用户名: 密码: 验证码:
基于淤滩刷槽的黄河下游洪水调控技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河下游河道冲淤多变,一直处于淤积抬升状态,在两岸大堤的约束下逐渐形成所谓“地上悬河(一级悬河)”。连续枯水年的出现以及大量水利枢纽工程的建成,再加上黄河下游控导工程与生产堤等阻水建筑物的修建,使黄河下游河道出现大漫滩洪水的次数越来越少。大漫滩洪水的减少致使控导工程与生产堤之外的二滩与主河槽的水沙交换作用减弱,主槽和嫩滩成为中小洪水和枯水期泥沙落淤的主要场所,这样就造成了控导工程与生产堤之内的主河槽逐年抬高,逐渐高于了两侧滩地,形成了“级悬河”之上的“二级悬河”。“二级悬河”的形成使下游河道不断萎缩,河道横比降加大,对河道防洪构成了严重威胁。
     本文首先对漫滩洪水特性及滩槽水沙交换机理进行研究,进一步分析了历史漫滩洪水的滩槽冲淤特性:在把握基本特性的基础上,选择典型河段,设计制作实体动床模型,进行不同边界条件与不同洪水水沙组合的模拟试验,寻求基于淤滩刷槽的洪水泥沙调控模式;在基本确定调控模式的基础上,进一步开展滩区滞洪沉沙方案及控制条件的试验研究;并且针对物理模型试验中嫩滩淤积大的问题开展了进一步研究;之后又在物理模型试验的基础上进行了不同边界条件与不同洪水水沙组合的数学模拟试验,对物理模型试验成果做了验证。最后对典型滩区的淹没损失状况进行了调查,得到以下主要结论:
     (1)黄河下游漫滩洪水,滩地的淤积比与漫滩程度密切相关,11场历史大漫滩洪水,主槽冲刷量约是滩地淤积量的0.65-0.99倍。对于来沙系数小于0.015的漫滩洪水,滩地淤积越多相对主槽冲刷越多,也就是滩槽水沙交换越强烈,即“淤滩刷槽”作用越好。
     (2)黄河下游滩槽交换模式:在大漫滩洪水条件下,滩槽水沙交换模式分为三角形滩区(嫩滩)和条形滩区(二滩),前者交换长度约8-10km,后者约20km。
     (3)自然漫滩条件下主要存在以下几个问题:漫滩洪水进入二滩的随机性太大,在二滩的淤积主要集中在进口附近,淹没面积大,滞洪时间长,顺堤流速较大。在控制漫滩条件下以上几个问题都得到不同程度改善。自然漫滩与控制漫滩,都是最大洪峰流量为8000m3/s的过程洪水主槽累计冲刷效果最好。
     (4)从小同滩区的运用方式式可以看到,夹河滩—高村河段开启东明滩与长垣二滩两个滩区滞洪沉沙效果较好,在洪水涨峰时期,保持主槽流量4000m3/s对于减缓嫩滩淤积行之有效。
     (5)滩区的淹没损失主要与淹没面积与淹没时间有关,因此在黄河下游平滩流量为4000m3/s的现状地形条件下,若黄河下游遭遇大漫滩洪水,小浪底水库最好能控制下泄洪峰流量不超过8000m3/s,初期控制主槽流量不大于4000m3/s,利用滩区进行分区滞洪效果良好。从试验的夹河滩~高村河段看,利用东明滩区和长垣二滩进行滞洪沉沙的效果较好。
The Lower Yellow River is varied quickly between erosion and deposition. The main channel is always silted in recent years, and the suspended river appeared at the control of levee. After that the overbank flood became less and less because of continuous low flow year, hydropower complex projects, control works and production dykes in the Lower Yellow River. The water and sediment exchange between main channel and old beach areas weakened. The main channel and the new beach areas became the main place that sediment deposit. That made the elevation of main channel and the new beach areas raise year by year, the secondary suspended river appeared. After the secondary suspended river appeared, the main channel sostenuto shrank and the cross slope increased. That was really dangerous to the river flood control.
     In this article the characters of overbank flood and water-sediment exchange between main channel and beach were analyzed first. Then the representative reach was selected and the physical model was made. The model tests were done with different boundary and flow-sediment, in order to find out the flood control technology of the Lower Yellow River which based on Deposition on the floodplain. Scour in the main channel. Based on the flood control technology, the different operation plan of beach and new beach deposition were studied. At the end the inundation loss of representative old beach was surveyed. The main conclusions are as flowing:
     (1) Sediment deposition ratio and floodplain degree of the Overbank flood is closely related in the Lower Yellow River. The11overbank floods measured data show that the erosion amount of main channel accounted for about0.65-0.99times than the sedimentation amount of beach. When the incoming sediment coefficient of the overbank floods is less than0.015, the sedimentation amount of beach is directly proportional to the erosion amount of main channel. That indicate the effect of deposition on the floodplain, scour in the main channel is better.
