用户名: 密码: 验证码:
渭河流域主要河流水文干旱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了渭河流域主要河流径流序列的变化特性和丰枯变化及遭遇情况。结合国内外水文干旱要素概率分布的研究成果,利用游程理论、极值理论及随机理论,探讨了不同分布水文序列的极限水文干旱要素概率分布和特征值;并应用解析法和模拟法进行了对比分析;借助Copula函数,建立了水文干旱双变量概率模型,并用泾河和北洛河的月径流资料对其做了检验。本研究取得如下主要结论:
     (1)分析了渭河流域主要河流径流变化特性。渭河流域主要河流的径流长期变化趋势呈下降趋势;年径流序列有较强的自相依性和持续性;丰枯变化具有较高的同步性;径流序列年内分配不均匀,多集中在7、8月份。
     (2)研究了渭河流域主要河流丰枯变化规律。渭河流域主要河流年径流序列有转枯的趋势,转枯概率大于转丰概率,对用水十分不利;连多连少概率分析表明,单独出现多水与单独出现少水相比,多水年平均为5.82次,少水年平均为5.27次,比多水年略少。但连续2年以上的少水年为5.81次,比连续2年以上的多水年4.91次高。相应游程概率连续2年多水略高于少水,分别为24%、22%,而3年连续多水概率为13%低于3年连续少水概率14%,连续4年,5年以及5年以上的概率也是少水大于多水,反映易出现少水事件;从游程平均连续年数看,多水集团游程连续年数为1.57~2.60,平均为2.16;少水集团游程连续年数为0.96~3.86,平均为2.83。游程平均强度多水集团为0.26~6.62,平均为2.40;少水集团为0.15~5.42,平均为1.88。渭河流域单独多(少)水年出现的概率比连续多(少)水年出现的概率大,单独多水年比单独少水年出现的概率高,而连续多(少)水年出现概率情况正好相反,连续多水年比连续少水年出现的概率低;表明该流域容易受到干旱的威胁,不足两年就可能有一年不利的状态出现。
     (3)揭示了渭河流域主要河流丰枯遭遇规律。由丰枯遭遇分析可知,丰枯同步频率中,所研究的三种遭遇测站(林家村-千阳、黑峪口-鹦鸽、状头-张家山)较易发生同枯现象,在丰枯异步频率中,发生枯丰组合的频率较小。条件概率分析表明,枯水条件概率均大于丰水概率,即在前一个测站径流状况已知的情况下,后一测站的发生枯水的概率较大。
     (4)研究了水文干旱变量概率分布特性,指出了其影响要素和随之变化规律。干旱历时和干旱烈度概率分布特性研究表明,负交互点数和长期干旱历时概率分布的计算公式具有较好的精度,只是由于资料长度的限制,在个别站出现了较大的偏差;解析法和模拟法得出的结果是一致的。干旱烈度的概率分布是径流序列均值、截取水平及偏差系数的函数;不同分布的水文序列,对数正态分布的极限干旱历时和干旱烈度的期望值均大于gamma分布和正态分布的期望值,利用这一特点可以在水文序列分布未知时,对其在一定时期内的极限干旱变量做出区间估计。一定时期内极限干旱变量期望值与序列一阶自相关系数,偏态系数(偏差系数)存在正相关系。应用于渭河流域不同时期内极限水文干旱分析表明,50年内,渭河流域出现极限干旱历时的期望值为5~9年,100年内渭河流域发生极限干旱历时期望值在6~12年之间变化。
     (5)利用Copula函数建立了水文干旱双变量概率分布,并借助其尾部相关性分析,量化了风险。干旱历时与干旱烈度具有很高的相关性,两者边际分布很难全面反映真实干旱特性,而利用Copula函数建立干旱历时与干旱烈度双变量分布可以弥补边际分布这一不足,全面考虑了干旱历时与干旱烈度的相互组合及条件组合情况;通过对Copula函数的尾部相关性分析,管理者就可以根据尾部相关性,预测当干旱历时发生大幅度变化时干旱烈度发生大幅度变化的概率,这在风险管理中是很重要的。以状头站为例,当干旱历时超过q0 .95时,根据它与干旱烈度的尾部相关性,可以说,干旱烈度超过q0 .95的概率是34.48%。
The charateristics of runoff series of main rivers in Weihe River basin were studied in this paper, which involved runoff traits, high and low streamflow and encounter between high and low streamflow in different situations. Combination with the results of probability distribution of hydrologic drought variables which have been known and using run theory, extreme theory and stochastic theory, the probability distribution and charateristic value of critical hydrologic drought factors were analyzed, which the underlying hydrologic series were followed by different distributions. Meanwhile, Comparison between simulation and analytical methods was completed. Bivariate probability model of hydrologic drought was established by Copula function, which was tested through monthly streamflow series of Jinghe river and Beiluohe river. The main results are as follows:
     (1) Runoff charateristics of main rivers in Weihe River basin were analyzed. Runoff of main rivers in Weihe River basin had a descend tendency. The annual runoff existed strong auto-correlation and persistence. Change between high and low flow exhibited good synchronization. The distribution of annual runoff in month was unequal, which concentrated in July and August.
