用户名: 密码: 验证码:
植被参数与蒸发的遥感反演方法及区域干旱评估应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺已成为制约我国社会经济尤其是农业发展的主要因素,合理利用和优化配置有限的水资源,需要深入研究作物的耗水规律和及时了解作物旱情。传统的田间观测方法由于下垫面的复杂性难以进行区域扩展,而遥感具有空间连续性和时间动态变化特点,在区域耗水和旱情评估方面具有广阔的应用前景。本文利用MODIS遥感数据,对植被参数反演和区域蒸散发估计的方法和模型进行了研究,在此基础上探讨了遥感在农田缺水状况和干旱评估中的应用。
     论文首先分析了MODIS不同反射率数据集的不确定性,并且通过植被指数和辐射传输模型两种方法分析了这种不确定性对植被参数反演结果的影响。研究发现:相对Collection 4(C4)的日反射率数据,改进后的Collection 5(C5)数据在可见光和近红外波段的反射率的不确定性明显降低,时相合成后的C4数据的不确定性也明显降低,根据这两种数据反演的植被参数结果也更可靠。
     在此基础上,提出了利用时相合成的MODIS数据进行植被参数反演的方法,建立了遥感单层模型和双层模型,并结合位山灌区地表水热通量观测对这两种模型进行了比较研究。针对双层模型求解,提出了一种新的组分通量初始化方法,采用基于MODIS叶面积指数定义的表面阻抗的彭曼公式计算植被组分腾发量,通过与地面观测值比较发现,该方法的模拟结果比通常采用Priestley-Taylor公式初始化的双层模型要好。研究还发现双层模型对输入参数十分敏感,在地气温差较小并且植被覆盖度较大的地区,双层模型模拟结果并不优于单层模型。
     本文还研究了陆面过程模型与遥感的同化方法。初步结果表明:初始土壤水分误差比较大时,采用土壤水分观测值的同化能有效提高模型模拟的土壤水分精度,而采用MODIS地表温度的同化能有效改善地表热通量的模拟结果,说明陆面过程同化模型在区域水热循环研究和干旱评估应用中具有较大的潜力。
     最后,采用基于遥感反演的实际蒸散发定义的作物缺水指数CWSI和基于植被指数和地表温度的温度植被旱情指数TVDI,分别对2005-2007年位山灌区冬小麦的缺水状况和2006年川东和重庆地区的旱情进行了评估。地面验证结果表明CWSI不受当地气候条件和作物生长变化影响,能更合理的评估旱情。
The water shortage and uneven distribution in time and space is a major limiting factor for the social economic development especially for agricultural production in China. For better managing the limited water resources, it demands quantitatively assessing water consumption and monitoring drought situation. Due to great heterogeneity in land surface, it is difficult to make regional estimation from the traditional field observations. Remote sensing have obvious advantages on quick monitoring of large scale land surface and has been widely used for regional water cycle study. This thesis focused on physically-based model of vegetation parameter retrieval and evapotranspiration estimation based on MODIS data, and its application to assessing regional drought.
     Firstly, the uncertainties in the MODIS surface reflectance products were discussed. And the effects of uncertainty on the vegetation parameter retrieval were investigated using both the vegetation index method and radiative transfer model inversion method. It was found that the MODIS Collection 4 (C4) product had greater uncertainty than its following product Collection 5 (C5). After temporal composite, the uncertainty in the daily C4 product was reduced. It was also found that the vegetation parameter retrievals using the two methods from the C5 data and 8-day composite C4 data were greatly improved comparing to the daily C4 data.
     Based on the above understanding, a vegetation parameterization retrieval scheme using the temporal composite of MODIS data was proposed, and the single-layer and double-layer models were developed for estimating the actual evapotranspiration during the winter wheat growing season. The flux observation in the Weishan Irrigation Zone was used to validate the model results. It was proposed the Peman-Monteith algorithm with surface resistance derived from MODIS LAI data was used to make initial estimation of the canopy transpiration in the double-layer model. It was shown that the double-layer model can simulate the actual evapotranspiration better than the model using the Priestley-Taylor method for initialization. It was also found the double-layer model was sensitive to land surface parameters and had no obvious advantages than the single-layer model in this semi-humid zone with dense vegetation cover and small difference between land surface and air temperature.
     The land surface data assimilation based on the SiB2 model and MODIS data was also tested in this research. The initial soil moisture had a large impact on the modeling results. With the error in the initial soil moisture, the soil moisture results were much improved with the assimilation scheme using soil moisture observation, and the surface heat fluxes results were improved through the assimilation scheme using MODIS surface temperature. It was confirmed that the land data assimilation system combining land surface model and remote sensing had great potential application for studying the water and energy cycles and assessing regional drought.