     (2) In the condition of big overbank floods, the exchange mode of main channel and beach can be divided into two. One is triangular beach which is8-10km. Another is longandnarrow beach which is about20km.
     (3) At the status quo of the boundary condition, the ovcrbank floods randomly enter old beach. The deposition mainly concentrates on nearby the import. Also the inundation area is large, flooding time is long and the flow velocity closed to the levee is high. All those problems were improved at control boundary condition. The flood of8000m3/s is the best one at the two boundary condition.
     (4) As the test results of different operational mode of the beaches show that the effect is better when Changyuancr beach and Dongming beach arc used for flood detention and settling at Jiahetan Gaocun. In addition keeping the discharge of the main channel4000m3/s is better to improve the deposition of new beach in the rise period of flood peak.
     (5) The inundation loss mainly depends on inundated area and inundated times. In the talc qualc condition of bankfull discharge is4000m3/s, it is better that the discharge controlled by Xiaolangdi Reservoir is less than8000m3/s. In addition if the sediment concentration is more than30kg/m3, the control discharge can be not more than4000m3/s in the rise period of flood peak when the beaches are used for flood detention and settling. At Jiahetan-Gaocun reach Dongming beach and b Changyuancr each is an better choice.
引文
1. 曹文洪.黄河下游水沙复杂变化与河床调整的关系[J].水利学报,2004:1-6.
    2. 陈界仁,官学文.黄河下游河道萎缩过程初步分析[J].河海大学学报:自然科学版,2003,31(5):501-504.
    3. 陈俊杰,江恩惠,李远发,等.对黄河大型实体模型模型沙选择的初步认识[J].人民黄河,2006,28(4):28-29.
    4. 陈立,詹义正,等.漫滩高含沙水流滩槽水沙交换的形式与作用[J].泥沙研究,1996:45-49.
    5. 陈绪坚,韩其为,方春明.黄河下游造床流量的变化及其对河槽的影响[J].水利学报,2007,38(1):15-22.
    6. 戴同霞.利用小浪底水库调水调沙是实施黄河下游河道减淤的战略性举措[J].山东水利,2003:6-7.
    7. 窦国仁.全沙模型相似律及设计实例,1978.
    8.窦国仁.全沙模型相似律及设计实例[J].水利水运科技情报,1977,(2).
    9. 窦国仁,王国兵.小浪底枢纽泥沙模型十二级及验证试验报告[R]:南京水科院研究报告,1991.
    10.费祥俊.黄河下游低含沙水流挟沙力研究[J].人民黄河,2003,25(9):16-18.
    11.费祥俊,傅旭东,张仁.黄河下游河道排沙比、淤积率与输沙特性研究[J].人民黄河,2009,31(11):6-8.
    12.费祥俊,朱程清.高含沙水流运动中的宾汉切应力[J].泥沙研究,1991,(4):13-23.
    13.冯普林,梁志勇,黄金池,等.黄河下游河槽形态演变与水沙关系研究[J].泥沙研究,2005:66-74.
    14.高航,齐璞,彭红.黄河下游“多来多排”的输沙机理与不淤河槽设计[J].人民黄河,2007,29(7):14-16.
    15.高亚军,刘长辉.细颗粒煤粉的密实过程及其对起动流速的影响[J].河海大学学报:自然科学版,1999,27(4):54-59.
    16.耿明全.浅谈黄河滩区安全建设[J].中国水利,2004:29-30.
    17.韩其为.第一造床流量及输沙能力的理论分析——“黄河调水调沙的根据、效益与巨大潜力”之三[J].人民黄河,2009a:1-4.
    18.韩其为.黄河调水调沙的效益——“黄河调水调沙的根据、效益和巨大潜力”之八[J].人民黄河,2009b:6-9.
    19.韩其为.小浪底水库初期运用及黄河调水调沙研究[J].泥沙研究,2008a:1-18.
    20.韩其为.黄河下游输沙能力的表达——“黄河调水调沙的根据、效果和巨大潜力”之一[J].人民黄河,2008b,30(11):1-2.
    21.韩其为.黄河下游河道巨大的输沙能力与平衡的趋向性——“黄河调水调沙的根据、效益和巨大潜力”之二[J].人民黄河,2008c,30(12):1-3.
    22.韩其为.论黄河调水调沙[J].天津大学学报,2008d,41(9):1015-1026.
    23.韩其为.黄河下游输沙及冲淤的若干规律[J].泥沙研究,2004:1-13.
