用户名: 密码: 验证码:
松花江流域水沙演变及其对人类活动的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北黑土区是世界仅存的三大黑土区之一,位于该区北部的松花江流域在东北乃至全国国民经济中占有重要地位。近年来,由于受人类对土地过度垦殖及不合理耕作的影响,水土流失正在成为制约该区粮食生产和耕地可持续利用的主要因素。本文以松花江流域为研究对象,利用降水、径流、输沙资料、土地利用变化等历史资料,采用现代数理统计及小波分析等方法,分析了松花江流域降水量以及主要水文站实测径流和输沙量的历史变化过程、演变趋势、空间分布特征及水沙对人类活动的响应,主要研究进展如下:
     1.松花江流域降水量的空间分布特征
     松花江流域的年均降水量一般在400~700mm之间,降水呈现自东南向西北递减的趋势,降水量最少的地区位于嫩江下游。流域大部分地区年降水量的变异系数在0.20~0.26之间,降水资源量较稳定。扎兰屯站-江桥站-通榆站一线以西,变异系数大于0.26,降水量年际变化相对较大。
     2.松花江流域径流量的时间变化特征
     松花江流域所选取水文站的径流深多年平均值在49.4~221.6mm之间,极值比在4.6~55.1之间,变异系数在0.34~0.88之间,其中洮南站的年际变化最大。采用Mann-Kendall方法对流域内所研究的水文站的年径流深进行趋势检验,结果表明:各水文站的年径流深从不同年份开始均有下降趋势,其中大赉、哈尔滨、佳木斯站径流深的下降趋势显著,兰西站的下降趋势达到了极显著水平。大赉、哈尔滨、兰西和佳木斯站有两个突变点,且均发生在1960’s和1990’s。流域内所研究的水文站的径流深阶段性特征较为明显,且阶段性特征中拐点出现位置大体表现为支流早于干流,上游早于下游。除兰西站外,其余各站径流序列的主周期基本一致。
     松花江流域所选取的水文站的径流在日历年内具有双峰型特征,径流深在8月左右最大,2月最小。采用Mann-Kendall方法检验,流域各站点月径流量及年径流量整体有减少趋势。年内分配的不均匀度表现为支流>干流,嫩江流域>松花江干流>第二松花江。库漠屯、阿彦浅、扶余、长江屯站的早春季节径流量偏枯,江桥、洮南、大赉、哈尔滨、兰西、佳木斯站晚春季节径流量偏枯。
     3.松花江流域输沙量的年际变化特征
     江桥和哈尔滨站输沙量的最大值发生在1998年(分别为1240万吨、1170万吨),佳木斯站发生在1994年(3970.4万吨),三个站的最小值均发生在1979年(依次为27.0万吨、152.0万吨、211.3万吨)。哈尔滨站输沙量的变异系数最小,其次是佳木斯站,江桥站最大。江桥和佳木斯站的输沙量有增加趋势,但增加趋势不显著;哈尔滨站输沙量呈显著的下降趋势,且在1978年和1994年发生了两次突变。江桥和佳木斯站输沙量距平累积变化有较好的一致性。
     4.松花江流域水沙演变及其对人类活动的响应
     以哈尔滨站为代表,分析了哈尔滨站1955~2005年水沙序列演变及其对人类活动的响应。哈尔滨站1955~2005年的面雨量、径流深和输沙量序列主周期基本一致且均存在28a、17a、7a左右的多时间尺度特征。在7a时间尺度上,20世纪50~60年代,降水、径流和输沙量序列的曲线变化基本同步。20世纪70年代,由于大规模人口迁入,以及对土地的不合理开发等导致了三条曲线发生紊乱,80年代后黑土地综合治理措施的实施使得三条曲线重新趋于一致。水沙丰枯变化及奇异点判断与时间尺度有密切关系,离开时间尺度的变化趋势是毫无意义的。
The Songhua River is located in the north of black soil zone in Northeast China, which is the world's only remaining one of the three major black soil zones, and the Songhua River plays an important role in the national economy. In recent years, by human excessive reclamation of land and unreasonable farming, soil erosion is becoming a constraint factor in sustainable use of arable land and food production in Northeast China. In this paper, the Songhua River as the research object, based on the precipitation, streamflow, sediment transport series data, using modern mathematical statistical test methods and wavelet method, analysis of precipitation, streamflow and sediment transport variatation and its response to human activities. The main conclusions are as follows:
     1. Analyzed the precipitation spatial variability.
     In Songhua River, the average annual precipitation from 1959~2008 varied generally 400~700mm, and it declined from southeast to northwest, in which there was the least precipitation of downstream of Nen jiang. Annual precipitation coefficient of variation was small in Songhua basin, and it changes between 0.20 and 0.26 in most areas, so precipitation was stable in this basin. The west of the line Zhalantun-Jiangqiao-Tongyu weather station coefficient of variation was greater than 0.26, so the west of line of annual precipitation change was more larger than other areas.