     Finally, the crop water stress index (CWSI) based on the modeled actual evaporation was used for assessing the water stress of winter wheat during the main growing period from 2005 to 2007 in Weishan Irrigation Zone. And the temperature vegetation dryness index (TVDI) was used for assessing the drought occurred in the eastern Sichuan Province and Chongqing in 2006. Comparing with the field observations, it was found that the CWSI was less affected by the regional climate conditions and crop growth, and therefore it was a more reliable index for assessing the drought situation.
引文
[1]陈桂蓉,程根伟.长江上游干旱灾害分析及防灾减灾措施[J].长江流域资源与环境, 1997, 6(1): 74-79.
    [2]陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感, 1994, 9: 106-112.
    [3]陈玉民,郭国双,王广兴等.中国主要作物需水量与灌溉[M].北京:水利电力出版社, 1995.
    [4]程宇,陈良富,柳钦火等.基于MODIS数据对不同植被覆盖下土壤水分监测的可行性研究[J].遥感学报, 2006, 10(5): 783-788.
    [5]邓振镛,张强,辛吉武等.干旱生态环境及水资源对全球气候变暖响应的研究进展[J].冰川冻土, 2008, 30(1): 57-63.
    [6]高峰,王介民,孙成权,马耀明.遥感技术在陆面过程研究中的应用进展[J].地球科学进展, 2001, 16 (3): 359-366.
    [7]郭虎,王瑛,王芳.旱灾灾情监测中的遥感应用综述[J].遥感技术与应用. 2008, 23(1): 111-116.
    [8]韩丽娟,王鹏新,王锦地等.植被指数-地表温度构成的特征空间研究[J].中国科学D辑, 2005, 35(4): 371-377.
    [9]胡丽琴,吴蓉璋,方宗义.大口径闪烁仪及其在地表能量平衡监测中的应用[J].应用气象学报, 2003, 14(2): 197-205.
    [10]黄春林,李新.土壤水分同化系统的敏感性试验研究[J].水科学进展, 2006, 17(4): 457-465.
    [11]黄春林,李新.陆面数据同化系统的研究综述[J].遥感技术与应用, 2004, 19(5): 424-430.
    [12]贾仰文等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社. 2005.
    [13]康绍忠,刘晓明,熊运章等.土壤-植被-大气连续体水分传输理论及其应用[M].北京:水利电力出版社, 1994.
    [14]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社, 1988.
    [15]李本纲,陶澎. AVHRR NDVI与气候因子的相关分析[J].生态学报, 2000, 20(5): 898-902.
    [16]李昊睿.陆面数据同化方法的研究[博士学位论文].兰州:兰州大学, 2007.
    [17]李茂松,李森,李育慧.中国近50年旱灾灾情分析[J].中国农业气象, 2003, 24 (1): 8-11.
    [18]李晓兵,史培军.中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J].植被生态学报, 2004, 24(3): 379-382.
    [19]李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社, 1995.
    [20]李小文,王锦地, A.H. STRAHLER.非同温黑体表面上普朗克定律的尺度效应[J].中国科学(E辑), 1999, 29(5): 422-426.
    [21]李新,小池俊雄,程国栋.一个基于模拟退火法的陆面数据同化算法[J].地球科学进展, 2003, 18(4): 632-6361.
    [22]李新,黄春林.数据同化—一种集成多源地理空间数据的新思路[J].科技导报, 2004, (12): 13-16.
    [23]李新,黄春林,车涛等.中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展, 2007, 17(2): 163-173.
    [24]李召良, Stoll M. P.,张仁华,贾立,苏中波. 2000.利用ATSR数据分解土壤和植被温度的研究[J].中国科学(E辑), 30 (增刊): 27-38.
    [25]刘昌明.黄河流域水循环演变若干问题的研究[J].水科学进展, 2004, 15(5): 608-614.
    [26]刘庚山,郭安红,安顺清等.帕默尔干旱指标及其应用研究进展[J].自然灾害学报, 2004,(1): 19-21.
    [27]刘良明.基于EOS MODIS数据的遥感干旱预警模型研究[博士学位论文].武汉:武汉大学, 2004.
    [28]刘玉洁,杨忠东等. MODIS遥感信息处理原理与方法[M].北京:科学出版社, 2001.
