
    33.魏秀琴,周浪,耿茂鹏.电渣熔铸中熔池深度及其控制的计算机模拟研究[J],南昌大学学报(工科版),1999,21(4):21-25.
    34.陈元元,刘喜海,李宝宽.电渣重熔钢锭凝固过程数学模拟软件[J],钢铁研究学报,2005,17(6):30-33.
    35.阎照文.ANSYS 10.0工程电磁分析技术与实例详解[M],北京:中国水利水电出版社,2006.
    36.王国强.实用工程数值模拟技术及其在ANSYS上的实践[M],西安:西北工业大学出版社,1999,190-193.
    37.唐兴轮,范群波,张朝晖,李春阳.ANSYS工程应用教程-热与电磁学篇[M],北京:中国铁道出版社,2002,141-144.
    38.陈家祥.炼钢常用图表数据手册[M],北京:冶金工业出版社,1984,8-9.
    39.张少棠.钢铁材料手册[M],北京:中国标准出版杜,2001,39-40.
    40.魏季和,任永莉.电渣重熔体系内磁场的数学模拟[J],金属学报,1995,第31卷第2期.
    41.姜周华.电渣冶金的物理化学及传输现象[M],沈阳:东北大学出版社,2000,186.
    42.阎立懿,刘喜海,肖玉光.现代炼钢电炉电气特性与供电制度的设计[J],冶金设备,2006 年12月第6期.
    43.邹俊苏,刘喜海,张喜娥.连铸结晶器铜板温度场数值模拟研究[J],钢铁研究,2002年10月第5期(总第128期).
    44.刘喜海,陈元元,李宝宽.大型电渣炉钢锭凝固过程的动态快速响应模型[J],东北大学学报(自然科学版),2005,第26卷第2期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700