     2.Analyzed the temporal variation of the streamflow.
     The average streamflow depth of hydrological stations selected in Songhua River was between 49.4 mm and 221.6mm, and the extreme ratio was between 4.6 and 55.1, and the coefficient of variation between 0.34 and 0.88, in which the annual variation of Taonan station was the largest. Analyzed streamflow trends of hydrological stations selected with Mann-Kendall in Songhua Basin, and the results showed that the streamflow decreased from different years, in which the streamflow of Dalai, Harbin, Jiamusi hydrological station decreased significantly, and the downward trend of Lanxi station reached a significant level. There were two abrupt change points in Dalai, Harbin, Lanxi, Jiamusi, and all occurred in the 1960's and 1990's. Streamflow stage characteristics of the basin was obvious, and the inflection point’s positions in stage characteristics were tributaries earlier than main stream, and upstream earlier than downstream. Except Lanxi, the primary cycles of streamflow of other hydrological stations consistent.
     There was bimodal variation of streamflow of hydrological stations selected in a calendar year in Songhua Basin. The streamflow in August was about the most, while the streamflow in February was the least. By Mann-Kendall, monthly and yearly streamflow showed decreasing trend in Songhua Basin. The streamflow in a calendar year was uneven, the uneveness of tributaries > main stream, and the Nenjiang Basin > Songhua Basin > Second Songhua Basin. The streamflow of Kumotun, Ayanqian, Fuyu, Changjiangtun were prone to drought in the early spring, while The streamflow of Jiangqiao, Taonan, Dalai, Harbin, Lanxi, Jiamusi were prone to drought in the late spring.
     3. Analyzed the temporal variation of the sediment transport.
     The maximum of sediment transport of Jiangqiao and Harbin was in 1998(respective 1.24×10~7t, 1.17×10~7t), and the maximum of sediment of Jiamusi was in 1994(3.97×107t), while the minimum of three hydrological stations was in 1979 (respective 0.27×106t、1.52×10~6t、2.11×10~6t). The smallest variation of sediment transport was Harbin, followed by Jiamusi, and the largest variation was Jiangqiao. Jiangqiao and Jiamusi showed an increasing trend in the sediment transport, but the increasing trend was not significant. The sediment transport of Harbin were significantly decreased, and there were two abrupt change points in 1978 and 1994. The anomaly cumulative curves of Harbin and Jiamusi in sediment transport had good consistency.
     4. Precipitation, streamflow and sediment transport change and its response to human activities in Songhua Basin.
     Taken harbin station for example, Precipitation, streamflow and sediment transport change and its response to human activities form 1955 to 2005 in Songhua Basin were analyzed. precipitation, streamflow and sediment transport had significant approximate periodicity and multi-time scale features. At the 7a scale, changes of precipitation, streamflow and sediment transport had the synchronization from 1950’s to 1960’s; in 1970’s, due to massive population move, as well as to address the irrational development of food problems led to three curve disorder; after 1980’s, the implementation of comprehensive measures made three curves re-converge. At 17a and 26a scales, because of water diversion project, the construction of reservoirs and other human activities, there was not always synchronization between the three curves. Wet and dry years and singular points were closely to the time scale.
引文
[1]李香萍,杨吉山,陈中原.长江流域水沙输移特性[J].华东师范大学学报(自然科学版),2001,12(4):88~95.
    [2]高前兆,仵彦卿.河西内陆河流域的水循环分析[J].水科学进展,2004,15(3):391~396.
    [3]Newson M, Arnell N. Land water and development[M].London:Routledge,1997.
    [4]Thorne, C R, Hey, R D, Newson, M D,etal. Applied fluvial geomorphology for river engineering and management[M].Chichester:John Wiley &Sons,1997.