    24.韩其为,关见朝.挟沙能力多值性及黄河下游多来多排特性分析——“黄河调水调沙的根据、效益与巨大潜力”之五[J].人民黄河,2009:1-4.
    25.韩其为,江恩惠,陈绪坚.黄河下游第二造床流量研究——“黄河下游调水调沙的根据、效益和巨大潜力”之四[J].人民黄河,2009:1-4.
    26.韩其为,李淑霞.小浪底水库的拦粗排细及异重流排沙——“黄河调水调沙的根据、效益和巨大潜力”之七[J].人民黄河,2009:1-5.
    27.侯志军.李勇,王卫红.黄河漫滩洪水滩槽水沙交换模式研究[J].人民黄河,2010,32(10):63-64.
    28.侯志军,王卫红,张敏,等.黄河下游漫滩洪水淤滩刷槽试验研究[J].人民黄河,2009:81-83.
    29.胡春宏,陈建国.郭庆超.黄河水沙过程调控与下游河道中水河槽塑造[J].天津大学学报,2008,41(9):1035-1040.
    30.胡春宏,陈建国,孙雪岚,等.黄河下游河道健康状况评价与治理对策[J].水利学报,2008,39(10):1189-1196.
    31.胡春宏,郭庆超,陈建国,等.塑造和维持黄河下游中水河槽措施研究[J].水利学报,2006,37(4):381-388.
    32.胡春宏,王延贵,张燕菁.河流泥沙模拟技术进展与展望[J].水文,2006,26(3):37-41.
    33.胡一三.黄河下游河道整治的必要性[J].水利规划与设计,2010:1-4.
    34.黄河水利委员会勘测规划设计研究院.黄河下游冲淤特性研究[R],1999.
    35.江恩惠,韩其为,李军华,等.黄河河床演变的典型现象及相关研究概述[J].人民黄河,2010,32(8):5-7.
    36.江恩惠,李军华,曹永涛,等.长期中小流量下河道整治工程迎送流关系研究[J].泥沙研究,2008:38-42.
    37.江恩惠,梁跃平.新形势下黄河下游游荡性河道整治工程设计有关问题探讨[J].泥沙研究,1999:26-31.
    38.江恩惠,马继业,等.小浪底水库运用初期游荡性河道整治应与挖河固堤相结合[J].人民黄河,2001,23(5):1-2.
    39.江恩惠,万强,曹永涛.小浪底水库拦沙运用九年后黄河下游防洪形势预测[J].泥沙研究,2010:1-4.
    40.江恩惠,万强,曹永涛.黄河下游游荡性河道整治河弯流路方程[J].天津大学学报,2008,41(9):1057-1061.
    41.江恩惠,张林忠,等.分段整治实现游荡型河道整治的有机统一[J].人民黄河,2002,24(6):34-35.
    42.江恩惠,赵连军,韦直林.黄河下游洪峰增值机理与验证[J].水利学报,2006,37(12):1454-1459.
    43.兰华林,雷玉舢.中小洪水引洪淤滩技术试验研究[J].人民黄河,1997,19(4):40-43.
    44.李国英.基于空间尺度的黄河调水调沙[J].人民黄河,2004,26(2):1-4.
    45.李昆鹏,陈书奎,马怀宝,等.粉煤灰干容重对动床模型试验的影响[J].人民黄河,2012,34(3):11-12.
    46.李小平,李文学,李勇,等.水库拦沙期黄河下游洪水冲刷效率调整分析[J].水科学进展,2007,18(1):44-51.
    47.李小平,李勇,曲少军.黄河下游洪水冲淤特性及高效输沙研究[J].人民黄河,2010,32(12):71-73.
    48.李远发,武彩萍,朱超,等.大洪水时黄河下游河道冲淤规律[J].人民黄河,2010,32(12):35-36.
    49.李远发,张俊华,马怀宝,等.黄河河口局部实体模型设计[J].人民黄河,2006,28(1):6-8.
    50.梁志勇.黄河下游断面形态与水沙关系及其数学模拟方法[J].地理研究,1993,(2):41-70.
    51.梁志勇,刘继祥,张厚军.黄河下游河道洪水冲淤与水沙搭配关系[J].水力发电学报,2005,24(2):52-55.
    52.刘继祥,郜国明.黄河下游河道冲淤特性研究[J].人民黄河,2000,22(8):11-12.
    53.刘小勇,李天宏,等.黄河下游河道输沙用水量研究[J].应用基础与工程科学学报,2002,10(3):253-262.
    54.刘晓燕,李小平,张原锋,等.黄河下游主槽恢复目标研究[J].泥沙研究,2009:1-7.
    55.刘兆存,秦耀辰,金生.黄河下游河道治理及滩区问题研究[J].地理科学进展,2008,27(2):32-38.