     (2) Transition between high and low flow of mai rivers in Weihe River basin was studied. The tendency of transition to low existed, the transitional probability of low flow was bigger than high flow, which was harm to water utilization. The probability analysis of several low or high flow showed that one-year high low occurred with the mean of 5.82 times, which was larger than one-year low flow with 5.27 times. More than 2-year low flow took place with the mean of 5.81 times which was higher than 4.91 times of more than 2-year high flow. The run probability analysis indicated that the probability of 2-year high flow was higher slightly than 2-year low flow, which were 24% and 22%,respectively. However, the probability of 3-year high flow with 13% was lower than 14% of 3-year low flow, which more than 3-year situation had the same results. The consecutive years of high flow group were between 1.57 and 2.60 years, the mean was 2.16 years. The consecutive years of low flow group were between 0.96 and 3.86 years, the mean was 2.83 years. The intensity of high flow group were from 0.26 to 6.62, the mean was 2.40. The intensity of low flow group were from 0.15 to 5.42, the mean was 1.88. In Weihe River basin, the probability of one-year high or low flow was higher than consecutive year high or low flow, the probability of one-year high flow was bigger than one-year low flow. Otherwise, the probability of consecutive year high flow was lower than consecutive year low flow, which showed that Weihe River basin was easy to threated by drought and there was a drought occurred in less than 2 years.
     (3) Encounter of high flow and low flow of main rivers in Weihe River basin was considered. The results indicated that low flow state that three encounter stations which were Linjiacun-Qianyang, Heiyukou-Yingge and Zhuangtou-Zhangjiashan,were in the same year, was easy to happen, and low-high combination frequency was small. The analysis of conditional probability indicated that the conditional probability of low flow was bigger than high flow when the runoff state of foremore station was known.
     (4) The probability distribution of hydrologic drought variables and its affected factors were analyzed. The results indicated that the formulations of negative acrossing and probability distribution of drought duration were accuracy except some errors in few stations due to the length of runoff series, the results from simulation and analytical method were coherent, the expected values of critical drought duration and severity of underlying hydrologic series with log-norm distribution were bigger than gamma distribution and norm distribution, which can be used to estimate the scope of critical drought variables in a certain period when the distribution of runoff series was unknown, the expected values of critical drought variable existed positive correlation with first-order auto-coefficient and skewed coefficient of runoff series. With application of above results in Weihe River basin, the results showed the expected values of critical drought duration in 50 years were from 5 years to 9 years, which were between 6 years and 12 years in 100 years.
     (5) The probabilty distribution of bivariable hydrologic drought was developed by Copula function, and the drought risk was measured through tail-correlation of Copula function. There was a high correlation between drought duration and drought severity, which marginal distribution is difficult to reflect real drought characteristic. The bivariable hydrologic drought model by Copula function avioded the deficiency mentioned above, which included different combination of drought severity and drought duration. The supervisor can predict the probability of drought severity with a certain level when drought duration with the same level happened through tail correlation analysis, which was very important in risk management. For instance, it was said that the probability of drought severity more than 0.95 percentail was 34.48% when drought duration more than 0.95 percentail according to tail correlation analysis.
引文
[1] http://www.weihe.gov.cn/index.asp.
    [2] http://www.ndrc.gov.cn/fzgh/ghwb/115zxgh/P020070920383067761339.doc.
    [3] 和宛琳, 徐宗学. 渭河流域干旱特征及干旱指数计算方法初探[J]. 气象. 2006, 32(1): 24-29.
    [4] 王维第. 水文干旱研究的进展和展望[J]. 水文. 1993(5): 61-65.
    [5] 向世武, 孙汉贤, 刘琦凤, 等. 水文干旱译文集[C]. 西安: 水利水电西北勘察设计院, 1991.
