用户名: 密码: 验证码:
方钢管混凝土柱—钢梁组合框架抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土钢梁体系是钢-混凝土组合结构的一种形式,当使用在弯矩抵抗框架中,因为由钢管混凝土柱的刚度控制结构侧移,故可充分发挥其轻质、延性好等优点;钢梁则具有自重轻、强度高、工期短和易于开孔以穿越建筑管道等方面的优势。钢管混凝土-钢梁组合体系是一种具有巨大开发与应用前景的新型房屋结构体系,但由于钢管混凝土柱-钢梁节点的多样性及其受力状态的复杂性,国内外对采用这类节点的框架结构的深入研究显得相对滞后,在一定程度上制约了这类组合结构体系的推广。
     国内外钢管混凝土柱-钢梁组合结构中研究和应用较多的梁柱刚性节点形式包括环梁连接、内外隔板连接、穿梁节点和T型件螺栓连接等多种方式,对框架整体性能进行的试验研究也基本上采取以上节点连接方式。其中,带环梁或隔板的节点连接方式所需现场施工作业较多,抗震性能也还需进一步深入探讨;穿心连续梁节点和T型件螺栓连接则在我国研究应用较少。高强螺栓端板连接是钢结构中常用的连接方式,在轻钢结构门式刚架中被普遍采用,国内外也有相应的设计规程。近几年已有研究者对其在钢筋混凝土结构和钢骨混凝土结构中的应用开展了试验研究,研究结果表明该类节点在钢-混凝土组合结构中具有良好的抗震性能,但其在钢管混凝土结构中的研究还较少。对于采用这种节点形式的H钢混凝土组合梁-钢管混凝土柱的框架试验研究,尤其是大比例模型试验,则相对更少,因此有必要开展这方面的研究。
     有鉴于此,本文基于现行美国规范并结合现中国规范,及以往研究者的相关成果,采用螺栓端板连接钢管混凝土-钢梁组合框架对一榀10层3跨平面框架进行了设计、分析与试验研究。设计理念着眼于采用基于性能的设计方法,建立了针对不同程度烈度水准地震灾害中结构需满足的性能目标。设计要求结构在多遇烈度水准(FOE)下的性能目标为不发生任何破坏;在基本设计烈度水准下(DBE)的性能目标为允许发生可以修复的破坏,但不允许形成强度退化;在罕遇烈度水准(MCE)下的性能目标为防止倒塌。针对钢管混凝土组合框架中各部分构件定义了一系列极限状态,并将之与各烈度水准的性能目标对应起来,作为评估构件在相应地震灾害中性能的依据。
     采用有限元程序OPENSEES对平面框架进行了建模模拟。对梁、柱及节点,参考相关研究进行建模;而对于端板螺栓连接钢管混凝土柱-钢梁节点域,则采用一种6结点非线性弹簧模型来进行模拟。建立的模型考虑了材料非线性和几何非线性等特征。在进行原型结构分析之前,采用建议的节点域模型对以往相似研究进行了对比,吻合程度较好。之后对模型进行了静力推覆分析和非线性时程分析,考察了原型结构在地震作用下的抗震性能。在时程分析中,采用一系列经过调整至FOE、DBE和MCE烈度水准要求的地震加速度记录对原型结构进行加载。调整之后的地震加速度记录反应谱分别满足规范目标反应谱的要求。有限元分析结果用来考察原型结构抗震性能并验证其是否满足设计需求。由于实际工程中地震作用存在不确定性,因此采用统计的方法对原型结构时程分析响应进行了评估。分析结果表明,原型结构满足给定的各项性能目标。
     综合考虑构件截面的强度、刚度、非弹性性能等因素,结合试验室场地情况与加载条件,采用相似比4/7对原型结构进行缩尺,作为抗震试验研究的测试结构。采用与原型结构建模相同的方法,建立了测试结构模型。对测试结构进行的静力推覆分析和时程分析结果表明,测试结构与原型结构在构件变形、层间位移及层间剪力等指标上与原型结构相近,可以对之进行试验以考察原型结构抗震性能。选取测试结构底二层一跨半作为试验子结构,而其上八层作为计算子结构,基于远程协同试验平台NetSLab,对测试结构进行了一系列抗震试验研究。包括对应于FOE、DBE和MCE烈度水准的子结构拟动力试验、对应于能安全使用试验室最大加载能力的超罕遇(MCE-After)烈度水准的子结构拟动力试验、采用美国钢结构抗震设计规范建议的加载制度进行的低周往复加载试验及采用单调加载方式进行的静力推覆试验。根据试验结果对原型结构性能目标进行了评估,并将之与有限元预测结果加以对比。对比分析显示,测试结果与预测结果吻合程度较好,测试结构在各次试验中均能达到预期的响应水准,验证了原型结构能满足给定的不同水准的性能目标,同时也验证了所建模型的合理性。
     结合理论分析与试验验证,采用端板螺栓节点连接形式的钢管混凝土-钢梁组合框架具有良好的抗震性能,适用于抗震地区的多高层框架结构;对于该类结构体系,可以采用本文建模方法对其性能进行预测与评估。
Composite steel-concrete structures can make use of the attributes of each material, combining the speed of construction, strength, long-span capability, and light weight of steel with the inherent stiffness, damping, and economy of concrete. In the case of concrete filled tubular (CFT) columns, the tube replaces the formwork during construction, and confines the concrete infill during service, while the concrete infill restrains the local buckling of the steel tube, reducing the construction costs as well as the amount of transverse and longitudinal reinforcement required. Composite concrete filled steel tubular column-steel beam structure has proved very efficient in load capacity and construction, while the complexity of its connection and lack of large scale frame experimental research limit its further application.