    [5]Wang G Q, Wu B S, Wang, Z Y. Sedimentation problems and management strategies of Sanmenxia Reservoir, Yellow River, China[J].Water Resour. Res,2005,41:w09417,doi:10.1029/2004WR003919.
    [6]李义天,李荣,邓金运.长江中游泥沙输移规律及防洪影响研究[J].泥沙研究,2000,(3):12~20.
    [7]师长兴,章典.中国洪涝灾害与泥沙关系[J].地理学报,2000,1(9):627~636.
    [8]孙永罡,白人海.松花江、嫩江流域主要气象灾害研究[M].北京:气象出版社,2005.
    [9]唐克丽.黄河流域的侵蚀与径流泥沙变化.北京:中国科学技术出版社,1993:23~55.
    [10]穆兴民,徐学选,陈霁巍.黄土高原生态水文研究.北京:中国林业出版社,2001:125~235.
    [11]李丽娟,郑红星.华北典型河流年径流演变规律及其驱动力分析:以潮白河为例.地理学报, 2000, 55(3):309~317.
    [12]刘春蓁,杨建青.我国西南地区年径流变异及变化趋势研究[J].气候与环境研究, 2002, 7(4):416~422.
    [13]秦年秀,姜彤,等.长江流域径流趋势变化及突变分析[J].长江流域资源与环境,2005,14(5):589~594.
    [14]时兴合,秦宁等.1956~2004年长江源区河川径流量的变化特征[J].山地学报,2007,25(5):513~523.
    [15]穆兴民,李靖,等.黄河天然径流量年际变化过程分析[J].干旱区资源与环境,2003,17(2):1~5.
    [16]穆兴民,巴桑赤烈等.黄河河口镇至龙门区间来水来沙变化及其对水利水保措施的响应[J].泥沙研究,2007,4(2):36~41.
    [17]张建云,章四龙,等.近50 a来中国六大流域年际径流变化趋势研究[J].水科学进展,2007,18(2):230~234.
    [18]丁永建,叶柏生,韩添丁,等.过去50 a中国西部气候和径流变化的区域差异[J].中国科学(D辑:地球科学),2007,37(2):206~214.
    [19]曹建廷,秦大河,等.青藏高原外流区主要河流的径流变化[J].科学通报,2005,50(21):2403~2408.
    [20]姜晓艳,刘书华,马明敏,等.中国东北地区近百年来气温序列的小波分析[J].气候变化研究进展,2008,4(2):122~125.
    [21]杨素英,王谦谦.近50a东北地区的夏季气温异常的时空变化特征[J].南京气象学院学报,2003,26(5):653~660.
    [22]张存杰,李栋梁,王小平.东北亚近100a降水变化及未来10~15a预测研究.高原气象,2004,23(6):919~929.
    [23]于汪洋,马振.佳木斯市降水特征分析.黑龙江水利科技,2005,33(6):94~95.
    [24]姜晓艳,刘书华,马明敏,等.东北地区近百年来降水时间序列变化规律的的小波分析[J].地理研究,2009,28(2):354~362.
    [25]孙力,安刚,高枞亭,等.中国东北地区地表水资源与气候变化关系的研究.地理科学, 2004,24(1):42~49.
    [26]罗先香,邓伟,何岩,等.三江平原沼泽性河流径流演变的驱动力分析.地理学报,2002,57(5):603~610.
    [27]谢安,孙永罡,白人海.中国东北近50a干旱发展及对全球气候变暖的响应.地理学报, 2003,58(增刊):75~82.
    [28]孙力,安刚,丁立,等.中国东北地区夏季降水异常的气候分析[J].气象学报,2000,58(1):70~82.
    [29]蔡明科.关中地区水文、气象干旱特征对比研究.灌溉排水学报,2003,22(6):33~37.
    [30]Helsel D R, Hirsch R M. Statistical Methods in Water Resources[J]. US Geological Survey,2002:323~356.
    [31] Frei C, Schar C. Detection probability of trend in rare events: Theory and application to heavy precipitation in the Alpine region[J]. Journal of Climate, 2001, 14:1568~1584.
    [32] Burn D H, Burn M A, Hag E. Detection of hydrologic trends and variability[J]. Journal of Hydrology, 2002,255(1~4):107~122.
    [33] Zbigniew W. Kundzewicz and Alice Robson. Detection Trend and other Changes in Hydrological Data[Z]. WMO/TD-No. 1013.Geneva, 2000.