    [29]刘振华,赵英时.遥感热惯量反演表层土壤水的方法研究[J].中国科学D辑. 2006, 36(6): 552-558.
    [30]刘志明,张柏,晏明,李铁强.土壤水分与干旱遥感研究的进展与趋势[J].地球科学进展. 2003, 18(4): 576-583.
    [31]刘志武.阿克苏平原绿洲腾发遥感模型研究[博士学位论文].北京:清华大学, 2005.
    [32]马海波,董增川,张文明等. SCE-UA算法在TOPMODEL参数优化中的应用[J].河海大学学报(自然科学版). 2006, 34(4): 361-365.
    [33]马力文,李凤霞,梁旭.宁夏干旱及其对农业生产的影响[J].干旱地区农业研究,2001,19(4): 102-109.
    [34]马耀明,刘东升,苏中波等.卫星遥感藏北高原非均匀陆表地表特征参数和植被参数[J].大气科学, 2004, 28: 23-34.
    [35]莫兴国.冠层表面阻力与环境因子关系模型及其在蒸散估算中的应用[J].地理研究, 1997, 16(2): 81-88.
    [36]莫兴国,林忠辉,刘苏峡.基于Penman-Monteith公式的双源模型的改进[J].水利学报, 2000, (5): 6-11.
    [37]彭世彰,索丽生.节水灌溉条件下作物系数和土壤水分修正系数试验研究[J].水利学报, 2004, (1): 17-21.
    [38]齐述华,王长耀,牛铮.利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J].遥感学报, 2003, 7(5): 420-427.
    [39]齐述华.干旱监测遥感模型和中国干旱时空分析[博士学位论文].北京:中国科学院遥感应用研究所, 2004.
    [40]齐述华,李贵才,王长耀等.利用MODIS数据产品进行全国干旱监测的研究[J].水科学进展, 2005, 13(1): 56-61.
    [41]屈永华,王锦地,刘素红等.贝叶斯网络支持的地表参数混合反演模式研究[J].遥感学报, 2006, 10(1): 6-14.
    [42]申广荣,王人潮.基于神经网络的水稻双向反射模型研究[J].遥感学报, 2002, 6(4): 252-258.
    [43]司建华,冯起,张小由等.植物蒸散耗水量测定方法研究进展[J].水科学进展, 2005, 16(3): 450-459.
    [44]史康立,刘愿英,万亮婷等.试论西北地区的缺水问题及其对策[J].干旱地区农业研究, 2006, 24(2): 178-182.
    [45]宋小宁,赵英时.改进的区域缺水遥感监测方法[J].中国科学(D辑). 2006, 36(2): 188-194.
    [46]宋小宁.基于植被蒸散发的区域缺水遥感监测方法研究[博士学位论文].北京:中国科学院遥感应用研究所, 2004.
    [47]孙菽芬.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社,2005.
    [48]田国良等.热红外遥感[M].北京:电子工业出版社, 2006.
    [49]卫捷,马柱国. Palmer干旱指数、地表湿润指数与降水距平的比较[J].地理学报, 2003, 58增刊: 117-124.
    [50]王玲玲,康玲玲等.气象、水文干旱指数计算方法研究概述[J].水资源与水工程学报, 2004, 15(3): 15-18.
    [51]王鹏新,龚健雅,李小文等.条件植被温度指数及其在干旱监测中的应用[J].武汉大学学报信息科学版, 2001, 26(5): 412-418.
    [52]王中根,夏军,刘昌明等.分布式水文模型的参数率定及敏感性分析探讨[J].自然资源学报, 2007, 22(4): 649-655.
    [53]谢贤群.遥感瞬时作物表面温度估算农田全日蒸散总量[J].环境遥感, 1991, 6(4): 253-260.
    [54]辛晓洲.用定量遥感方法计算地表蒸散[博士学位论文].北京:中国科学院遥感应用研究所, 2003.
    [55]辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报, 2003, 7(3): 233-240.
    [56]许继军.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学,2007.
    [57]徐希孺.遥感物理[M].北京:北京大学出版社, 2005.
    [58]徐兴奎,隋洪智,田国良.互补相关理论在卫星遥感领域的应用研究[J].遥感学报, 1999, 3(1): 54-59.
    [59]杨大文,李翀,倪广恒等.分布式水文模型在黄河流域的应用[J].地理学报, 2004, 59(1): 143-154.
    [60]占车生.中国陆面蒸散发量的遥感反演及时空格局[博士学位论文].北京:中国科学院地理科学与资源研究所, 2005.