    [6] 陈峪. 我国的干旱[J]. 气象知识. 2006(2): 24-27.
    [7] 宋松柏, 蔡焕杰, 粟晓玲. 专门水文学[M]. 杨凌: 西北农林科技大学, 2005: 139-147.
    [8] 袁文平, 周广胜. 干旱指标的理论分析与研究展望[J]. 地球科学进展. 2004, 19(6): 982-991.
    [9] 耿鸿江. 干旱定义述评[J]. 灾害学. 1993, 8(1): 19-22.
    [10] 孙荣强. 干旱定义及其指标评述[J]. 灾害学. 1994, 9(1): 17-21.
    [11] 张利平. 干旱的含义及干旱指标的探讨[J]. 水文水资源. 1998, 19(1): 33-35.
    [12] 谢应齐. 关于干旱指标的研究[J]. 自然灾害学报. 1993, 2(2): 55-62.
    [13] 王劲松, 郭江勇, 周跃武, 等. 干旱指标研究的进展与展望[J]. 干旱区地理. 2007, 30(1): 60-65.
    [14] 姚玉璧, 张存杰, 邓振镛, 等. 气象、农业干旱指标综述[J]. 干旱地区农业研究. 2007, 25(1): 185-189.
    [15] 邹旭恺, 张强, 王有民, 等. 干旱指标研究进展及中美两国国家级干旱监测[J]. 气象. 2005, 31(7): 6-9.
    [16] Bonaccorso B, Cancelliere A, Rossi G. An analytical formulation of return period of drought severity[J]. Stochastic Environmental Research and Risk Assessment. 2003, 17(3): 157-174.
    [17] Sen Z. Probabilistic modelling of crossing in small samples and application of runs to hydrology[J]. Journal of Hydrology. 1991, 124(3-4): 345-362.
    [18] 冯国章. 极限水文干旱历时概率分布的解析与模拟研究[J]. 地理学报. 1994, 49(5): 457-466.
    [19] Herbst P H. A technique for the evaluation of drought from rainfall data[J]. Journal of Hydrology. 1966, 4(4): 264-272.
    [20] Yevjevich. An objective approach to definitions and investigations of continental hydrologic droughts[M]. Colorado State University, 1967: 23.
    [21] Moye L A, Kapadia A S, Cech I M, et al. The theory of runs with applications to drought prediction[J]. Journal of Hydrology. 1988, 103(1-2): 127-137.
    [22] Sen Z. Critical drought analysis by second-order Markov chain[J]. Journal of Hydrology. 1990, 120(1-4): 183-202.
    [23] Sen Z. Critical drought analysis of periodic-stochastic processes[J]. Journal of Hydrology. 1980, 46(3-4): 251-263.
    [24] Sen Z. Regional drought and flood frequency analysis: Theoretical consideration[J]. Journal of Hydrology. 1980, 46(3-4): 265-279.
    [25] Ognjen B. Hydrological identification of drought[J]. Hydrological Processes. 1993, 7(3): 249-262.
    [26] Sabina S M. Study of meteorological and hydrological drought in southern Romania from observational data[J]. International Journal of Climatology. 2004, 24(7): 871-881.
    [27] Salas J D, Fu C, Cancelliere A, et al. Characterizing the Severity and Risk of Drought in the PoudreRiver, Colorado[J]. Journal of Water Resources Planning and Management. 2005, 131(5): 383-393.
    [28] Chang T J. Effects of Drought on Streamflow Characteristics[J]. Journal of Irrigation and Drainage Engineering. 1990, 116(3): 332-341.
    [29] Shiau J T, Shen H W. Recurrence Analysis of Hydrologic Droughts of Differing Severity[J]. Journal of Water Resources Planning and Management. 2001, 127(1): 30-40.
    [30] Chung C, Salas J D. Drought Occurrence Probabilities and Risks of Dependent Hydrologic Processes[J]. Journal of Hydrologic Engineering. 2000, 5(3): 259-268.
    [31] Rasmussen P F, Akintug B. Drought Frequency Analysis with a Hidden State Markov Model[C]. ASCE, 2004.
    [32] Sen Z. Statistic analysis of hydrologic critical droughts[J]. Journal of The Hydraulics Division. 1991, 106(1): 99-115.
    [33] Sen Z. Run-sums of annual flow series[J]. Journal of Hydrology. 1977, 35(3-4): 311-324.