    [34]邓自旺,林振山,周晓兰.西安市近50a来气候变化多时间尺度分析[J].高原气象,1997,16(1):81~93.
    [35]于浩,张晓萍,李锐.延河流域径流和输沙周期变化特征的小波分析[J].中国水土保持科学,2008,6(4):18~22.
    [36]刘昌明,成立.黄河干流下游断流的径流序列分析[J].地理学报,2000,55(3):257~265.
    [37]穆兴民,王文龙,徐学选.黄土高塬沟壑区水土保持对小流域地表径流的影响[J].水利学报,1999,2(2):71~75.
    [38]刘东,李红良等.黄河干流河川径流量变化特性的分析[J].石河子大学学报(自然科学版),2005,23(4):498~502.
    [39]钮本良.黄河流域1919~1997年天然径流量系列特性分析[J].黄河水利职业技术学院学报,2002,14(1):22~24.
    [40]赵仁荣,陈海潮等.黄河源区径流变化及原因分析[J].人民黄河,2007,29(4):15~16.
    [41]张世军,俞卫平等.黄河上游径流泥沙特性及变化趋势分析[J].水资源与水工程学报,2005,16(3):57~61.
    [42]饶素秋,霍世青等.黄河上中游水沙变化特点分析及未来趋势展望[J].泥沙研究,2001,4(2):74~77.
    [43]田水利,张学成等.20世纪下半叶黄河实测径流量变化特点[J].人民黄河,2001,23卷增刊:30~32.
    [44]张学成,王玲.黄河天然径流量变化分析[J].水文,2001,21(5):30~33.
    [45]穆兴民,戴海伦,高鹏,等.陕北黄土高原降水侵蚀力时空变化研究[J].干旱区资源与环境,2010,24(3):37~43.
    [46]汪丽娜,穆兴民,张晓萍,等.黄河流域粗泥沙集中来源区径流及输沙特征分析[J].干旱区资源与环境,2008,22(10):60~65.
    [47]张钰娴,王飞,穆兴民.地理环境要素与渭河流域水沙关系的定量研究[J].西北农林科技大学学报(自科学版),2009,39(1):61~65.
    [48]周旭,穆兴民,张鑫,等.秃尾河流域水土保持措施对河流泥沙变化的影响[J].水土保持研究,2010,17(1):15~19.
    [49]白桦,穆兴民,王双银.水土保持措施对秃尾河径流的影响[J].水土保持研究,2010,17(1):40~44.
    [50]张晓萍,张橹,穆兴民,等.黄河中游河口—龙门区间多年平均流域水平衡特征-区域蒸散量估算模型验证与下垫面参数校核[J].地理学报,2007,62(7):753~763.
    [51]许继军,杨大文等.长江流域降水量和径流量长期变化趋势检验[J].人民长江,2006,37(9):63~67.
    [52]张瑞,汪亚平等.长江大通水文站径流量的时间系列分析[J].南京大学学报(自然科学),2006,42(4):421~434.
    [53]王盼成,贺松林.长江大通站水沙过程的基本特征-Ⅰ.径流过程分析[J].华东师范大学学报(自然科学版),2004,6(2):73~80.
    [54]贺松林,王盼成.长江大通站水沙过程的基本特征-Ⅱ.输沙过程分析[J].华东师范大学学报(自然科学版),2004,6(2):81~86.
    [55]汪亚平,潘少明等.长江口水沙入海通量的观测与分析[J].地理学报,2006,61(1):35~46.
    [56]应铭,李九发等.长江大通站输沙量时间序列分析研究[J].长江流域资源与环境,2005,14(1):83~87.
    [57]张信宝,文安邦等.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,2002,4(4):56~59.
    [58]闫百兴,宋新山等.辽河流域水资源演化趋势分析[J].水土保持通报,2000,20(6):1~5.
    [59]李立平,王海红,隋秀英.辽河流域辽宁省内水文特性浅析[J].东北水利水电,2001,19(8):38~39.
    [60]宋小燕,穆兴民,高鹏,等.松花江哈尔滨站近百年来径流变化趋势分析[J].自然资源学报,2009,24(10):1803~1809.
    [61]徐东霞,章光新,冯夏清.嫩江流域径流量多时间尺度特征分析[J].资源科学,2009,31(9):1592~1598.