     Previous studies on rigid CFT column-steel beam connection details focused on exterior diaphragm and interior diaphragm connections, stiffening ring connections, beam through column connections and welded or bolted split-tee connections. However, most of those connections need lots of in-situ welding labor work and/or their seismic behaviors still need further study. Prestressed high strength through bolted end-plate connection is widely used in steel structures. Several studies on its application in composite structures, such as steel-reinforced concrete column-steel beam connections and RC column-steel beam connections, have validated its superiority in seismic design. Some but still limited large scale composite CFT frame experimental investigations have been performed, especially on those with through bolted connections.
     Analytical and experimental studies on the seismic behavior of a composite frame with concrete filled steel tubular columns and steel beams were conducted. A prototype building was designed using current seismic provisions and recommendations from previous related research. The expected performance of the building was related to three seismic hazard levels, namely, the maximum considered earthquake (MCE) level, having a 2% probability of exceedance in 50 years, the design basis earthquake (DBE) level, having a 10% probability of exceedance in 50 years, and the frequently occurring earthquake (FOE) level, having a 50% probability of exceedance in 50 years. The building was expected to remain undamaged for FOE level earthquakes, have repairable damage and exhibit no strength degradation for DBE level earthquakes, and avoid collapse for MCE level earthquakes. A set of limit states was defined representing the degree of damage on the components of the frame, namely the H-shape beams, CFT columns, connections, and panel zones, and the occurrence of these limit states was related to each performance objective.
     An analytical model for composite concrete filled tubular columns-steel beam frame was developed and used to evaluate the prototype building performance. Models for the individual components of the composite CFT frame developed both by previous research (CFT plastic hinge region model, H-shape beam model, connection model) and as part of this study (a six-node nonlinear spring panel zone model) were utilized. The model accounted for material nonlinearities, including yielding and local buckling of steel and concrete cracking and crushing, as well as geometric nonlinearities. Static pushover and time-history analyses were conducted using the prototype building model to study the response of the building when subjected to a series scaled ground acceleration records representing the FOE, DBE and MCE levels, respectively. The scaling process consisted of matching the response spectrum of each record to the corresponding FOE, DBE or MCE target response spectrum, as defined in related seismic provisions. These simulations were used to evaluate the performance of the prototype building and verify it against the design requirements. The evaluation was carried out in statistical terms due to the variability associated with the seismic excitations. The prototype building was found to perform adequately for all performance objects in the three different earthquake hazard levels.
     A test structure model was constructed and analyzed with the same consideration of the prototype building model at a four-sevenths scale factor determined from laboratory space and loading capacity and similarity of the strength, stiffness and inelastic behavior between the prototype building members and available members in the market. It was found that the test structure model closely reproduced the response of the prototype building model in terms of element deformations, story drift, and story shear. The overall test structure was divided into two substructures with the bottom two stories to be tested physically while the upper eight stories to be simulated by trilinear model with lumped mass in a test platform NetSLab (Network Structural Laboratories), in which interactions between these two parts were considered. Based on symmetry, a one and a half bay, two-story test frame was built for the physically experimental phase of the study. The test structure was subjected to simulated seismic excitations corresponding to different earthquake hazard levels using sub-structuring pseudo-dynamic hybrid testing methodology. Quasi-static test and pushover test were also conducted to investigate the seismic behavior of the test sub-structure. The test structure performed in accordance with the performance objectives, confirming the conclusions drawn from the results of the analytical studies.
     Based on the results from the analytical and experimental studies, CFT frame with bolted endplate connections has adequate seismic behavior suitable for seismic resistant design.
引文
[1]蔡绍怀.钢管混凝土结构的计算与应用,北京:中国建筑工业出版社,1989: 1-31
    [2]韩林海.钢管混凝土力学,大连:大连理工大学出版社,1996: 1-16
    [3]钟善桐.高层钢管混凝土结构,哈尔滨:黑龙江科学技术出版社,1999: 1-50
    [4]韩林海.钢管混凝土结构,北京:科学出版社,2000: 1-20
    [5]蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社,2003: 1-15
    [6] Wakabayshi M. Review of Research on concrete filled steel tubular structures in Japan. In: Proceedings of the International Specialty Conference on Concrete Filled Steel Tubular Structures (including Composite Beams), 1988: 5-11
    [7] Tomii M., Yoshimura K. and Morishita Y. Experimental Studies on Concrete Filled Steel Tubular Stub Columns under Concentric Loading, Proceeding of the International Colloquium on Stability of Structures Under Static and Dynamic Loads, SSRC/ASCE, Washington D.C., 1977: 718-741.