    [61]张仁华,孙晓敏,刘纪远,等.定量遥感反演作物蒸腾和土壤水分利用率的区域差异[J].中国科学(D辑), 2001, 31(11): 959-968.
    [62]张仁华,孙晓敏,王伟民,等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科学(D辑), 2004, 34 (增刊Ⅱ): 200-216.
    [63]张仁华,孙晓敏,朱治林,等.遥感区域地表植被二氧化碳通量的机理及其应用[J].中国科学(D辑), 2000, 30(2): 215-225.
    [64]张文江.典型草原生态系统区域尺度地表水热通量模拟研究[博士学位论文].北京:中国科学院地理科学与资源研究所, 2007.
    [65]张志明.利用气象资料计算陆面实际蒸发量[J].气象学报, 1998, 46(4): 477-480.
    [66] Allen R G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study . Journal of Hydrology, 2000, 229(1/2): 27-41.
    [67] Bacour, C., Jacquemoud, S., Leroy, M., Hauteceur, O., Weiss, M., Prévot, L., et al. Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data. Agronomie, 2002, 22(6): 555-565.
    [68] Bacour, C., Baret, F., Béal, D., Weiss, M., Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: principles and validation. Remote Sensing of Environment, 2006, 105(4): 313-325.
    [69] Bastiaanssen, W.G.M., Menenti, M., Feddes R.A., Holtslag A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL) (1. Formulation). Journal of Hydrology, 1998, 212-213: 198-212.
    [70] Becker, F. and Li, Z.-L. Toward a local split temperature method over land surface. International Journal of Remote Sensing, 1990, 11:369-393.
    [71] Becker, F. and Li, Z.-L. Surface temperature and emissivity at various scales: definition, measurement and related problems. Remoter Sensing Reviews, 12: 225-253.
    [72] Biftu G F, Gan T Y. Assessment of evapotranspiration models applied to a watershed of Canadian Prairies with mixed land-uses. Hydrological Processes, 2000, 14(7):1305-1325.
    [73] Bounoua L, Masek J, and Tourre Y. Sensitivity of surface climate to land surface parameters: A case study using the simple biosphere model SiB2. Journal of Geophysical Research-Atmospheres, 2006, 111, D22D09, doil:10.1029/2006JD007309
    [74] Brown K. W, Rosenberg N. J. A resistance model to predict evapotranspiration and its application to a sugar beet field. Agronomy Journal, 1973, 65: 199-209.
    [75] Brunsell, N. A., R. R. Gillies. Length scale analysis of surface energy fluxes derived from remote sensing. Journal of Hydrometeorology, 2003, 4: 1212-1219.
    [76] Brutsaert, W. On a derivable formula for long-wave radiation from clear skies. Water Resources Research, 1975, 11: 742-744
    [77] Brutsaert, W. Evaporation into the atmosphere. Reidel Publishing Company, Dordrecht, Netherlands, 1982.
    [78] Brutsaert, W. Aspects of bulk atmospheric boundary layer similarity under fee-convective conditions. Reviews of Geophysics, 1999, 37: 439-451.
    [79] Carter, G. A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 1994, 15: 697-703.
    [80] Carlson TN, Gillies R R, Perry EM. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Review, 1994, 52: 45-59
    [81] Ceccato, P., Flassee, S., Tarantola, S., Jacquemoud, S., and Gregoire, J.M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 2001, 77: 22-33.
    [82] Ceccato, P., Gobron, N., Flasse, S., Pinty, B., and Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1. Theoretical approach. Remote Sensing of Environment, 2002, 82: 188-197.
    [83] Chehbouni, A., Lo Seen, D., Njoku, E. G., Monteny, B. Examination of the difference between radiative and aerodynamic surface temperatures over sparsely vegetated surface [J]. Remote Sensing of Environment, 1996, 58: 177-186.
    [84] Chehbouni, A., Lo Seen, D., Njoku, E. G., Lhomme, J. P., Monteny, B.M., Kerr, Y. H. Estimating of sensible heat flux using radiative surface temperature. Journal of Hydrology, 1997, 188: 855-868.
    [85] Chehbouni, A., Nouvellon, Y., Lhomme, J. P., Watts, C., Boulet, G., Kerr, Y. H., Moran M. S. and Goodrich, D. C. Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature. Agricultural and Forest Meteorology, 2001, 108: 55-65.
    [86] Chen, D, Huang, J, and Jackson, T J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sensing of Environment, 2005, 98: 225-236.