    [62]李想,李维京,赵振国.我国松花江流域和辽河流域降水的长期变化规律和未来趋势分析[J].应用气象学报,2005,16(5):593~599.
    [63]刘晓凤,肖迪芳,谭玉坤.伊春河春汛来水量预报方法研究[J].黑龙江水专学报,2010,37(1):124~126.
    [64]孙艳玲,赵明勤,陈亚军.汤旺河流域规划水资源的优化配置[J].黑龙江水利科技,2008,36(2):138.
    [65]马铁民,尤晓敏,宁方贵.松辽流域近年来旱情分析[J].东北水利水电,2004,22(236):7~55.
    [66]吴琼,廖厚初,齐东方.黑龙江、嫩江、松花江冰坝春季开江期气象原因分析[J].黑龙江水专学报,2009,36(3):5~8.
    [67]任立良,张炜等.中国北方地区人类活动对地表水资源的影响研究[J].海河大学学报,2001,29(4):13~18.
    [68]李智广,刘秉正.我国主要江河流域土壤侵蚀量测算[J].中国水土保持科学,2006,4(2):1~6
    [69]毛世民,金正越.二十世纪下半叶淮河中游的水沙特性及变化趋势[J].安徽水利科技,2000,1(1):16~18.
    [70]任明伟,单正翔,朱雄鸣.淮河干流小柳巷水文站全沙分析[J].水文,2003,20(2):53~55.
    [71]温随群,邢焕政.海河口水沙特征及运动规律分析[J].海河水利,2004,1(2):28~31.
    [72]刘春蓁,刘志雨,谢正辉.近50a海河流域径流的变化趋势研究[J].应用气象学报,2004,15(4):385~393.
    [73]袁飞,谢正辉等.气候变化对海河流域水文特性的影响[J].水利学报,2005,36(3):274~279.
    [74]Highfill, RE. Modern terrace systems[J].Journal of Soil and Water Conservation. 1983,36(4):336~338.
    [75]Sharda,VN;Juyal, GP; Singh, PN. Hydrologic and sedimentologic behavior of a Conservation Bench Terrace system in a sub~humid climate[J]. Transactions of the ASAE.2002,45(5):1433~1441.
    [76]王云璋,康玲玲等.近50a黄河上游降水变化及其对径流的影响[J].人民黄河,2004,26(2):5~7.
    [77]许炯心,孙季.近50a来降水变化和人类活动对黄河入海径流通量的影响[J].水科学进展,2003,14(6):690~695.
    [78]王飞,穆兴民等.基于含沙量分段的人类活动对延河水沙变化的影响分析[J].泥沙研究,2007,8(4):8~13.
    [79]高鹏,穆兴民,李锐,等.黄河支流无定河水沙变化趋势及其驱动因素[J].泥沙研究,2009,10(5):22~28.
    [80]高小平,康学林.坡面措施对小流域治理的减水减沙效益分析[J].中国水土保持,1995,(6):13~15,32.
    [81]闫云霞,许炯心等.黄土高原多沙粗沙区高含沙水流发生频率的时间变化[J].泥沙研究,2007,8(4):27~33.
    [82]杨作升,戴慧敏等.1950~2000年黄河入海水沙的逐日变化及其影响因素[J].中国海洋大学学报,2005,35(2):237~244.
    [83]张晓民,余新晓等.黄土区森林植被对流域径流和输沙的影响[J].中国水土保持科学[J].2006,4(3):48~53.
    [84]张晓明,曹文洪,余新晓,等.黄土丘陵沟壑区典型流域土地利用/覆被变化的径流调节效应[J].水利学报,2009,40(6):641~650.
    [85]信忠保,余新晓,甘敬,等.黄河中游河龙区间植被覆盖变化与径流输沙关系研究[J].北京林业大学学报,2009,31(5): 1~7.
    [86]张晓萍,张橹,王勇,等.黄河中游地区年径流对土地利用变化时空响应分析[J].中国水土保持科学,2009,7(1):19~26.
    [87]Burwell RE, Kramer LA. Long-Term Annual Runoff and Soil Loss from Conventional and Conservation Tillage of Corn[J].Journal of Soil and Water Conservation.1983,38(3):315~319.
    [88]Kwaad, FJPM, Van der Zijp, M, Van Dijk, PM. Soil conservation and maize cropping systems on sloping loess soils in the Netherlands [J]. Soil and Tillage Research.1998,46(1~2):13~21.