    [8] Tomii M. Ductile and Strong Columns Composed of Steel Tube, Infilled Concrete and Longitudinal Steel Bars, Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Fukuoka, Japan, 1991: 39-66
    [9] Furlong R W. Strength of Steel-Encased Concrete Beam-Columns. ASCE, Journal of Structural Engineering, 1967, 93(ST5): 113-125
    [10] Furlong R W. Design of Steel-Encased Concrete Beam-Columns. ASCE, Journal of Structural Engineering, 1968, 94(ST1): 267-281
    [11] Sun Y, Sakino K. Method of improving the ductility of RC columns under high axial load by using steel tube [C]. Proceedings of the 4th ASCCS International Conference on Steel– Concrete Composite Structures [A]. 1994: 139-142
    [12] Nakanishi K, Kitada T, Nakai H. Experimental study on ultimate strength and ductility of concrete filled steel columns under strong earthquake. Journal of Construction Steel Research, 1998, 51: 297-319
    [13] Priestley M J N, Seible F, Xiao Y, et al. Steel jacket retrofit to improve shear strength of concrete columns. In: Proceedings of the Third International Conference on Steel– Concrete Composite Structures. 1991, 695-700
    [14] Ge H, Usami T. Strength of Concrete-Filled Thin-Steel Box Columns: Experiment. Journal of Structural Engineering [J], 1992, 118(11): 3036-3054
    [15] Gourley B, Hajjar J F, Schiller P H. (1995), A Synopsis of Studies of the Monotonic and Cyclic Behavior of Concrete Filled Steel Tube Beam-Columns, Structural Engineering Report No. ST-93-5.2, Department of Civil and Mineral Engineering, Institute of Technology, University of Minnesota, Minneapolis, 1995: 36-54
    [16] Usami T, Ge H, Morishita K. Pseudo-dynamic test of partially concrete– filled steel bridge pier models. In: International Conference Report. On Composite Construction–Conventional and Innovative, 1997, 627- 632
    [17] Uy Brain. Strength of Concrete Filled Steel Box Columns Incorporating Local Buckling. Journal of Structure Engineering, 2000,126(3): 341-352
    [18] Uy Brain. Local and Postlocal Buckling of Fabricated Steel and composite Cross Sections, Journal of Structure Engineering, 2000,127(6): 666-677
    [19] Morino S, Sakino K, Mukai A, et al. Experimental Studies on CFT Column Systems [C]. Proceedings of the 3rd JTCC US-Japan Cooperative Earthquake Research Program, Composite and Hybrid Structures, Hong Kong, China, 1996: 12-14.
    [20] Fujimoto T., Nishiyama I., Mukai A, et al. Test Results of Concrete Filled Steel Tubular Beam-Columns [C]. Proceedings of the 3rd JTCC US-Japan Cooperative Earthquake Research Program, Composite and Hybrid Structures, Hong Kong, 1996:26-31
    [21] Hull B K, Varma A H, Rides J M, et al. Experimental Studies of High Strength Composite CFT Beam-Columns. ATLSS Report No. 9810, Lehigh University, Bethlehem, PA, 1998: 31-50
    [22] Varma A H, Ricles J M, Sause R, et al. Behavior of High Strength Square CFT Columns, Proceedings of Sixth U.S. National Conference on Earthquake Engineering, Seattle, WA, 1998: 112-119
    [23] Varma A H, Hull B K, Ricles J M, et al. Experimental Studies of High Strength Composite CFT Beam-Columns [C]. Proceedings 5th Pacific Structural Steel Conference [A].1998: 86-92
    [24] Varma A H, Ricles J M, Sause R, et al. Seismic Behavior, Analysis, and Design of High Strength Square Concrete Filled Steel Tube (CFT) Columns. ATLSS Report No. 01-02, Lehigh University, Bethlehem, PA, 2001: 35-45
    [25]黄莎莎,钢管混凝土构件在反复周期水平荷载作用下滞后性能的研究:[哈尔滨建筑工程学院硕士学位论文],哈尔滨:哈尔滨建筑工程学院,1987: 1-65
    [26]黄向阳,钢管混凝土框架柱抗震性能的实验研究:[哈尔滨建筑工程学院硕士学位论文],哈尔滨:哈尔滨建筑工程学院,1988: 1-45
    [27]安建利,周小真,姜维山.钢管混凝土柱压弯剪试验与有限环层分析[J].西安冶金建筑学院学报(自然科学版),1987,52(4):9-20
    [28]张正国.方钢管砼偏压短柱基本性能研究,建筑结构学报, 1993, 14(3): 10-20
    [29]张正国.方钢管砼中长轴压柱稳定分析和实用设计方法,建筑结构学报, 1993, 14(4): 28-39
    [30]闫维波,钢管高强混凝土压弯构件滞回性能的理论计算与实验研究: [哈尔滨建筑大学硕士学位论文],哈尔滨:哈尔滨建筑大学,1999: 1-65
    [31]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究,建筑结构学报,2000,21(2):2-11
    [32]韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究,土木工程学报, 2001, 34(2): 17-25