    [87] Choudhury B J, Monteith J L. A four-layer model for the heat budget of homogeneous land surfaces. Quarterly Journal of the Royal Meteorological Society, 1988, 114: 373-398.
    [88] Choudhury, B.J. Estimating evaporation and carbon assimilation using infrared temperatures data: vistas in modeling. In: Asrar, C. (Ed.), Theory and Application of Remote Sensing, John Wiley, New York, 1989, pp. 628-690.
    [89] Cleugh, H. A., Leuning, R., Mu, Q., Running, S. W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 2007, 106: 285-304.
    [90] Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnère, A., Myneni, R., Knyazikhin, Y., Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem. Remote Sensing of Environment, 2002, 84(1): 1-15.
    [91] Courault D., Seguin B., Olioso A. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrigation and Drainage Systems, 2005, 19: 223-249.
    [92] Danson, F. M., Rowland, C.S. Training a neural network with a canopy reflectance model to estimate crop leaf area index. International Journal of Remote Sensing, 2003, 24(23): 4891-4905
    [93] Doraiswamy, P., Hatfield, J., Jackson, T., Akhmedov, B., Prueger, J., and Stern, A. Crop condition and yield simulation using Landsat and MODIS. Remote Sensing of Environment, 2004, 92: 548-559.
    [94] Duan Q., Sorooshian S, Gupta V K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resource Research, 1992, 28(4): 1015-1031
    [95] Duan Q., Soroosh Sorooshian, Vijai K Gupta,. Optimal use of SCE-UA global optimization method for calibrating watershed models. Journal of hydrology, 1994, 158(1): 265-284
    [96] Dunne S and Entekhabi D. An ensemble-based reanalysis approach to land data assimilation. Water Resources Research, 2005, 41, W02013, doi: 10. 1029/2004WR003449
    [97] Fang, H., Liang, S. Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2052- 2062.
    [98] Fang, H., Liang, S. A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needleleaf canopies. Remote Sensing of Environment, 2005, 94(3): 405-424.
    [99] Fensholt R and Sandholt I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sensing of Environment, 2003, 87: 111-121.
    [100] Fourty, T. and Baret, F. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: a simulation study. Remote Sensing ofEnvironment, 1996, 61: 34-45.
    [101] French, A.N., Jacob, F., Anderson M.C. et al. Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment, 2005, 99: 55-65.
    [102] Friedl, M. A. Modeling land surface fluxes using a sparse canopy model and radiometric surface temperature measurements. Journal of Geophysical Research, 1995, 100(D12): 435-446
    [103] Gao, B. NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996, 58: 257- 266.
    [104] Gao Z, Chae N, Kim J, et al. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). Journal of Geophysical Research, 2004, 109, D06102,doi:10.1029/2003JD004089.
    [105] Gascon, F., Gastellu-etchegorry, J., Leroy, M. Using multi-directional high-resolution imagery from POLDER sensor to retrieve leaf area index. International Journal of Remote Sensing, 2007, 28(1): 167-181.
    [106] Goetz S J. Multisensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 1997, 18(15): 71-94
    [107] Gong, P., Wang, C. X., and Liang, S. Inverting a canopy reflectance model using a neural network. International Journal of Remote Sensing, 1999, 20(1): 111-122.
    [108] Gottschalk, L., E. Batchvarova, S.-E. Gryning, A. Lindroth, D. Melas, Y. Motovilov, M. Frech, M. Heikinheimo, P. Samuelsson, A. Grelle, T. Persson: Scale aggregation: comparison of flux estimates from NOPEX. Agricultural and Forest Meteorology, 1999, (98-99): 103-119.
    [109] Goward S. N., Xue Y., Czajkowski K. P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements, an exploration with the simplified simple biosphere model. Remote Sensing of Environment, 2002, 79: 225-242.
    [110] Houborg R., Soegaard H., and Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sensing of Environment, 2007, 106 (1): 39-58.
    [111] Hu B., Lucht W., and Strahler A.H. The Interrelationship of atmospheric correction of reflectances and surface BRDF retrieval: a sensitivity study. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 724-738.
    [112] Huang, C., Li X., Lu L. Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Remote Sensing of Environment, 2007, doi:10.1016/j.rse.2007.03.028.
    [113] Huete, A. A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988,25: 295-309.
    [114] Huete, A., Justice, C., van Leeuwen, W., MODIS vegetation index (MOD13). Algorithm Theoretical Basis Document (ATBD). 1999, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf .
    [115] Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83: 195-213.
    [116] Hunt Jr., E. R., and Rock, R. N. Detection of changes in leaf water content using near- and middle-infrared reflectance. Remote Sensing of Environment, 1989, 30: 43-54.