    56.龙毓骞,张留柱,等.黄河下游断面资料数据库及冲淤分布初步分析[J].水文,2002,22(4):28-31.
    57.罗立群.张敏,王卫红,等.黄河下游二级悬河段河势及漫滩模型分析[J].人民黄河,2010,32(4):15-16.
    58.潘家铮.黄河下游治理问题的策略[J].人民黄河,2004,26(4):6-7.
    59.彭瑞善.黄河下游河道整治与平衡输沙[J].人民黄河,2011,33(3):3-7.
    60.齐璞.黄河下游河道输沙泄洪机理、能力及治理前景[J].水利学报,2007:
    61.齐璞.论调水调沙与束水攻沙[J].中国水利,2005:29-31.
    62.齐璞.黄河下游游荡性河道整治方案研究[J].中国水利,2004:34-36.
    63.齐璞.对黄河下游河道的再认识[J].中国水利,2001:20-21.
    64.齐璞.对黄河下游河道认识的突破[J].科技导报,2000:22-25.
    65.齐璞.论窄深河槽过洪能力[J].人民黄河,1998,20(5):42-43.
    66.齐璞,高航.论稳定主槽与调水调沙的治河方略[J].科学,2006a,58(6):36-39.
    67.齐璞,高航.论“稳定主槽、调水调沙”的治河方略[J].人民黄河,2006b,28(4):7-10.
    68.齐璞,高航,孙赞盈,等.淤滩与刷槽之间有必然的联系[J].人民黄河,2005,27(10):16-18.
    69.齐璞,齐宏海,孙赞盈,等.黄河下游河道河槽形态与输沙特性研究[J].泥沙研究,2010:
    70.齐璞,苏运启.黄河下游“小水大灾”的成因分析及对策[J].人民黄河,2002,24(7):12-13.
    71.齐璞.孙赞盈.论黄河下游调水调沙与束水输沙[J].人民黄河,2008,30(7):1-2.
    72.齐璞,孙赞盈.小浪底水库泥沙多年调节运用与下游河道进一步治理研究[EB/OL]. http://www.hwec.com.cn
    73.齐璞,孙赞盈,刘斌,等.黄河下游游荡性河道双岸整治方案研究[J].水利学报,2003:98-106.
    74.齐璞,孙赞盈,齐宏海.再论黄河下游游荡性河道双向整治方案[J].泥沙研究,2011:1-9.
    75.齐璞,孙赞盈,张林忠,等.黄河下游游荡性河道双岸整治淹窄河段冲淤影响[J].人民黄河,2003,25(12):19-22.
    76.齐璞,于强生,马荣曾.关于黄河下游游荡性河道整治的思考[J].治黄科技信息,2004:1-4.
    77.齐璞,余欣,孙赞盈,等.增大主槽过流能力 淡化生产堤存废之争[J].人民黄河,2010:14-16.
    78.齐璞,余欣,孙赞盈,等.黄河高含沙水流的高效输沙特性形成机理(黄河下游河道存在巨大的输沙潜力)[J].泥沙研究,2008:74-80.
    79.齐璞等.黄河高含沙水流运动规律及应用前景[M].北京:科学出版社,1993.
    80.钱宁,万兆惠.泥沙运动力学[M]:科学出版社,1983.
    81.曲少军,申冠卿,李勇,等.黄河下游宽河段漫滩洪水作用初析[J].水利水电科技进展,2006,26(3):7-9.
    82.曲少军,魏向阳等.黄河下游河道排洪能力分析[J].人民黄河,2000,22(11):3-4.
    83.屈孟浩.整体布置动床模型试验[J].人民黄河,1986,(2).
    84.屈孟浩.河工模型试验的自然模型法[J].黄河建设,1959,(2).
    85.屈孟浩,李保如,刘和清.黄河下游游荡河段人工淤滩刷槽模型试验[J].人民黄 河,1986,(2):12-15.
    86.屈盂浩.黄河动床河道模型的相似原理及设计方法[J].泥沙研究,1981,(2).
    87.申冠卿,张晓华.1986年以来黄河下游水沙变化及河道演变分析[J].人民黄河,2000,22(9):10-11.
    88.申冠卿。张原锋,曲少军,等.黄河下游不同峰型洪水对泥沙输移的影响[J].水利学报,2008,39(1):7-13.
    89.师长兴,许炯心.黄河下游河槽治理方法分析[J].泥沙研究,1998:58-66.
    90.唐德善,张阳.治理黄河淤沙的设想[J].水利水运科学研究,1999:257-263.
    91.王俊,宁静,张兴源.黄河下游滩区分类管理模式研究[J].人民黄河,2009:4-5.