    [89]冯秀兰,张洪江.密云水库上游水源保护林水土保持效益的定量研究[J].北京林业大学学报. 1998,20(6):71~77.
    [90]熊贵枢,于一鸣.黄河上中游水利水土保持减沙作用分析[J].见:孟庆枚.黄土高原水土保持[M].郑州:黄河水利出版社,1996:484~508.
    [91]熊运阜,王宏兴,白志刚等.梯田、林地、草地减水减沙效益指标初探[J].见:黄河水利委员会黄河上中游管理局.黄土高原水土保持实践与研究[M].郑州:黄河水利出版社,1998:318~323
    [92]焦菊英,王万中,李靖.黄土丘陵区不同降水条件下水平梯田的减水减沙效益分析[J].土壤侵蚀与水土保持学报.1999,5(3):59~63.
    [93]王万中,焦菊英.黄土高原水土保持减沙效益预测[M].郑州:黄河水利出版社,2002:53~73.
    [94]冉大川,柳林旺,赵力仪等.黄河中游河龙区间水土保持与水沙变化[M].郑州:黄河水利出版社,2000.
    [95]Kramer LA, Burkart MR, Meek DW et al. Field-scale watershed evaluations on deep-loess soils: II. Hydrologic responses to different agricultural land management systems[J].Journal of Soil and Water Conservation. 1999,54(4):705~710.
    [96]Meyer, LD, Dabney, SM, Murphree, CE, et al. Crop production systems to control erosion and reduce runoff from upland silty soils[J].Transactions of the ASAE.1999,42(6):1645~1652.
    [97]李林,王振宇等.长江上游径流量变化及其与影响因子关系分析[J].自然资源学报,2004,19(6):694~700.
    [98]许全喜,陈松生等.嘉陵江流域水沙变化特性及原因分析[J].泥沙研究,2008,4(2):1~8.
    [99]邹振华,李琼芳等.人类活动对长江径流量特性的影响[J].河海大学学报(自然科学版),2007,35(6):622~626.
    [100]吴家兵,裴铁璠.长江上游、黄河上中游坡改梯对其径流及生态环境的影响[J].国土与自然资源研究,2002,1(1):59~61.
    [101]刘宝元,闫百兴等.东北黑土区农地水土流失现状与综合治理对策[J].中国水土保持科学,2008,6(1): 1~8.
    [102]陈光,范海峰等.东北黑土区水土保持措施减沙效益监测[J].中国水土保持科学,2006,4(6):13~17.
    [103]陈光,李世泉等.东北黑土区水土保持措施减沙效益初步分析[J].水土保持应用技术,2006,5(1):46~48.
    [104]曾代球,黄庆莲.辽河流域不同河段径流特性的初步分析[J].东北水利水电,1991,5(1):25~28.
    [105]戴仕宝,杨世伦等.近50a来中国主要河流入海泥沙变化[J].泥沙研究,2007,4(2):49~540.
    [106]穆兴民,高鹏,王双银,等.东北三省区人类活动与水土流失关系演进[J].中国水土保持科学,2009,7(5):37~42.
    [107]李林育,焦菊英,李锐,等.松花江流域河流泥沙对人类活动的响应特征[J].泥沙研究,2009,6(2):62~70.
    [108]李海东,宋秀清,周亚歧.水土保持措施对滦河流域径流、泥沙的影响研究(一)[J].海河水利,2004,1(1):18~20.
    [109]李海东,宋秀清,周亚歧.水土保持措施对滦河流域径流、泥沙的影响研究(二)[J].海河水利,2004,1(2):22~23.
    [110]金光炎,尚新红.淮河中游径流减少原因初析[J].安徽水利科技,2005,1(2):6~7.
    [111]张章新.闽江流域水文特性分析[J].水文,2000,20(6):55~58.
    [112]江淼华,杨玉盛.闽江上游不同土地利用方式水土流失特征与动态变化[J].闽江学院学报,2005,26(5):93~98.
    [113]刘沛然,黄先玉等.珠江口伶仃洋泥沙运动的沉积动力作用[J].台湾海峡,2000,19(3):304~309.
    [114]彭静,廖文根,禹雪中.珠江三角洲腹地洪水位异常变化及成因分析[J].自然灾害学报,2004,13(1):50~54.
    [115]欧素英,杨清书.珠江三角洲网河区径流潮流相互作用分析[J].海洋学报,2004,26(1):125~131.