    [33]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究.土木工程学报, 2001, 34(4): 22-31
    [34] Xiao Y, He W H, Mao X Y, et al. Confinement Design of CFT Columns for Improved Seismic Performance. In: Proceedings of the International Workshop on Steel and Concrete Composite Construction (IWSCCC-2003). Taipei, 2003, 217-226
    [35] Xiao Y, He W H, Mao X Y, et al. Experimental Studies of Confined Concrete Filled Steel Tubular (CCFT) Columns. In: Proceedings of 13th World Conference on Earthquake Engineering, Paper No. 681, Vancouver, B.C., Canada, 2004: 681-687
    [36] Han L H. Tests on Stub Columns of Concrete Filled RHS Sections. Journal of Constructional Steel Research, 2002, 58: 353-372
    [37] Ansourian P, Roderick J W. Composite Cormections to External Columns. Journal of the Structural Division, In: Proceedings of the ASCE. 1976, 102(ST8):1609-1625
    [38] Kanatani H, Tabuchi M, Kamba T. A Study on Concrete Filled RHS Column to H-Beam Connections Fabricated with HT Bolts in Rigid Frames. In: Proc. of an Engineering Foundation Conference, Composite Construction of Steel and Concrete, ASCE, Edited by Buckner C D and Viest I M, New Hampshire, 1987: 62-68
    [39] Satoshi SASAKI, Masaru TERAOKA, Koji MORITA, and Toshio FUJIWARA: Structural Behavior of Concrete Filled Square Tubular Column with Partial Weld Corner Seam to Steel H-Beam Connection, Proceedings of the 4th Pacific Structural steel conference, 1995, 4(2): 33-40
    [40] Dawe L J, Grondin G Y. W-Shape Beam to RHS Column Connections. Canadian Journal of Civil Engineering, 1990, 17(5): 788-797
    [41] Morino S, Kawaguchi J, Yasuzaki C, et al. Behavior of Concrete Filled Steel Tubular Three Dimensional Subassemblages. Composite Construction of Steel and Concrete II ASCE, 1992: 726-741
    [42] Toyoda M. Failure Experience in Hanshin Great Earthquake On Brittle Fracture of Steel Framed Structures. Materials Science Research International, 1995, 1(3): 198-199
    [43] Kato B, Kimura M, Ohta H, et al. Connection of Beam Flange to Concrete-Filled Tubular Columns. Composite Construction of Steel and Concrete II ASCE, 1992:528-538
    [44] Shakir Khalil H. Full Scale Tests on Composite Connection. Composite Construction of Steel and Concrete II, ASCE, 1992: 539-554
    [45] Elremaily A F. Connections between steel beams and concrete-filled steel tube columns [D]. Lincoln: University of Nebraska, Lincoln, Nebraska. 2002: 1-113
    [46] Azizinamini A, Prakash B. A Tentative Design Guideline for a New Steel Beam Connection Detail to Composite Tube Columns. AISC Engineering Journal 3rd quarter. 1993: 108-115
    [47] Shin KJ, Kim YJ, Oh YS, Moon TS. Behavior of welded CFT column to H-beam connections with external stiffeners. Engineering Structures, 2004, 26(13):1877-1887
    [48] Wu LY, Chung LL, Tsai SF, Shen TJ, Huang GL. Seismic behavior of bolted beam-to-column connections for concrete filled steel tube. Journal of Constructional Steel Research, 2005, 61(10):1387-1410
    [49] Wu LY, Chung LL, Tsai SF, Lu CF, GL Huang. Seismic behavior of bidirectional bolted connections for CFT columns and H-beams. Engineering Structures, 2007, 29(3):395-407
    [50] Morino S, Uchikoshi M, Yamaguchi I. Concrete-Filled Steel Tube Column System-Its Advantages, Steel Structures, 2001, 1(1): 33-44
    [51] Ricles J M, Peng S W, Lu LW. Seismic Behavior of Composite Concrete Filled Steel Tube Column-Wide Flange Beam Moment Connections [J]. Journal of Structural Engineering ASCE, 2004, 130(2): 223-232
    [52] Peng SW. Seismic resistant connections for concrete filled tube column-to-wide flange beam moment resisting frames [D]. Bethlehem: Lehigh University, 2001:258-356
    [53] Koester BD. Panel zone behavior of moment connections between rectangular concrete-filled steel tubes and wide flange beams [D]. Austin: University of Texas, 2000: 1-322
    [54]沈希明,张小丽,招炳泉等.钢管混凝土柱和钢筋混凝土梁刚性抗震节点的初步研究.中国钢协钢-混凝土组合结构协会第三次年会论文集, 1991:142-148
    [55]李至均,阎善章.钢管混凝土框架梁柱刚性抗震节点的试验研究.工业建筑,1994, 2: 8-15.