    92.王开荣.王恺忱.黄河下游游荡性河段河势演变中几个问题的研究[J].人民黄河,1996,18(9):55-57.
    93.王明甫,陈立.高含沙水流游荡型河道滩槽冲淤演变特点及机理分析[J].泥沙研究,2000:1-6.
    94.吴保生,申冠卿.来沙系数物理意义的探讨[J].人民黄河,2008,30(4):15-16.
    95.吴保生,夏军强,张原锋.黄河下游平滩流量对来水来沙变化的响应[J].水利学报,2007,38(7):886-892.
    96.吴保生,张原锋.黄河下游输沙量的沿程变化规律和计算方法[J].泥沙研究,2007:30-35.
    97.夏军强,吴保生,王艳平.近期黄河下游河床调整过程及特点[J].水科学进展.2008,19(3):301-308.
    98.谢鉴衡.河流泥沙工程学[M]:水利出版社,1981.
    99.许炯心.黄河下游河道萎缩对冲淤临界的影响[J].地理科学,2010:403-408.
    100.许炯心.黄河下游洪水的输沙效率及其与水沙组合和河床形态的关系[J].泥沙研究,2009a:45-50.
    101.许炯心.黄河下游高效输沙洪水研究[J].泥沙研究,2009b:54-59.
    102.许炯心.水沙条件对黄河下游河道输沙功能的影响[J].地理科学,2004,24(3):275-280.
    103.许炯心.黄河下游洪水的泥沙输移特征[J].水科学进展,2002,13(5):562-568.
    104.严军,王艳华,王俊,等.黄河下游水沙条件对河道冲淤的影响[J].人民黄河,2009:17-18.
    105.严军,殷瑞兰.粉煤灰固结起动特性[J].泥沙研究,2001,(6):55-60.
    106.杨美卿,王桂玲.粘性细泥沙的临界起动公式[J].应用基础与工程科学学报,1995,(5).
    107.姚文艺,郜国明.黄河下游洪水冲淤相对平衡的分组含沙量阈值探讨[J].水科学进展,2008,19(4):467-474.
    108.姚文艺,李勇.维持黄河下游排洪输沙基本功能的关键技术研究[J].中国水利, 2007:29-33.
    109.姚文艺,刘海凌,王卫红,等.河型变化段河工动床模型设计方法研究[J].泥沙研究,1998:14-20.
    110.姚文艺,苏运启,李勇.黄河下游排洪输沙基本功能的影响因素及判别指标[J].泥沙研究,2009:1-9.
    111.尹学良.黄河下游河道的改造问题[C]:中国建材工业出版社,1978.
    112.尹学良,梁志勇.河型成因研究及其应用[J].泥沙研究,1999:13-19.
    113.翟家瑞.从黄河“96·8”洪水谈泥沙优化调度的必要性[J].人民黄河,2008,30(12):26-27.
    114.张红武,江恩惠.黄河高含沙洪水模型的相似条件[J].人民黄河,1995,17(4):1-3.
    115.张红武,江恩惠,白咏梅.黄河高含沙洪水模型的相似律[M].郑州:河南科技出版社,1994.
    116.张红武,张俊华,钟德钰,等.黄河下游游荡型河段的治理方略[J].水利学报,2011,42(1):8-13.
    117.张俊华,张红武.黄河三门峡库区泥沙模型的设计[J].泥沙研究,1999,(4):32-38.
    118.张林忠,江恩惠,赵新建.黄河下游游荡型河道整治效果评估[J].人民黄河,2010,32(3):21-22.
    119.张明义,孙娟,锋.悬移质模型沙级配的模拟计算方法探讨[J].泥沙研究,2003,(1):75-79.
    120.张欧阳,许炯心,等.不同来源区洪水对黄河下游游荡河段河床横断面形态调整过程的影响[J].泥沙研究,2002:1-7.
    121.张仁.对于黄河下游治理方略的几点建议[J].人民黄河,2004,26(5):1-2.
    122.张瑞瑾.关于河道挟沙水流比尺模型相似律问题[J].武汉水利电力学院学报,1980,(9).
    123.张瑞瑾.关于河道挟沙水流比尺模型相似率问题[J].水利水电技术,1979,(9).
    124.张原锋,刘晓燕,张晓华.黄河下游中常洪水调控指标[J].泥沙研究,2006:1-5.
    125.张原锋,申冠卿.黄河下游维持主槽不萎缩的输沙需水研究[J].泥沙研究,2009:8-12.
    126.赵华侠,陈建国.黄河下游洪水期输沙用水量与河道泥沙冲淤分析[J].泥沙研究,1997:57-61.
    127.周文浩,曾庆华.黄河下游河道输沙能力的分析[J].泥沙研究,1994:1-11.