    [117] IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Qin, M. Manning (eds.).
    [118] Jackson, T. J., Chen, D., Cosh, M., et al. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 2004, 92: 475-482.
    [119] Jackson, R. D., Reginato, R. J., and Idso, S. B. Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 1977, 13: 651-656.
    [120] Jackson R D, Idso S B, Reginato R J. Canopy temperature as a drought stress indicator. Water Resource Research, 1981, 17: 1133-1138.
    [121] Jackson, R.D., Hatfield, J.L., Reginato, R.J., Idso, S.B., and Pinter, P.J. Jr. Estimation of daily evapotranspiration from one time-of-day measurements. Agricultural Water Management, 1983, 7: 351-362.
    [122] Jacquemoud, S., Baret, F., Andrieu, B., Danson, F. M., Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sensing of Environment, 1995, 52(3): 163-172.
    [123] Jacquemoud, S., Bacour, C., Poilvé, H., Frangi, J. P. Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode. Remote Sensing of Environment, 2000, 74(3): 471-481.
    [124] Jiang, L., and Islam, S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophysical Research Letters, 1999, 26: 2773-2776.
    [125] Jiang L and Islam S. An intercomparison of regional land heat flux estimation using remote sensing data [J]. International Journal of Remote Sensing, 2003, 24(11): 2221-2236.
    [126] Jupp, D.L.B., Tian, G., McVicar, T.R., Qin, Y., and Li, F. Soil moisture and drought monitoring using remote sensing I: Theoretical background and methods, 1998, EOCReport 1.
    [127] Kaufman, Y. J., Wald, A. E. Remer, L. A., Gao, B., Li, R., and Flynn L. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transaction on Geoscience and Remote Sensing, 1997, 35(5): 1286-1298.
    [128] Keur P V D, Hansen S, Schelde K, et al. Modification of daisy SVAT model for potential use of remotely sensed data. Agriculture and Forest Meteorology, 2001, 106(3):215-231.
    [129] Kimura R, Bai L, Fan J, et al. Evapo-transpiration estimation over the river basin of the Loess Plateau of China based on remote sensing. Journal of Arid Environments, 2006(1), 68: 53-65.
    [130] Kogan, F.N. Remote sensing of weather impacts on vegetation. International Journal of Remote Sensing, 1990, 11: 1405-1419.
    [131] Kustas, W.P., Choudhury, B.J., Moran, M.S., Reginato, R.J., Jackson, R.D., Gay, L.W., and Weaver, H.L. Determinatin of sensible heat flux over sparse canopy using thermal infrared data. Agricultural Forest Meteorology. 1989, 44: 197-216.
    [132] Kustas W.P., and Norman, J. M. Reply to comments about the basic equations of dual-source vegetation-atmosphere transfer models. Agricultural and Forest Meteorology, 1999, 94: 275-278
    [133] Kustas, W.P., Norman J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 1999, 94: 13-29.
    [134] Kustas, W. P., Norman, J. M., Anderson, M. C., et al. Estimating subpixel surface temperatures and energy fluxes from thevegetation index-radiometric temperature relationship. Remote Sensing of Environment, 2003, 85: 429-440.
    [135] Kustas, W. P., Li F., Jackson T J, Prueger H. J, MacPherson J.I., Wolde M. Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sensing of Environment, 2004, 92: 535-547.
    [136] Kussk, A. A reflectance model for the homogeneous plant canopy and its inversion. Remote Sensing of Environment, 1989, 27: 157-167.
    [137] Lhomme, J.P., Monteny, B., and Amadou, M. Estimating sensible heat flux from radiometric temperature over sparse millet. Agricultural Forest Meteorology, 1994, 68: 77-91.
    [138] Lhomme, J. P., Monteny B., Troufleau, D., Chehbouni, A., and Bauduin S. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for the kB-1 parameter. Journal of Hydrology, 1997, 188-189: 839-854.
    [139] Lhomme, J. P., Chehbouni, A. Comments on dual-source vegetation-atmosphere transfer models. Agricultural Forest Meteorology, 1999, 94: 269-273.
    [140] Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. 2001, 76(2): 213-238.
    [141] Ma, Y., Tsukamoto, O. Combining satellite remote sensing with field observations for land surface heat fluxes over inhomogeneous landscape. China Meteorological Press, 2002
    [142] Maayar, M. and Chen J. Spatial Scaling of Evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sensing of Environment, 2006, 102(1-2): 33-51
    [143] Matsushima D., and Kondo, J. A proper method for estimating sensible heat flux above a horizontal-homogeneous vegetation canopy using radiometric surface observations. Journal of Applied Meteorology, 1997, 36: 1696-1711.