    [56]欧谨,黄伟淳,韩晓健.新型钢管混凝土柱框架节点低周反复荷载试验研究.地震工程与工程振动, 1999, 19(3): 44-48
    [57]杨润强.低周反复荷载作用下钢管混凝土环梁节点试验研究[硕士学位论文].广州:华南理工大学, 1999: 32-56
    [58]吕西林,李学平,余勇.方钢管混凝土柱与钢梁连接的设计方法[J].同济大学学报,2002,30(1):1-5
    [59]张大旭,张素梅.钢管混凝土梁柱节点动力性能试验研究.哈尔滨建筑大学学报, 2001, 34(1): 21-27
    [60]张素梅,张大旭.钢管混凝土柱与梁节点荷载-位移滞回曲线理论分析.哈尔滨建筑大学学报, 2001, 34(4): 1-6
    [61]陈以一,李刚,庄磊等. H形钢梁与钢管柱隔板贯通式连接节点抗震性能试验.建筑钢结构进展, 2006, 8(1): 23-30
    [62]周天华,何保康,陈国津等.方钢管混凝土柱与钢梁框架节点的抗震性能试验研究.建筑结构学报2004, 25(1): 9-16
    [63]周天华,聂少锋,卢林枫等.带内隔板的方钢管混凝土柱-钢梁节点设计研究.建筑结构学报, 2005, 26(5): 23-29,39
    [64] Matsui C. Strength and behavior of frame with concrete filled square steel tubular columns under earthquake loading. Proceedings of the International Specialty Conference on Concrete Filled Steel Tubular Structures, 1985: 104-111
    [65] Kawaguchi J, Morino S, Sugimoto T, et al. Experimental Study on Structural Characteristics of Portal Frames Consisting of Square CFT columns. Proceedings of the Conference Composite Construction in Steel and Concrete IV, Banff, Canada, 2000: 58-67
    [66] Chen CH, Hsiao BC, Lai JW, et al. Pseudo-dynamic test of a full-scale CFT/BRB frame: Part 2-Construction and testing [C]. Proceedings of 13WCEE, Vancouver, Canada, 2004: 356-378.
    [67] Tsai KC, Hsiao PC, Wang KJ, et al. Pseudo-dynamic tests of a full-scale CFT/BRB frame - Part I: Specimen design, experiment and analysis. Earthquake Engineering and Structural Dynamics, 2008, 37(7):1081-1098
    [68] Tsai KC, Hsiao PC. Pseudo-dynamic test of a full-scale CFT/BRB frame - Part II: Seismic performance of buckling-restrained braces and connections. Earthquake Engineering and Structural Dynamics, 2008, 37(7):1099-1115
    [69] Herrera R, Ricles J M, Sause R. Seismic Performance Evaluation of a Large-Scale Composite MRF Using Pseudo-dynamic Testing [J]. Journal of Structural Engineering ASCE, 2008, 134(2):279-288
    [70] Herrera R. Seismic behavior of concrete filled tube column-wide flange beam frames [D]. Bethlehem: Lehigh University, 2005: 355-427
    [71]钟善桐.钢管混凝土结构.北京:清华大学出版社, 2003: 1-62
    [72]马万福.钢管混凝土单层框架动力性能的试验研究[硕士学位论文].哈尔滨:哈尔滨建筑大学, 1998: 1-61
    [73]张文福.单层钢管混凝土框架恢复力特性研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2000: 1-53
    [74]黄襄云,周福霖.钢管混凝土结构地震模拟试验研究.西北建筑工程学院学报(自然科学版), 2000, 17(3): 14-17
    [75]许成祥.钢管混凝土框架结构抗震性能的试验研究与分析[天津大学博士学位论文].天津:天津大学, 2003: 12-78
    [76]张园,薛刚,李斌.钢管混凝土框架结构抗震性能试验研究,地震工程与工程振动, 2002,22(5):53-56
    [77]宗周红,邱法维,两层钢管混凝土组合框架结构抗震性能试验研究,建筑结构学报, 2002, 23(2): 27-35
    [78]王来,王铁成,陈倩.低周反复荷载下方钢管混凝土抗震性能的试验研究.地震工程与工程振动, 2003, 23(3): 113-117
    [79]陈建斌.高层建筑方钢管混凝土组合结构非线性地震反应分析理论与试验研究[同济大学博士学位论文].上海:同济大学, 2005: 56-75
    [80] Han LH, Wang WD, Zhao XL. Behavior of steel beam to concrete-filled SHS column frames: finite element model and verifications. Engineering Structures, 2008, 30(2008): 1647-1658
    [81]王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报, 2006, 27(3): 48-58
    [82] Matsutani T, Ishida J, Katagihara K, et al. A study on high-rise building with concrete-filled steel tubular columns. In: Proceedings of the Third International Conference on Steel - Concrete Composite Structures. 1991, 171-176
    [83] Matsui C, Mitani I, Kawan A, et al. AIJ design method for CFST structures. In: Concrete Filled Steel Tubes a Comparison of International Codes and Practices. Seminar by ASCCS, Insbruck, 1997: 56-70
    [84] Sakino K, Sun Y. Stress-Strain Curve of Concrete Confined by Rectilinear Hoop. Journal of Structural Construction Engineering AIJ, 1994, 461: 95-104
    [85] Inai E, Sakino K. Simulation of Flexural Behavior of Square Concrete Filled Steel Tubular Columns, In: , 1996:114-119
    [86] Tomii M, Sakino K. Experiment Studies on the Ultimate Moment of Concrete Filled Square Steel Tubular Beam-Columns. Transactions of the Architectural Institute of Japan, 1979, 275: 55-63