    128. Ao J, Chen J, Tian F, et al. Application of a level Ⅳ fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River basin, China[J]. Chemosphere,2009,74(3):370-376.
    129. Aranuvachapun S, Walling D E. LANDSAT-MSS RADIANCE AS A MEASURE OF SUSPENDED SEDIMENT IN THE LOWER YELLOW RIVER (HWANG HO).[J]. Remote Sensing of Environment,1988,25(2):145-165.
    130. Chen B, Ouyang Z, Sun Z, et al. Evaluation on the potential of improving border irrigation performance through border dimensions optimization:a case study on the irrigation districts along the lower Yellow River[J],2012:1-14.
    131. Chen J G, Zhou W H, Chen Q. RESERVOIR SEDIMENTATION AND TRANSFORMATION OF MORPHOLOGY IN THE LOWER YELLOW RIVER DURING 10 YEAR'S INITIAL OPERATION OF THE XIAOLANGDI RESERVOIR[J]. JOURNAL OF HYDRODYNAMICS,2012,24(6):914-924.
    132. Chen J, Zhou W, Chen Q. Reservoir sedimentation and transformation of morphology in the lower yellow river during 10 year's initial operation of the Xiaolangdi reservoir[J]. Journal of Hydrodynamics,2012,24(6):914-924.
    133. Chen J, Zhou W, Deng A. Channel shrinkage and its instability in the lower Yellow River[J]. International Journal of Sediment Research,2006,21(1):13-23.
    134. Dian Z, Changxing S. Sedimentary causes and management of two principal environmental problems in the lower Yellow River[J]. Environmental Management, 2001,28(6):749-760.
    135. Fu X D, Jiang L W, Wu B S, et al. Sediment delivery ratio and its uncertainties on flood event scale:Quantification for the Lower Yellow River[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2010,53(3):854-862.
    136. Fu X, Jiang L, Wu B, et al. Sediment delivery ratio and its uncertainties on flood event scale:Quantification for the Lower Yellow River[J]. Science China Technological Sciences,2010,53(3):854-862.
    137. Guo Q, Hu C, Takeuchi K, et al. Numerical modeling of hyper-concentrated sediment transport in the lower Yellow River[J]. Journal of Hydraulic Research,2008,46(5): 659-667.
    138. Hao Z, Zheng J, Ge Q, et al. Relationship between precipitation and the infiltration depth over the middle and lower reaches of the Yellow River and Yangtze-Huaihe River Valley[J]. Progress in Natural Science,2008,18(9):1123-1128.
    139. Hu C H, Chen J G, Guo Q C. Shaping and maintaining a medium-sized main channel in the Lower Yellow River[J]. INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH,2012,27(3):259-270.
    140. Hu C H, Zhang G G. Characteristics of the Lower Yellow River channel shrinkage and its discriminant parameters[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2010,53(5):1374-1386.
    141. Hu C, Guo Q. Modeling sediment transport in the lower Yellow River and dynamic equilibrium threshold value[J]. Science in China, Series E:Technological Sciences, 2004,47(SUPPL.1):161-172.
    142. Hu C, Guo Q, Chen J, et al. Applications of numerical simulation to the sedimentation in the Sanmenxia reservoir and the Lower Yellow River[J]. International Journal of Environment and Pollution,2010,42(1-3):148-165.
    143. Hu C, Zhang G. Characteristics of the Lower Yellow River channel shrinkage and its discriminant parameters[J]. Science China Technological Sciences,2010,53(5): 1374-1386.
    144.Huang C C, Pang J L, Zha X C, et al. Holocene palaeoflood events recorded by slackwater deposits along the lower Jinghe River valley, middle Yellow River basin, China[J]. JOURNAL OF QUATERNARY SCIENCE,2012,27(5):485-493.
    145. Huang J, Wang Y. Study on the warping near irrigation headwork of the lower reach of Yellow River[J]. International Journal of Sediment Research,1999,14(2): 399-404.
    146. Huybrechts N, Zhang Y F, Verbanck M A. A new closure methodology for 1D fully coupled models of mobile-bed alluvial hydraulics:application to silt transport in the Lower Yellow River[J]. INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH,2011,26(1):36-49.
    147. Jiongxin X. Effect of human activities on overall trend of sedimentation in the Lower Yellow River, China[J]. Environmental Management,2004,33(5):637-653.
    148. Jiongxin X. A study of sediment delivery by floods in the lower Yellow River, China[J]. Hydrological Sciences Journal,2003,48(4):553-566.
    149. Li G Y, Sheng L X. Model of water-sediment regulation in Yellow River and its effect[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2011,54(4):924-930.