    [34] Bogardi J J, Duckstein L, Rumambo O H. Practical generation of synthetic rainfall event time series in a semi-arid climatic zone[J]. Journal of Hydrology. 1988, 103(3-4): 357-373.
    [35] Chander S, Kambo N S, Spolia S K, et al. Analysis of surplus- and deficit-using runs[J]. Journal of Hydrology. 1981, 49(1-2): 193-208.
    [36] Woo K M, Tarlue A. Streamflow droughts of northern Nigerian river[J]. Hydrological Sciences Journal. 1994, 39(1): 19-34.
    [37] Cancelliere A, Ancarani A, Rossi G. Susceptibility of water supply reservoris to drought conditions[J]. Journal of Hydrologic Engineering. 1998, 3(2): 140-148.
    [38] 方红远, 甘升伟, 余莹莹. 区域供水系统干旱历时特性综合分析[J]. 水科学进展. 2007, 18(1):96-101.
    [39] 王昌高, 王琦, 王玲玲, 等. 黄河中游干旱特征初步分析[J]. 人民黄河. 2004, 26(8):29-36.
    [40] 王正发. 多年持续干旱的概率分析及重现期的确定[J]. 陕西水力发电. 1995, 11(1):14-20.
    [41] 冯国章. 多年持续干旱历时的概率分布与重现期确定方法的研究[J]. 水文. 1995(6): 6-13.
    [42] 冯国章. 新疆内陆河流水文干旱特征浅析[J]. 干旱地区农业研究. 1994, 12(2):69-78.
    [43] 冯国章. 非相依水文序列极限干旱历时频率分析[J]. 干旱地区农业研究. 1993, 10(3):32-36.
    [44] 王金花, 刘红梅, 康玲玲, 等. 黄河中游干旱的变化及区间遭遇分析[J]. 干旱区资源与环境. 2006, 20(6): 109-113.
    [45] 冯平, 杨鹏, 等. 海河流域区域干旱特下的分析与研究[J]. 水利水电技术. 2003, 34(3): 33-35.
    [46] 宋慧珠, 张世法. 区域干旱统计特征初步分析[J]. 水科学进展. 1994, 5(1): 18-25.
    [47] 蔡明科, 粟晓玲. 黄土高原水文干旱特征分析[J]. 西北水资源与水工程. 2002, 13(4): 18-23.
    [48] 王谦, 陈景玲. 游程理论在河南省冬小麦干旱问题中的应用研究[J]. 河南农业大学学报. 1994, 28(2): 136-143.
    [49] 王文胜. 河川径流水文干旱分析[J]. 甘肃农业大学学报. 1999, 34(2): 184-187.
    [50] 王玲玲, 康玲玲, 王云璋. 气象、水文干旱指数计算方法研究概述[J]. 水资源与水工程学报. 2004, 15(3): 15-18.
    [51] 朱廷举, 胡和平. 基于随机模拟和模糊聚类的水平干旱特性分析[J]. 清华大学学报(自然科学版). 2001, 41(8): 103-106.
    [52] 邢大韦. 陕西渭河流域水文干旱分析[J]. 西北水资源与水工程. 1996, 7(1): 1-9.
    [53] 冯平, 王仁超. 水文干旱的时间分形特征探讨[J]. 水利水电技术. 1997, 28(11): 48-51.
    [54] 刘燕, 杜学挺, 高博平, 等. 频率组合法及其在干旱频率分析中的应用[J]. 干旱地区农业研究. 2006, 24(2): 195-199.
    [55] 马秀峰. 随机序列轮长与轮次的统计规律[J]. 水科学进展. 1994, 5(2):95-103.
    [56] 张学成, 马秀峰, 丁晶, 等. 多元平稳随机过程游程计算方法的探讨及其应用[J]. 水科学进展. 1996, 7(3):231-238.
    [57] 王谦, 陈景玲. 黄淮海平原干旱历时的概率特征研究[J]. 中国农业气象. 1995, 16(1): 23-26.
    [58] Gupta V, Duckstein L. A stochastic analysis of extreme droughts[J]. Water Resources Research. 1975, 11(2): 221-228.
    [59] Guven O. A simplified semiempirical approach to probabilities of extreme hydrologic droughts[J]. Water Resource Research. 1983, 19(2): 441-453.
    [60] Sharma T C. Simulation of the Kenyan longest dry and wet spells and the largest rain-sums using a Markov model[J]. Journal of Hydrology. 1996, 178(1-4): 55-67.
    [61] 丁晶, 袁鹏. 中国主要河流干旱特性的统计分析[J]. 地理学报. 1997, 52(4): 374-381.