    [87] Zhang W, Shahrooz B. Analytical and Experimental Studies into Behavior of Concrete-Filled Tubular Columns. Report No. UC-CII 97/01, University of Cincinnati, College of Engineering, Cincinnati Infrastructure Institute, Cincinnati, 1997: 1-32
    [88] Hajjar JF, Molodan A, Schiller PH. A distributed plasticity model for cyclic analysis ofconcrete-filled steel tube beam-columns and composite frames. Journal of Steel Construction and Research, 1998, 20(4-6): 398-412
    [89] Hajjar JF, Schiller PH, Molodan A. A Distributed Plasticity Model for Concrete-Filled Steel Tube Beam-Columns with Interlayer Slip. Engineering Structures, 1998, 20(8): 663-676
    [90] Shams M, Saadeghvaziri MA. Nonlinear Response of Concrete Filled Steel Tubular Columns under Axial Loading. ACI Structural Journal, 1999, 96(6): l009-1017
    [91] Varma A H, Ricles J M, Sause R, et al. Seismic Behavior, Analysis, and Design of High Strength Square Concrete Filled Steel Tube (CFT) Columns II. ATLSS Report No. 01-02, Lehigh University, Bethlehem, PA,2001: 55-78
    [92] Mander JB, Priestley M, Park R. Theoretical Stress-Strain Model for Confined Concrete. ASCE Journal of Structural Engineering, 1988, 117(8): 1804-1826
    [93] Shen C, Mamaghani I, Mizuno E, et al. Cyclic Behaviour of Structural Steels II: Theory. ASCE, Journal of Engineering Mechanics, 1995, 121(11): 1165-1172
    [94] Susantha KAS, Ge H, Usami T. Cyclic Analysis and Capacity Prediction of Concrete-Filled Steel Box Columns. Earthquake Engineering and Structural Dynamics, 2002, 31(2): 195-216.
    [95] Aval S B B, Saadeghvaziri M A, Golafshani A A. Comprehensive Composite Inelastic Fiber Element for Cyclic Analysis of Concrete-Filled Steel Tube Column. Journal of Engineering Mechanics ASCE, 2002, 128(4): 428-437.
    [96] Toshiaki Fujimoto, Akiyoshi Mukai, Isao Nishiyama, et al. Behavior of Eccentrically Loaded Concrete-Filled Steel Tubular Columns. ASCE Journal of Structural Engineering, 2004, 130(2): 203-212
    [97]屠永清.钢管混凝土压弯构件恢复力特性的研究[哈尔滨建筑大学博士论文].哈尔滨:哈尔滨建筑大学, 1994: 81-124
    [98]钟善桐,张文福,屠永清等.钢管混凝土结构抗震性能的研究.建筑钢结构进展, 2002,4(2):3-15
    [99] Muhummud T. Seismic Design and Behavior of Composite Moment Resisting Frame Constructed of CFT Columns and WF Beams [D]. Bethlehem: Lehigh University, 2004: 110-135
    [100] Parakash PA. Development of Connection Detail for Connecting Steel Beams to Composite Columns [D]. Lincoln: University of Nebraska, 1992: 45-61
    [101] Azizinamini A, Parakash B. A Tentative Design Guidelines for a New Steel Beam Connection Detail to Composite tube Columns. AISC Engineering Journal 3rd quarter, 1993: 108-115
    [102] Azizinamini A, Yerrapalli S, Saadeghvaziri, MA. Design of Through BeamConnection Detail for Circular Composite Columns. Engineering Structures, 1995, 17(3): 209-213
    [103] Swanson JA. Characterization of the Strength, Stiffness, and Ductility Behavior of T-stub Connections [D]. Atlanta: Georgia Institute of Technology, 1999: 56-71
    [104] Peng SW, Rides JM, Lu LW. Seismic Resistant Connections for Concrete Filled Column-to-WF Beam Moment Resisting Frames. ATLSS Report No. 01-08, Lehigh University, Bethlehem, 2001: 17-63
    [105] MacGregor JG. Reinforced Concrete-Mechanics and Design, Englewood Cliffs: Prentice-Hall Inc, 1992: 23-45
    [106] American Concrete Institute (ACI). ACI 318-02 and ACI 318R-02 Building code requirements for structural concrete and Commentary [S]. Farmington Hills: ACI, 2002: 15-225
    [107] FEMA. State of the Art Report on System Performance of Steel Moment Frames Subject to Earthquake Ground Motion (FEMA-355C). Washington D C:SAC Joint Venture for the Federal Emergency Management Agency, 2000: 25-71
    [108] Mehanny SSF. Modeling and Assessment of Seismic Performance of Composite Frames with Reinforced Concrete Columns and Steel Beams [PhD Dissertation]. Palo Alto: Stanford University, 1999: 35-61
    [109] Mehanny S S F, Deierlein G G. Seismic Damage and Collapse Assesment of Composite Moment Frames. ASCE Journal of Structural Engineering, 2001, 127(9): 1045-1053
