用户名: 密码: 验证码:
半潜式海洋潮流电站系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋潮流能是一种清洁的可再生能源,其利用价值高、潜力巨大。在大力发展新能源的今天,潮流能必将占有重要的席位。我国拥有漫长的海岸线,近海海域蕴含着丰富的海洋潮流能资源,开发前景广阔。
     目前,国内外已经建成的示范运行的潮流电站,其基本结构形式有漂浮式、悬浮式、桩柱支撑式和座海底式,选取特殊载体作为搭载水轮机和发电机组的工作平台。国内哈尔滨工程大学研建的70kW和40kW潮流实验电站采用了漂浮式和座海底式结构。由于潮流电站的生存环境十分恶劣,研究能够适应恶劣海洋环境的安全性和可靠性高、制造成本低和维护检修方便的潮流电站总体结构形式和定位系统,是潮流能利用向商业化发展的关键。
     本文探索并设计一种半潜式水平轴水轮机潮流发电系统方案。该系统由叶轮、载体平台(安装增速器和发电机)、稳定系统和锚泊系统组成,电站系泊于海床上。论文主要包括三方面工作:首先,进行了电站系统总体方案设计和系统布局研究,从稳性和浮态等因素进行分析计算,优化设计方案。然后,进行各种外载荷和运动性能研究,基于三维频域势流理论,应用Hydrostar水动力计算软件得到了不同浪向下电站系统的一阶辐射绕射力、一阶运动响应以及二阶漂移力,并分析数值结果,提出了设计时应注意的问题。再后,根据电站特点提出采用三根锚链布置,并按锚泊线成分比例的不同,设计了三种锚泊线方案,利用ARIANE7软件对系泊系统进行时域分析和方案对比。最后,给出最优方案在不同海况和工况下锚泊线及平台六自由度运动响应值,同时基于工作海床的状况和系泊性能要求,选取合理的抓力锚。
     论文研究表明,本半潜式潮流发电系统方案具有良好的抗风浪能力和运动性能,可作为一种优选方案进一步研究。
Tidal power is a kind of renewable energy with high value and potential in use, which should take an important position in the society nowadays when fresh energy is greatly developed. Our country has a long coastline which is rich in tidal energy offshore with a good exploitation prospect.
     At present, the already running station examples in the world have several basic forms, such as floating structures, suspended structures, seabed piled structures and sit seabed structures, selecting a special carrier with hydraulic turbine and generating units. The domestic experimental 70kW and 40kW power stations of HRBEU use the floating structure and sit seabed structures. For the terrible working condition, the designing of structure and mooring system to ensure the station safe and reliable is the key to develop the commercial using of tidal power.
     The work which the article carries out is a kind of exploration about semi-submersible tidal current power station system design. The power station includes blades, carrier platform with generator, stabilization system and mooring system. This thesis has three parts: first, studying on the whole power station designing and system composition by stabilization and buoyancy calculation to choose the best design. Then base on the 3-D potential theory, first-order forces and moments, first-order motion and second-order draft forces under different wave headings are calculated by the software of HydroStar. And the problems which must be noticed have been put forward by analysis on above results. Last, according to the power station characteristic and the mooring line ingredient proportion's difference, three schemes about mooring lines are presented. We give the forces and the result of movement about different mooring lines by using time domain analysis under different conditions with ARIANE7. On this basis, we give the optimum scheme. Finally, we select anchor base on seabed and berthing factors.
     The thesis results show that semi-submersible tidal current power station system design has good ability of resisting wind and wave, and also has good movement performance. It can be further studied as preferential design.
引文
[1]张登霞.双浮子海浪发电装置参数分析以及结构优化设计.燕山大学硕士学位论文,2001
    [2]孙雅萍.21世纪海洋能源开发利用展望及其环境效应分析.哈尔滨师范大学自然科学学报,1998
    [3]王庆一.中国21世纪能源展望.山西能源与节能,2000
    [4]乔权,王金辉.我国海洋能资源开发利用设想.哈尔滨师范大学自然科学学报,1997
    [5]朱建国,朱果扣,科技新能源潮流能的开发和利用,资源开发,1986。
    [6] IEA-OES Annual Report(R),2005
    [7]王传崑.潮流发电.华东水电技术.1998
    [8] Bliek, A.Dynamic analysis of single span cables.Ph.D.,MIT,Cambridge, MA,U.S.A
    [9] Hover, F. S., Grosenbaugh, M. A. and Triantafyllou, M. S‘Calculation of dynamic tension in towed underwater cable. IEEE Journal of Oceanic Engineering,1994, 19:449-457P
    [10] Thomas, D. O.&Hearn, G. E.. Deepwater mooring line dynamics with emphasis on sea-bed interference effects. Offshore Technology Conference, 1991, Paper OTC #7488