    [62] 周振民. 区域干旱特征理论及其应用[J]. 水科学进展. 2004, 15(4): 479-484.
    [63] Gonzelez J, Valdes J. Bivariate drought recurrence analysis using tree ring reconstructions[J]. Journal of Hydrologic Engineering. 2003, 8(5): 247-258.
    [64] Shiau J. Fitting Drought Duration and Severity with Two-Dimensional Copulas[J]. Water Resources Management. 2006, 20(5): 795-815.
    [65] Zhang L, Singh V P. Bivariate rainfall frequency distributions using Archimedean copulas[J]. Journal of Hydrology. 2007, 332(1-2): 93-109.
    [66] Lloyd E. Return period in the presence of persistence[J]. Journal of Hydrology. 1970, 10(3): 202-215.
    [67] Loaicigica M, Marino M. Recurrence interval of geophysical events[J]. Journal of Water Resource Planning and Management. 1991, 117(3): 367-382.
    [68] Douglas E M, Vogel R M, Kroll C N. Impact of Streamflow Persistence on Hydrologic Design[J]. Journal of Hydrologic Engineering. 2002, 7(3): 220-227.
    [69] Vogel R. Reliability indices for water supply systems[J]. Journal of Water Resource Planning and Management. 1987, 113(4).
    [70] Fernandez B, Salas J D. Return Period and Risk of Hydrologic Events. II: Applications[J]. Journal of Hydrologic Engineering. 1999, 4(4): 308-316.
    [71] 张世法, 崔新文. 径流的趋势分析和概率预测[J]. 水科学进展. 1995, 6(1): 22-28.
    [72] 秦年秀, 姜彤, 许崇育. 长江流域径流趋势变化及突变分析[J]. 长江流域资源与环境. 2005, 14(5): 589-594.
    [73] 胡安焱, 刘燕, 郭生练, 等. 渭河流域水沙多年变化及趋势分析[J]. 人民黄河. 2007, 29(2): 39-41.
    [74] 和宛琳, 徐宗学. 渭河流域气温与蒸发量时空分布及其变化趋势分析[J]. 北京师范大学学报(自然科学版). 2006, 42(1): 102-106.
    [75] 秦年秀, 姜彤, 许崇育. 长江流域径流趋势变化及突变分析[J]. 长江流域资源与环境. 2005, 14(5): 589-594.
    [76] 丁晶, 刘权授. 随机水文学[M]. 北京: 中国水利水电出版社, 1997.
    [77] 张少文, 丁晶, 廖杰, 等. 基于小波的黄河上游天然年径流变化特性分析[J]. 四川大学学报(工程科学版). 2004, 36(3) : 32-37.
    [78] 张少文. 黄河流域天然年径流变化特性分析及其预测[D]. 成都: 四川大学, 2005.
    [79] 王文圣. 非参数模型及其在水文水资源随机模拟中的应用[D]. 成都: 四川大学, 1999.
    [80] 解苗苗, 王文圣, 朱兵, 等. 长江上游主要河流年径流序列变化特性初步研究[C]. 郑州: 中国水利水电出版社, 2006.
    [81] 丁晶, 袁鹏. 中国主要河流干旱特性的统计分析[J]. 地理学报. 1997, 52(4): 374-381.
    [82] 邓红霞, 李存军, 朱兵, 等. 集对分析在水文水资源中的应用研究及展望[J]. 水资源研究. 2006(04):23-28.
    [83] 万星, 丁晶, 张晓丽. 区域地下水资源承载力综合评价的集对分析方法[J]. 城市环境与城市生态. 2006, 19(2):30-35.
    [84] 万星, 王文圣, 丁晶. 集对分析在水文水资源中的应用[J]. 水利水电科技进展. 2006, 26(4):15-18.
    [85] 王双银, 宋松柏, 彭莉, 等. 冯家山水库入库径流特性研究[J]. 干旱区农业研究. 2002, 20(1): 88-91.
    [86] 程天文, 栾禄凯, 汤奇成. 用模糊数学方法分析长江、淮河、黄河、海滦河流域丰枯遭遇[J]. 自然资源学报. 1987(4):18-21.
    [87] 韩宇平, 蒋任飞, 阮本清. 南水北调中线水源区与受水区丰枯遭遇分析[J]. 华北水利水电学院学报. 2007, 28(1): 8-11.