    [144] McCabe M F, Wood E F, Gao H. 2005. Initial soil moisture retrievals from AMSR-E: multiscale comparison using in situ data and rainfall patterns over Iowa. Geophysical research letters, 2005, 32, L06403, doi:10.1029/2004GL021222
    [145] Menenti, M. and Choudhury, B J. Parametrization of land surface evapotranspiration using a location-dependent potential evapotranspiration and surface temperature range. In: Exchange processes at the land surface for a range of space and time scales, Bolle, H.J. et al.(Eds.). IAHS Publication, 1993, no. 212: 561-568.
    [146] Meroni, M., Colombo, R., Panigada C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sensing of Environment, 2004, 92(2): 195-206
    [147] Monteith J L. Evaporation and environment. The State and Movement of water in Living Organisms. Symposium of the society for Experimental Biology 19. England: Cambridge University Press, 1965, 19: 205-234.
    [148] Moran M S, Clarke T R, Inoue Y, et al. Estimationg crop water deficit using the relation between surface air temperature and spectural vegetation index. Remote Sensing of Environment, 1994, 49: 246-263.
    [149] Mu Q., Heinsch F., Zhao M., Running S. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 2007, 111:519-536.
    [150] Nishida K, Nemani R R, Running SW, Glassy J M. An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research, 2003, 108 (D9): 4270. doi: 10.1029/2002JD002062.
    [151] Norman, J. M., Kustas, W. P., Humes, K. S. A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature [J]. Agricultural and Forest Meteorology, 1995, 77, 263-293.
    [152] Penman H L. Natural evaporation from open water, bare soil and grass. Proceedings of theRoyal Society of Loudon. 1948, A Series, 193: 120-145.
    [153] Penuelas, J., Filella, I., Biel, C., Serrano, L., and Save, R. The reflectance at the 950– 970 mm region as an indicator of plant water status. International Journal of Remote Sensing, 1993, 14: 1887-1905.
    [154] Pipunic R., Walker J., Western W. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study. Remote Sensing of Environment, 2007, doi: 10.1016/j.rse.2007.02.038
    [155] Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration [J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28: 940-948.
    [156] Prigent C, Aires F, Rossow W B, Robock A. Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: relationship of satellite observations to in situ soil moisture measurements. Journal of Geophysical Research, 2005, 110, D07110, doi:10.1029/2004JD005087
    [157] Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., Sorooshian, S.. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48(2): 119-126
    [158] Roerink G J, Su Z, Menenti M. S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Physical and Chemistry Earth (B), 2000, 25(2): 145-157
    [159] Roland J., Flowerdew, and Joanna, H. D. An Approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers. Geophysical Research Letters, 1995, 22(13): 1693-1696.
    [160] Rouse Jr., J. W., Haas, R. H., Schell, J. A., and Deering, D. W. Monitoring vegetation systems in the Great Plains with ERTS. In S. C. Freden, E. P. Mercanti, and M. Becker (Eds.), Third Earth Resources Technology Satellite-1 Symposium. Technical presentations, section A, vol. I (pp. 309 -317). 1973, Washington, DC: National Aeronautics and Space Administration (NASA SP-351).
    [161] Rrichle R H, and Koster R D. Global assimilation of satellite surface soil moisture retrievals into the NASA catchment land surface model. Geophysical research letters, 2005, 32, L02404, doi:10.1029/2004GL021700
    [162] Salomonson, V., Guenther, B. and Masuoka, E. A summary of the status of the EOS Terra Mission Moderate Resolution Imaging Spectroradiometer (MODIS) and attendant data product development after one year of on-orbit performance. In: Proceedings of the International Geoscience and Remote Sensing Symposium/IGARSS 2001, Sydney, Australia. 9–13 July, 2001, vol. 3: 1197-1199
    [163] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 2002, 79:213-224
    [164] Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964, 36: 1627-1639.
    [165] Sellers P J, Mintz Y, and Sud Y C. A simple biosphere model (SiB) for use within general circulation models. Journal of Atmospheric Sciences, 1986, 43: 505-531
    [166] Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I : Model Formulation. Journal of Climate, 1996, 9: 676-705.
    [167] Serrano, L., Ustin, S. L., Roberts, D. A., Gamon, J. A., and Penuelas, JDeriving water content of chaparral vegetation from AVIRIS data. Remote Sensing of Environment, 2000, 74: 570-581.