    [116]Foster H A. Duration curves [J].American Society of Civil Engineers Transactions, 1934, 99: 1213~1267.
    [117]穆兴民.黄土高原水土保持对河川径流及土壤水文的影响[D].西北农林科技大学,2002.
    [118]刘嘉麒,李泽椿,秦小光,等.东北地区自然环境历史演变与人类活动的影响研究[M].科学出版社.
    [119]赵丽娜,李欣欣.牡丹江长江屯站2009年1月冰坝特征及其成因分析[J].黑龙江水专学报,2009,36(4):105~107.
    [120]张国军,白连军,高树春,等.嫩江流域水文情势[J].黑龙江水利科技,1996,4:65~69.
    [121]中国水利水电出版社.水文情报预报规范(SL250--2000).北京:中国水利水电出版社,2000.
    [122]金栋梁.水文水资源论著选.水资源研究特刊[J],2006,281~287.
    [123]Petts G.E., et al.Flow management to sustain groundwater-dominated stream eco systems[J]. Hydrological Processes.1999,(13):497~513.
    [124]Harris N.M., et al. Classification of river regimes: a context for hydroecoogy Hydrolog Processes.2000,(14):2831~2848.
    [125]Hannah D.M., et al. An approach to hydrograph classification Hydrological Processes.2000,(14):317~338.
    [126] Disalvo A.C., et al. Climatic and stream-flow controls on tree growth in a Western Montane Riparian Forest Environmental Management.2002, 30(5):678~691.
    [127] Lilover M.J., et al. Flow regime in the Irbe Strait A quat1Sci1.1998,(60):253~265.
    [128]水利电力部水文局.中国水资源评价[M].北京:水利电力出版社,1987.
    [129]水利电力部水利电力规划设计院.中国水资源利用[M].北京:水利电力出版社,1989.
    [130]Cnalise S R , K ansakar S R , Rees G, Croker K, Zaidman M. Management of water res ources and low flow estimation for the Himalayan basins of Nepal [J]. Journal of Hydrology ,2003 ,282 (1) :25~35.
    [131]史红玲,胡春宏,王延贵,等.松花江干流河道演变与维持河道稳定的需水量研究[J].水利学报,2007,38(4):473~480.
    [132]汤奇成,程天文,李秀云.中国河川月径流的集中度和集中期的初步研究[J].地理学报,1982,37(4):383~393.
    [133]杨远东.河川径流年内分配的计算方法[J].地理学报,1984,39(2):218~227.
    [134]Walling D.E., D.Fang. Recent trends in the suspended sediment loads of the world rivers. Global and Planetary Change,2003,39:111~126.
    [135]Bobrovitskaya N. N., Kokorev A. V., Lemeshko N. A. Regional patterns in recent trends in sediment yields of Eurasian and Siberian rivers. Global and Planetary Change,2003,39:127~146.
    [136]汪丽娜,张晓萍,穆兴民,等.陕北黄土丘陵区面平均雨量推算方法.中国水土保持科学,2008,6(2):15~19.
    [137]廖松,王燕生,王路.工程水文学.北京:清华大学出版社,1992:37~44.
    [138]王文圣,丁晶,向红莲.水文时间序列多时间尺度分析的小波变换法[J].四川大学学报(工程科学版),2002,34(6):14~17.
    [139]彭玉华.小波变换与工程应用[M].北京:科学出版社,2002.
    [140]Morlet J, Arens G, Fourgeau, et al. Wave propagation and sampling theory and complex waves[J]. Geophysics,1982,47(2): 222~236.
    [141]王文圣,丁晶,李跃清.水文小波分析[M].北京:化学工业出版社,2005.
    [142]中国自然资源丛书编撰委员会.中国自然资源丛书:黑龙江卷[M].北京:中国环境科学出版社,1995.
    [143]中国湿地资源开发与环境保护研究课题组.三江平原开发历史回顾.国土与自然资源研究,1998,(1):15~19.
    [144]鄂竟平.加强领导明确重点全力搞好东北黑土区水土流失综合防治试点[J].中国水土保持,2003,(11):1~3.
    [145]徐东霞,章光新,尹雄锐.近50a嫩江流域径流变化及影响因素分析.水科学进展,2009,20(3):416~421.
    [146]林振山,邓自旺.子波气候诊断技术的研究[M].北京:气象出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700