    [88] 王志良, 杨弘. 天津市水源地降水丰枯遭遇性分析[J]. 海河水利. 2004(6): 15-18.
    [89] 周金凯, 刘炳忠, 王华, 等. 黄河径流与黄河三角洲降水量丰枯遭遇分析[J]. 山东水利. 2000(4): 84-85.
    [90] 郑红星, 刘昌明. 南水北调东中两线不同水文区降水丰枯遭遇性分析[J]. 地理学报. 2000, 55(5): 523-532.
    [91] 张金才. 洪泽湖,骆马湖,南四湖径流丰枯遭遇分析[J]. 湖泊科学. 1999, 11(3): 213-218.
    [92] 王永真, 纪仁卿. 非相关随机水文变量丰枯遭遇频率计算方法[J]. 山东水利. 1999(2): 83-84.
    [93] 张金才. 洪泽湖,骆马湖,南田湖及淮,沂径流丰枯遭遇探讨[J]. 江苏水利. 1998(7): 31-33.
    [94] 张有芷, 周良芳. 击水北调中线水源区与供水区降水丰枯遭遇分析[J]. 人民长江. 1992, 23(11): 18-22.
    [95] 闫宝伟, 郭生练, 肖义. 南水北调中线水源区与受水区降水丰枯遭遇研究[J]. 水利学报. 2007, 38(10): 1178-1185.
    [96] 蒙坚玲. 相依时间序列的copula分析[D]. 武汉: 华中科技大学, 2004.
    [97] 熊立华, 郭生练, 肖义, 等. Copula联结函数在多变量水文频率分析中的应用[J]. 武汉大学学报(工学版). 2005, 38(6): 16-19.
    [98] Salvadori G, de Michele C. On the Use of Copulas in Hydrology: Theory and Practice[J]. Journal of Hydrologic Engineering. 2007, 12(4): 369-380.
    [99] Genest C, Favre A C. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask[J]. Journal of Hydrologic Engineering. 2007, 12(4): 347-368.
    [100] 陈民, 陈元芳. 历史洪水变化时矩法与线性矩法统计性能对比分析[J]. 水力发电. 2007, 33(7):15-19.
    [101] 刘攀, 郭生练, 胡安焱. 线性矩法估计参数的保证修正值系数B的推求[J]. 水文. 2006, 26(6): 27-29.
    [102] 陈永勤, 黄国如. 基于线性矩法的东江流域区域枯水频率分析[J]. 应用基础与工程科学学报.2005, 13(4): 409-416.
    [103] 金光炎. 线性矩法在水文频率中的应用[J]. 安徽水利科技. 2005(1): 17-19.
    [104] 李松仕. 关于线性矩法与概率权矩法同解关系的分析研究[J]. 水文. 2004, 24(3): 30-32.
    [105] 陈元芳, 沙志贵, 等. 线性矩法在长江中下游区域水文频率计算中的应用[J]. 河海大学学报(自然科学版). 2003, 31(2): 207-211.
    [106] 张静怡, 徐小明. 极值分布和P—Ⅲ型分布线性矩法在区域洪水频率分析中的检验[J]. 水文. 2002, 22(6): 36-38.
    [107] 陈景玲. 相依自然降水序列干湿游程特征量的模拟分析[J]. 中国农业气象. 1996, 17(4): 23-27.
    [108] T C S. An analysis of non-normal Markovian extremal droughts[J]. Hydrological Processes. 1998, 12(4): 597-611.
    [109] T C S. Drought parameters in relation to truncation levels[J]. Hydrological Processes. 2000, 14(7): 1279-1288.
    [110] Yue S, Ouarda T B, Bobee B. A review of bivariate gamma distributions for hydrological application[J]. Journal of Hydrology. 2001, 246(1-4): 1-18.
    [111] Yue S, Wang C Y. A comparison of two bivariate extreme value distributions[J]. Stochastic Environmental Research and Risk Assessment. 2004, 18(2): 61-66.
    [112] Yue S, Ouarda T B, Bobee B. A review of bivariate gamma distributions for hydrological application[J]. Journal of Hydrology. 2001, 246(1-4): 1-18.
    [113] Yue S, Ouarda T B, Bobee B, et al. Corrigendum to "The Gumbel mixed model for flood frequency analysis" [J]. Journal of Hydrology. 2000, 228(3-4): 283-18.
    [114] Yue S, Ouarda T B, Bobee B, et al. The Gumbel mixed model for flood frequency analysis[J]. Journal of Hydrology. 1999, 226(1-2): 88-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700