    150. Li W, Li Y, Yao W, et al. Response of flood discharging capacity to the deterioration of the lower Yellow River[J]. Science in China, Series E:Technological Sciences, 2004,47(SUPPL.1):152-160.
    151. Liao Z, Lin X, Shi Q, et al. Study on the groundwater exploitation test in the Yellow River lower reaches-A case study on the north suburb waterworks of Zhengzhou, China[J]. Science in China, Series E:Technological Sciences,2004,47(SUPPL.1): 14-24.
    152. Liu G W. On the geo-basis of river regulation in the lower reaches of the Yellow River[J]. Science China Earth Sciences,2012,55(4):530-544.
    153. Liu G W. On the geo-basis of river regulation in the lower reaches of the Yellow River[J]. SCIENCE CHINA-EARTH SCIENCES,2012,55(4):530-544.
    154. Liu L, Luo Y, He C S, et al. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China[J]. JOURNAL OF HYDROLOGY,2010,391(1-2):159-176.
    155. Liu L, Luo Y, He C, et al. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China[J]. Journal of Hydrology,2010,391(1-2):157-174.
    156. Liu L, Yang Z, Shen Z. Estimation of water renewal times for the middle and lower sections of the Yellow River[J]. Hydrological Processes,2003,17(10):1941-1950.
    157. Ma Y X, Huang H Q, Nanson G C, et al. Channel adjustments in response to the operation of large dams:The upper reach of the lower Yellow River[J]. GEOMORPHOLOGY,2012,147(SI):35-48.
    158. Ni J, Liu X, Li T, et al. Efficiency of sediment transport by flood and its control in the Lower Yellow River[J]. Science in China, Series E:Technological Sciences,2004, 47(SUPPL.1):173-185.
    159. Ni J, Wang Y, Qian Z, et al. On the variation of water resource structure in the Lower Yellow River[J]. Science in China, Series E:Technological Sciences,2004, 47(SUPPL.1):127-141.
    160. Peng J, Chen S L, Dong P. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta[J]. CATENA, 2010,83(2-3):135-147.
    161. Qian N, Zhang R. FLOOD AND RIVER SEDIMENTATION PROBLEMS OF THE LOWER YELLOW RIVER IN CHINA.[J]. Irrigation and Power,1982,39(2): 205-215.
    162. Sebastiaan Van Maren D, Yang M, Wang Z B. Predicting the morphodynamic response of silt-laden rivers to water and sediment release from reservoirs:Lower Yellow River, China[J]. Journal of Hydraulic Engineering,2010,137(1):90-99.
    163. Shi C. Sediment hazards in the lower Yellow River[J]. International Journal of Sediment Research,1999,14(2):25-30.
    164. Shi C, Ye Q. Bank breach hazards in the lower Yellow River[J]. Destructive water: water-caused disasters, their abatement and control. Proc. international conference, California,1996,1997,(239):391-397.
    165. van Maren D S, Yang M, Wang Z B. Predicting the Morphodynamic Response of Silt-Laden Rivers to Water and Sediment Release from Reservoirs:Lower Yellow River, China[J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE,2011,137(1): 90-99.
    166. Wan Q, Wan H, Zhou C, et al. Simulating the hydraulic characteristics of the lower Yellow River by the finite-volume technique[J]. Hydrological Processes,2002,16(14): 2767-2779.
    167. Wang G L, Ma L M, Sun J H, et al. Occurrence and distribution of organochlorine pesticides (DDT and HCH) in sediments from the middle and lower reaches of the Yellow River, China[J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2010,168(1-4):511-521.
    168. Wang G, Xia J, Wu B. Numerical simulation of longitudinal and lateral channel deformations in the braided reach of the lower yellow river[J]. Journal of Hydraulic Engineering,2008,134(8):1064-1078.
    169. Wang G, Xu M. Analysis on peculiarities of '92.8' flood event in the Lower Yellow River[J]. International Journal of Sediment Research,1999,14(2):205-213.
    170. Wang S J, Li Y K. Channel variations of the different channel pattern reaches in the lower Yellow River from 1950 to 1999[J]. QUATERNARY INTERNATIONAL, 2011,244(2):238-247.
    171. Wang Y J, Su Y J. The geo-pattern of course shifts of the Lower Yellow River[J]. JOURNAL OF GEOGRAPHICAL SCIENCES,2011,21(6):1019-1036.
    172. Wu A Q, Chen S Y, Zhang J, et al. Assessment of eutrophication types of lakes and ecological risk of heavy metals in Riparian soils in lower reaches of the Yellow River, China[J]. ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH,2012,30(1):303-308.
    173. Wu A, Chen S, Zhang J, et al. Assessment of eutrophication types of lakes and ecological risk of heavy metals in Riparian soils in lower reaches of the Yellow River, China[J]. Energy Education Science and Technology Part A:Energy Science and Research,2012,30(1):303-308.