    [110] Lin ML, Weng YT, Tsai KC, et al. Pseudo-dynamic test of a full-scale CFT/BRB frame: part 3-analysis and performance evaluation. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004: 2173-2181
    [111] GB50011-2001.建筑抗震设计规范[S]北京:中国建筑工业出版社, 2001: 1-82
    [112] CECS 160:2004建筑工程抗震性态设计通则(试用版)[S].北京:中国计划出版社,2004: 33-45
    [113] FEMA. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Part 1: Provisions (FEMA 368), and Part 2: Commentary (FEMA 369). Washington, D.C.: prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, 2000: 12-89
    [114] FEMA. Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273). Washington, D.C.: prepared by the Applied Technology Council for the Building Seismic Safety Council, published by the Federal Emergency Management Agency, 1997: 13-77
    [115] Ghobarah A, Abou-Elfath H, Biddah A. Response-Based Damage Assessment ofStructures. Earthquake Engineering and Structural Dynamics, 1999, 28(1): 79-104
    [116] CECS 159:2004矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004:1-55
    [117]日本建筑学会著.冯乃谦,叶列平等译.钢骨钢筋混凝土结构计算标准及说明[M].北京:原子能出版社,1998: 32-56
    [118] American Institute of Steel Construction (AISC). ANSI/AISC 341-05 Seismic Provisions for Structural Steel Building [S]. Chicago: AISC INC, 2005: 28-121
    [119]宗周红,林东欣,房贞政,邱法维.两层钢管混凝土组合框架结构抗震性能试验研究[J].建筑结构学报,2002, 23(2):27-35
    [120]李忠献,许成祥,王冬,王成博.钢管混凝土框架结构抗震性能的试验研究[J].建筑结构,2004,34(1):3-6
    [121] Chen C H, Hsiao B C, Lai J W, Lin M L, Weng Y T, Tsai K C. Pseudo-dynamic test of a full-scale CFT/BRB frame: Part 2-Construction and testing [C]. Proc., 13WCEE, Vancouver, Canada, 2004: 1131-1142
    [122] Chou Ch Ch, Uang Ch M. Cyclic performance of a type of steel beam to steel-encased reinforced concrete column moment connection [J]. Journal of Constructional Steel Research, 2002, 58(5-8): 637-663.
    [123] Xiao Y, Anderson J C, Wu Y T. Development of bolted connections for steel reinforced concrete composite structures [C]. The Fourth U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Toba, Japan, 2002: 341-352.
    [124] Kratzig WB, Meyer IF, and Meskouris K. Damage Evolution in Reinforced Concrete Members Under Cyclic Loading, In: Proceedings 5th International Conference on Structural safety and Reliability (ICOSSAR 89), San Francisco, California, 1989, Vol. II, pp. 795-802
    [125] Tort C. Hajjar J. Damage Assessment of Rectangular Concrete-Filled Steel Tubes for Performance-Based Design. Earthquake Spectra, 2004, 20(4): 1317-1348
    [126] Mazzoni S, McKenna F, Fenves GL. OPENSEES Command Language Manual. Berkeley: University of California, 2000:1-177
    [127] AISC. Load and Resistance Factor Design Specification for Structural Steel Buildings. Chicago: American Institute of Steel Construction, 1999: 33-81
    [128] AISC. Seismic Provisions for Structural Steel Buildings. Chicago: American Institute of Steel Construction, 2002: 12-115
    [129] ACI. Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318-02). Farmington Hills: American Concrete Institute, 2002: 14-231
    [130] GB50017-2003.钢结构设计规范[S].北京:中国计划出版社, 2003:12-121
    [131] CECS 102: 2002.门式刚架轻型房屋钢结构技术规程[S].北京:中国计划出版社, 2003: 8-45
    [132] JGJ82-91.钢结构高强度螺栓连接设计施工及验收规程[S].北京:中国建筑工业出版社, 1993: 12-44
    [133] AISC. Manual of Steel Construction-Load and Resistance Factor Design Second Edition, Chicago: American Institute of Steel Construction, 1993: 125-451
    [134] FEMA. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings (FEMA 350). Washington D C: prepared by the SAC Joint Venture for the Federal Emergency Management Agency, 2000: 12-110
    [135] International Code Council (ICC). International Building Code 2006 [S]. Falls Church: ICC Inc, 2006: 551-662
    [136] GB 50009-2001.建筑结构荷载规范.北京:中国建筑工业出版社, 2006: 12-44