    [168] Sepulcre-Canto, G., Zarco-Tejada, P. J., Jimenez-Munoz, J. C., et al. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agricultural and Forest Meteorology, 2006, 136: 31-44.
    [169] Shen, Y., Tang, C., Chen, J., Kamichika, M., Kondoh, A., 2002. Measurement of CO2, vapour, and sensible heat fluxes above a upland rice canopy, Tottori, Japan. In: International Workshop on Vulnerability of Water Resources to Environmental Change. Beijing, China, September, 2002.
    [170] Shen, Y. Study on hydrological processes of land and atmospheric system in semiarid agricultural region [D]. Japan: Chiba University, 2004.
    [171] Shuttleworth W. J., Wallace J.S. Evaporation from sparse crops- an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 1985, 111: 839-855.
    [172] Stewart J B, Kustas W P, Humes K S, Nichols W D, Moran M S and De bruin A A R. Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas. Journal of Applied Meteorology, 1994, 33:111-1117.
    [173] Su, Z., Schmugge, T., Kustas W.P., et al. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. Journal of Applied Meteorology, 2001, 40: 1933-1951.
    [174] Su Z. The Surface Energy Balance System(SEBS)for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 2002, 6(1): 85-99
    [175] Su, Z., Yacob, A., Wen, J. et al. Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Physics and Chemistry of the Earth, 2003, 28, 89-101.
    [176] Suits, G.H. The calculation of the directional reflectance of vegetative canopy. Remote Sensing of Environment, 1972, 2: 117-125.
    [177] Tan, B., Hu, J., Huang, D., Yang, W., Zhang, P., Shabanov, N., Knyazikhin, Y., Nemani, R., Myneni, R. Assessment of the broadleaf crops leaf area index product from the Terra MODIS instrument. Agricultural and Forest Meteorology, 2005, 135(1-4): 124-134
    [178] Tourula T, Heikinheimo M. Modelling evapotranspiration from a barley field over the growing season. Agriculture and Forest Meteorology, 1998, 91:237-250.
    [179] Tucker, C. J. Remote sensing of leaf water content in the near infrared. Remote Sensing of Environment, 1980, 10: 23-32.
    [180] Valor, E., Caselles, V. Mapping land surface emissivity from NDVI: Applications to European, African, and South American Areas. Remote Sensing of Environment, 1996, 57: 167-184.
    [181] Van den Hurk. Energy balance based surface flux estimation from satellite data and its application for surface moisture assimilation. Meteorology and Atmospheric Physics, 2001, 76: 43-522.
    [182] Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 1984, 16 (2): 125-141.
    [183] Vermote, E. F., and Vermeulen, A. 1999. Algorithm technical background document: Atmospheric correction algorithm: Spectral reflectance (MOD09), version 4, April 1999.
    [184] Walthall, C., Dulaney, W., Anderson, M., Norman, J., Fang, H., Liang, S. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sensing of Environment, 2004, 92 (4): 465-474
    [185] Wan Z, Wang P, Li X. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, 2004, 25(1):61-72
    [186] Wang F Q, Fan W J, Xu X R, et al. Retrieving land surface component temperature using ATSR-2 data-illustrated by row crop. IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France, 2003.
    [187] Wang Q. and Tenhunen J. D. Vegetation mapping with multitemporal NDVI in North Eastern China Transect(NECT). International Journal of Applied Earth Observation and Geoinformation, 2004, 6: 17-31.
    [188] Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., and Coppin, P. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agricultural Forest Meteorology, 2004, (121): 37-53.
    [189] Wilson, K., Goldstein, A., Falge, E. et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113: 223-243.
    [190] Xiao, X., Boles, S., Liu, J., Zhuang D., Frolking, S., Li Ch., Salas W., Moore B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 2005, 95: 480-492.
    [191] Yang, D., Tamagawa, K., et al. Hydrological improvement of the land surface process scheme using the CEOP observation data. Proceeding of CEOP/IGWCO Joint Meeting,Tokyo, Feb. 28-March 4, 2005.
    [192] Yang K., Waanabe T., Koike T., Li X., Fuji H., Tamagawa K., Ma Y., Ishikawa H. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimation soil moisture and the surface energy budget. Journal of the Meteorological Society of Japan, 2007, 85A: 229-242
    [193] Yao, Y., Liu, Q., Liu, Q., Li, X. LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages. Remote Sensing of Environment, 2008, 112 (1): 94-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700