    [11] Nakamura, N., Koterayama, W. and Kyozuka, Y.. Slow drift damping due to drag forces acting ors mooring lines. Ocean Engineering, 1991, 18:283-296P
    [12] Huang, S..Dynamic analysis of 3-D marine cables.Ocean Engineering, 1994, 21:587-605P
    [13] Korterayama, W..Motions of moored floating body and dynamic tension of mooring lines in regular waves. Rep. Res. Inst. Appl. Mech.1978,X XN:99-126P
    [14] Korterayama, W.and Nakamura, M.. Hydrodynamic forces acting on a vertical circular cylinder oscillating with a very low frequency in waves.Ocean Engng.1988,15(3):271-287P
    [15] Korterayama, W.and Nakamura, M..Drag and inertia force coefficients derived from field tests.International Journal of Offshore and Polar Engineering,1992,2(3):162.167P
    [16] Toshio Nakajima. A study of the mooring dynamics of various types by lumped mass method.Ph.D.Thesis,University of Tokyo,1991
    [17] Nakajima, T., Motora, S. and Fujino, M.. On the dynamic responses of the moored object and the mooring lines in regular waves. Traps.Soc.Of naval arch.Of Japan,1981,No.150
    [18] Toshio Nakajima.On the dynamic analysis of multi-component mooring lines.1982,OTC#4309:105-110P
    [19] Burgess, J.J..Equations of motion of a submerged cables with bending stiffness.Int.Offshore Mech.And Artic Eng.Conf., Calgary,1992,Vol.l-A
    [20] Webster, E.L.. Nonlinear static and dynamic response of underwater cables using the finite element method.Offshore Technology Conference,1975
    [21] Shashikala, A.P. et.al.. Dynamics of a moored barge under regular and random waves.Ocean Engineering,1997,24(5):401-430P
    [22] Leonard, J.W. and Recker, W.W.. Nonlinear dynamics of cables with low initial tension. of the Engineering Mechanics, Division, ASCE,1972,98(2):204-234P
    [23] Leonard, J.W.. Curved finite element approximation to nonlinear cables.OTC,1972,1: 225-233P
    [24] Chatjigeorgion, L. K. and Mavrakos, S. A.. Assessment of bottom cable interaction effects on mooring line dynamics.Int. Offshore Mech.And ArticEng.Conf.,Libson,1998, No.335
    [25] Chatjigeorgion, L.K.and Mavrakos, S.A..Comparative evaluation of numerical schemes for 2D mooring dynamics.International journal of offshore and polar engineering, 2000,10(4):301-309P
    [26] Kwan, C. T. and Bruen, F. J.. Mooring line dynamics: comparison of time domain, frequency domain and quasi-static analysis. OTC, 1988, 2:513-521P
    [27]范菊,陈小红,黄祥鹿.锚泊线一阶运动响应对二阶锚链阻尼的影响.船舶力学,2000, 4:20-27页
    [28]范菊,陈小红,黄祥鹿.三阶摄动对锚泊线动力分析的影响.船舶力学,2000, 4-9页
    [29]黄祥鹿,陈小红,范菊.锚泊浮式结构波浪上运动的频域算法.上海交通大学学报,2001, 45:1470-1476页
    [30]陈小红,黄祥鹿.随机振荡法测量锚泊线动力的双频率响应函数.上海交通大学学报,1995, 29:13-19页
    [31]周崇庆,刘土光和李天匀.风浪中锚泊渔船的锚链系泊张力的分析研究.中国水产科学,1999, 6(3):78-80
    [32]刘应中,缪国平,李谊乐等.系泊系统动力分析的时域方法.上海交通大学学报,1997, 31(11): 7-12页
    [33]李向群.多点系泊船舶在波浪中的运动及其系泊力.交通部上海船舶运输科学研究所学报,1999, 22(1):9-15页
    [34]聂孟喜,王旭升,王晓明,张琳.风、浪、流联合作用下系统系泊力的时域计算方法.清华大学学报(自然科学版),2004, 36(17):1214-1217页
    [35]肖越.系泊系统时域非线性计算分析.大连理工大学,2006
    [36]童波.半潜式平台系泊系统形式及其动力特性研究.上海交通大学,2009
    [37]吴德铭.机翼理论.哈尔滨工程学院出版社, 1993年3月
    [38]詹明珠.潮流电站稳定性分析及锚泊系统的设计计算,2006
    [39]马山.高速船舶运动与波浪载荷计算的二维半理论研究.哈尔滨工程大学博士学位论文,2005
    [40]姜宗玉.船舶在波浪上线性运动的三维频域计算技术研究[D].大连:大连理工大学,2008
    [41]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社,1998年
    [42] Chen, X.B., Hydrodynamics in Offshore and Naval Applications Part 1. Proceedings of the 6th International Conference on Hydrodynamics, the University of Western Australia, Perth, Australia
    [43]刘应中,缪国平.船舶在波浪上的运动理论[M].上海:上海交通大学出版社,1987
    [44]刘翔建.深海钻井船锚泊系统的设计与分析[D].哈尔滨:哈尔滨工程大学,2009
    [45]王艳妮,海洋工程锚泊系统的分析研究.哈尔滨:哈尔滨工程大学,2006
    [46]缪国平.挠性部件力学导论,上海交通大学出版社,1996年: 35-55页
    [47]高捷,谭家华,陈小红.转塔式锚泊系统初步设计图谱.海洋工程. 1997
    [48] Bureau Veritas, user guide of Ariane7 .2008
    [49]李润培,王志农.海洋平台强度分析,上海交通大学出版社,1992年: 33-40页
    [50]张洋,漂浮式潮流电站锚泊系统的设计和计算,哈尔滨工程大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700