    [137] American Society of Civil Engineering (ASCE). ASCE/SEI 7-05 Minimum Design Loads for Building and Other Structures [S]. Reston: ASCE, 2006: 112-235
    [138] Mohd Hisham Mohd Yassin. Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and Cyclic Loads [PhD Dissertation]. San Fransico: University of California at Berekeley, 1994: 11-231
    [139] Kenji Sakino, Hiroyuki Nakahara, Shosuke Morino, Isao Nishiyama. Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. Journal of Structural Engineering, 2004,130(2): 180-188
    [140] Toshiaki Fujimoto. Akiyoshi Mukai. Isao Nishiyama, Kenji Sakino. Behavior of Eccentrically Loaded Concrete-Filled Steel Tubular Columns. Journal of Structural Engineering, 2004, 130(2): 203-212
    [141]藤智明,邹离湘.反复荷载下钢筋混凝土构件的非线性有限元分析.土木工程学报, 1996, 29(2): 19-27
    [142] Karsan LD, Jirsa JO. Behavior of Concrete under Compressive Loadings. Journal of the Structural Division, ASCE, 1969, 95(ST12): 2543-2563
    [143] Tagawa Y, Kato B, Aoki H. Behavior of Composite Beams in Steel Frame under Hysteretic Loading. Journal of Structural Engineering, 1989, 115(8): 2029-2045
    [144] Lee S J, Lu L W. Cyclic Tests of Full-Scale Composite Joint Sub-assemblages. Journal of Structural Engineering, 1989, 115(8): 1977-1998
    [145] Bugeja M N, Bracci J M, Moore W P. Seismic Behavior of Composite RCS Frame Systems. Journal of Structural Engineering, 2000, 126(4): 429-435
    [146]聂建国,田春雨.简支组合梁板体系有效宽度分析.土木工程学报, 2005,38(2):8-12
    [147] Silvia Mazzoni, Frank McKenna, Gregory L Fenves. Open System for Earthquake Engineering Simulation Examples Manual. http://opensees.berkeley.edu/OPENSEES/manuals/ExamplesManual/HTML/, Pacific Earthquake Engineering Research Center University of California, Berkeley, 2008:1-151
    [148]石永久,施刚,王元清.钢结构半刚性端板连接弯矩-转角曲线简化计算方法.土木工程学报, 2006, 39(3): 19-23
    [149] European Committee for Standardization (CEN). Eurocode 3: Design of Steel Structures. Part 1.8: Design of Joints. prEN 1993-1-8 , 2003: 114-141
    [150]李少甫.钢结构的端板螺栓连接.建筑结构, 1998, 8: 24-26
    [151] American Institute of Steel Construction (AISC). Specifications for Structural Steel Building. ANSI/AISC 360-05. Chicago: AISC INC, 2005: 12-83
    [152] Krawinkler H. Shear in beam-column joints in seismic design of steel frames. Engineering Journal AISC, 1978, 15(2):82–91
    [153] Toshiyuki Fukumoto, Koji Morita. Elastoplastic Behavior of Panel Zone in Steel Beam-to-Concrete Filled Steel Tube Column Moment Connections. ASCE Journal of Structural Engineering, 2005, 131(12): 1841-1853
    [154]吴健秋.基于OPENSEES的梁—柱节点单元的适用性和定参方法研究[重庆大学硕士论文].重庆:重庆大学, 2007:16-54
    [155] YJ Park. AHS Ang. Mechanistic Seismic Damage Model for Reinforced Concrete [J]. Journal of Structural Engineering ASCE, 1985, 111(4): 722-739
    [156] Somerville P, Smith N, Punyamurthula S, Sun J. Development of Ground Motion Time Histories for Phase 2 of the FEMAISAC Steel Project. Report No. SAC/BD-97-04, 1997: 12-89
    [157] Pacific Earthquake Engineering Research Center (PEER). Strong Motion Database. Berkeley: PEER. http://peer.berkeley.edu/smcat/index.html, Last Visit in June 2007.
    [158] Ang A H-S. Tang W H. Probability Concepts in Engineering Planning and Design, Vol. II: Decision, Risk, and Reliability [M], New York: John Wiley & Sons. 1984: 45-56
    [159] GB/T 228-2002.金属材料室温拉伸试验方法.北京:中国标准出版社, 2002: 3-33
    [160] Fan Yunlei, Guo Yurong, He Wenhui, Xiao Yan. Remotely Collaborative Pseudo-dynamic Testing of Multistory Structures. In: Proceedings 2nd International Conference on Advances in Experimental Structural Engineering, Shanghai, China, 2007: 230-238
    [161] Combescure D, Pegon P.α-Operator Splitting time integration for pseudodynamic testing error progation analysis. Soil Dynamic and Earthquake Engineering, 1997, 16: 427-443
    [162]肖岩,胡庆,郭玉荣等.结构拟动力远程协同试验网络平台的开发研究.建筑结构学报, 2005, 26(3): 122-129
    [163]范云蕾,郭玉荣,肖岩等.单层结构远程协同拟动力试验平台开发.地震工程与工程振动, 2007, 27(30): 1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700