    174. Wu B, Wang G, Ma J, et al. Case study:River training and its effects on fluvial processes in the Lower Yellow River, China[J]. Journal of Hydraulic Engineering, 2005,131(2):85-96.
    175. Wu B, Xia J, Fu X, et al. Effect of altered flow regime on bankfull area of the Lower Yellow River, China[J]. Earth Surface Processes and Landforms,2008,33(10): 1585-1601.
    176. Xia J Q, Lin B L, Falconer R A, et al. Modelling of man-made flood routing in the lower Yellow River, China[J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT,2012,165(7):377-391.
    177. Xia J Q, Wang Z B, Wang Y P, et al. Comparison of Morphodynamic Models for the Lower Yellow River[J]. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION,2013,49(1):114-131.
    178. Xia J Q, Wu B S, Wang G Q, et al. Estimation of bankfull discharge in the Lower Yellow River using different approaches[J]. GEOMORPHOLOGY,2010,117(1-2): 66-77.
    179. Xia J, Lin B, Falconer R A, et al. Modelling of man-made flood routing in the lower Yellow River, China[J]. Proceedings of the Institution of Civil Engineers:Water Management,2012,165(7):377-391.
    180. Xia J, Wang Z, Wang Y, et al. Comparison of Morphodynamic Models for the Lower Yellow River[J]. Journal of the American Water Resources Association,2013,49(1): 114-131.
    181. Xu J X. A study of sedimentation rate in the lower Yellow River based on cross section measurement data[J]. ZEITSCHRIFT FUR GEOMORPHOLOGIE,2012, 56(2):239-254.
    182. Xu J. Sediment transferring function of the lower reaches of the Yellow River influenced by drainage basin factors and human activities[J], Science in China, Series D:Earth Sciences,2005,48(12):2194-2202.
    183. Xu J. Sedimentation rates in the lower Yellow River over the past 2300 years as influenced by human activities and climate change[J]. Hydrological Processes,2003, 17(16):3359-3371.
    184. Xu J, Hu C, Chen J. Effect of suspended sediment grain size on channel sedimentation in the lower Yellow River and some implications[J]. Science in China, Series E:Technological Sciences,2009,52(8):2330-2339.
    185. Yang T, Xu C Y, Shao Q X, et al. Temporal and spatial patterns of low-flow changes in the Yellow River in the last half century[J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,2010,24(2):297-309.
    186. Yang T, Zhang Q, Chen Y D, et al. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China[J]. Hydrological Processes,2008,22(18):3829-3843.
    187. Yang Z F, Yan Y, Liu Q. Assessment of the flow regime alterations in the Lower Yellow River, China[J]. ECOLOGICAL INFORMATICS,2012,10:56-64.
    188. Yuan Y, Wu J, Zuo Y, et al. A new method for fitting the complicated water level process of the lower Yellow River[J]. Science in China, Series E:Technological Sciences,2009,52(10):2997-3003.
    189. Zhang B, Ma J, Wei Z. Local scour depth around spurs in the Lower Yellow River[J]. International Journal of Sediment Research,2002,17(3):244-249.
    190. Zhang C S, Geng L Y, Du L X, et al. Polymorphic Study of FecX(G), FecG(H) and Fec(B) Mutations in Four Domestic Sheep Breeds in the Lower Yellow River Valley of China[J]. JOURNAL OF ANIMAL AND VETERINARY ADVANCES,2011, 10(17):2198-2201.
    191. Zhang H, Huang Y, Zhao L. A mathematical model for unsteady sediment transport in the Lower Yellow River[J]. International Journal of Sediment Research,2001,16(2): 150-158.
    192. Zhang O, Feng X, Xu J. Impacts of flood events in coarse sediment-producing areas on channel siltation and fluvial process of the lower Yellow River[J]. International Journal of Sediment Research,2007,22(2):142-149.
    193. Zhang Y, Zhong D, Wu B. Response model for the bankfull discharge in the Lower Yellow River[J]. Qinghua Daxue Xuebao/Journal of Tsinghua University,2012,52(6): 759-765.
    194. Zhao L, Jiang E, Dong Q, et al. Application of a numerical model in flood routing in the lower Yellow River[J]. Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition),2007,39(1):6-12.
    195. Zhou J J, Zhang M. Coarse sediment and lower Yellow River siltation[J]. JOURNAL OF HYDRO-ENVIRONMHNT RESEARCH,2012,6(4):267-273.
    196. Zhou J, Lin B. Verification of mathematical model for sediment transport by unsteady flow in the lower yellow river[J]. International Journal of Sediment Research,2004, 19(4):278-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700