用户名: 密码: 验证码:
枳抗逆基因的克隆及功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是我国南方重要的水果之一,其产业发展对促进地区经济具有重要作用。近年来柑橘产业虽然取得了巨大的发展,但常受到干旱、盐及低温等各种非生物逆境胁迫,因此,如何高效培育柑橘抗逆新品种成为当前育种学家亟需解决的课题。柑橘育种方法主要有常规育种、芽变选种和基因工程等,但常规育种存在雌雄性败育,珠心胚干扰,遗传高度杂合等问题,而芽变选种培育周期过长,随着生物技术水平的提高,特别是基因工程的发展,为柑橘的育种提供了一条新的途径。抗逆机理解析及重要基因克隆是基因工程的前题,是柑橘分子育种的关键。但目前柑橘抗性基因的克隆较少,鉴定出功能的基因更少,这严重阻碍了柑橘抗逆分子育种的步伐。从前人的研究得知,转录因子ABF、bHLH、ICE1及蛋白激酶MAPK在植物抗非生物胁迫中起重要作用,因此本研究从枳中分离、克隆得到ABF,MAPK、bHLH及ICE1基因,并对他们进行抗逆功能鉴定。其目的是为了深入解析抗性基因的分子机理,获得拥有自主知识产权的柑橘抗性基因资源。主要研究结果如下:
     1.采用电子克隆从枳中克隆得到ABA响应的转录因子(PtrABF),它包含1347bp的开放阅读框,编码448个氨基酸,预测蛋白质分子量为48kD,等电点9.66。多序列比对显示PtrABF与其它物种的ABF有很高的同源性。PtrABF定位于细胞核,有转录激活活性,能与ABRE元件结合,表明它是一个转录因子。表达模式分析显示它能被脱水、低温及ABA诱导。烟草中超表达PtrABF,表明转基因植株比未转化植株的抗脱水和抗旱能力显著提高。脱水和干旱条件下转基因植株比未转化植株活性氧积累低,三种抗氧化酶的活性及基因表达量均较高。另外,在干旱处理前后,9个逆境相关基因的表达量在转基因烟草中都比非转基因植株高。所有结果显示,PtrABF转基因植株抗旱能力显著提高。
     2.利用电子克隆及RACE技术从枳中分离克隆出PtrMAPK,该基因包含1128bp开放性阅读框,编码375个氨基酸,蛋白质分子量为43kD,等电点为5.51。生物信息学分析表明PtrMAPK包括11个保守的激酶结构域和一个磷酸化位点,亚细胞定位表明它定位于细胞核。PtrMAPK受干旱及低温的诱导但不受盐的诱导。与未转化植株相比,PtrMAPK转基因烟草超表达植株的抗脱水和抗旱能力明显提高,进一步研究表明,抗性增强与抗氧化酶活性提高相关。此外,转基因烟草在干旱处理前后,相关逆境响应基因的表达量明显上升。研究结果表明,PtrMAPK转基因植株具有较强的抗旱能力。
     3.从枳中克隆出PtrbHLH基因,该基因全长1921bp,它包括1464bp的开放性阅读框,编码487个氨基酸,等电点为5.30,分子量预测为53.6kD。多序列比对表明其编码的氨基酸序列中含有保守的ZIP结构域、bHLH结构域、C末段区域及SUMO结合结构域。PtrbHLH定位于细胞核,具有转录激活活性。ExPASy网站中的Signal P软件预测表明PtrbHLH氨基酸序列中具有一个核定位信号(NLS)及一个bHLH DNA结合结构域;SMART预测PtrbHLH氨基酸序列中含有一个转录激活结构域。PtrbHLH受低温、脱水及盐的诱导。超表达PtrbHLH的转基因柠檬和烟草植株的抗寒能力提高,但其RNAi-PtrbHLH转入枳使其抗性下降。采用Affymetrix芯片杂交分析表明,PtrbHLH的转基因柠檬中有108个基因上调,其中包括与H202清除有关的POD基因。进一步研究表明,超表达PtrbHLH的转基因植株(烟草和柠檬)中POD活性强,在氧化胁迫下抗性也增强。但采用POD抑制剂处理转基因烟草后,H202清除能力及抗寒性减弱。这些结果表明,PtrbHLH是通过调控POD来增强植物的抗寒能力。
     4.采用电子克隆和RACE等手段从枳中克隆出PtrICE1基因,该基因包含一个1680bp的开放阅读框,编码559个氨基酸,蛋白预测的分子量为61kD,等电点为5.27。生物信息学分析显示PtrICE1氨基酸序列与其它植物氨基酸同源性较高,有两个保守的bHLH结构域和一个SUMO结合结构域。PtrICE1定位于细胞核,有很强的转录激活活性以及能与顺式作用元件MYC结合,这些都说明它是一个转录因子。在低温、脱水、盐及脱落酸诱导下PtrICE1的转录水平都有很大的提高,表明PtrICE1能受这些非生物逆境的诱导。PtrICE1在CaM35S启动子下在烟草中的超表达分析显示,它的抗寒能力得到很大的提高。
Citrus is one of the most important fruit trees in the southern part of China and possesses a pivotal position in the regional economy promotion. Though tremendous progress for the citrus industry has been achieved in recent decades, the developments of quality and yield are impeded by various stresses, such as drought, salt and low temperature, making stress tolerance one of the important objectives for citrus breeding. Due to polyembryony and sterility of reproductive organs, it is difficult for traditional breeding to obtain stress-tolerant germplasm, which can be complemented by gene engineering as an alternative. But so far, few stress-related genes were reported. ABA responsive element binding factor (ABF), Mitogen-activated protein kinase (MAPK), bHLH and ICE1are four well-known stress-related genes. In this study, all these three genes were cloned from Poncirus trifoliate and transferred into either tobacco or Arabidopsis for functional analysis to dissect the corresponding mechanism of stress tolerance and expand the pool of stress-related genes in Citrus. Main results were as follows:
     1. PtrABF was obtained via in silico cloning, containing an open reading frame (ORF) of1347bp and encoding448amino acids with protein molecular weight (Mw)48kD and isoelectric point (pI)9.66. Positioning in the nucleus, strong transcriptional activation and binding with ABRE, these data proved that PtrABF is a transcription factor (TF), which can be induced by dehydration, low temperature and ABA. PtrABF transgenic tobacco showed improved dehydration and drought tolerance. It may be due to lower accumulation of reactive oxygen species (ROS) since the expression of anti-oxidant enzymes in transgenic plants were higher, so were the activities. In additional,9stress-related genes were observed higher expression in transgenic tobacco before and after drought treatment.
     2. In silico cloning and5'-RACE were applied to obtain the full length of PtrMAPK with an ORF of1128bp, Mw43kD, pI5.51. Bioinformatics analysis revealed that PtrMAPK possesses11conserved kinase domains and a phosphorylation site. And subcellular localization analysis showed that it is situated in nucleus. The expression of PtrMAPK was induced by drought and low temperature but not salt. Overexpressed PtrMAPK tobacco showed elevated tolerance to dehydration and drought, lower water loss and ROS accumulation, higher anti-oxidant enzyme activities. Meanwhile, the expressions of ROS-scavenging and stress-related genes were higher in transgenic tobacco before and after drought stress.
     3. PtrbHLH was isolated using the same method as PtrMAPK, owning an ORF of1464bp, Mw53.6kD, pI5.30. It enjoyed high amino acid homology with bHLH of other species. The bHLH family of transcription factors is characterized by an acidic domain near the N terminus and a conserved near the C terminus. At the C terninus of the PtrbHLH there are one bHLH zipper domain and one SUMO conjugation motif. PtrHLH was localized in nuleus and has strong transcriptional activation which demonstrated that it is a TF. Its expression can be induced by low temperature, dehydration, salt and ABA.and the overexpression of PtrbHLH in tobacco resulted in cold tolerance. Overexpressing PtrbHLH in lemon enhanced its cold tolerance but the introduction of RNAi-PtrbHLH into Poncirus undermined its cold tolerance. Affymetrix chip data revealed that there were108up-regulated genes in the lemon overexpressing PtrbHLH, including POD gene which can scavenge H2O2. Further experiments using PtrbHLH-overexpressing transgenic materials (tobacco and lemon) showed that POD activities have been obviously elevated, so have the anti-oxidative ability. When challenged with POD inhibitor, the transgenic tobacco demonstrated lowered POD activity and cold tolerance. These results suggested that PtrbHLH may enhance cold tolerance via manipulating POD activity.
     4. PtrICE1was isolated same as PtrMAPK, owning an ORF of1680bp, Mw61kD, pI5.27. It enjoyed high amino acid homology with ICE1of other species. Two conserved bHLH motif and one SUMO binding domain were present in PtrICE1. Localized in nuleus, strong transcriptional activation and binding to cis element MYC demonstrated that it is a TF. Its expression can be induced by low temperature, dehydration, salt and ABA. And the overexpression of PtrICE1in tobacco resulted in cold tolerance.
引文
1. 陈立松,刘星辉.果树逆境生理.北京:中国农业出版社,2003,1-384.
    2. 简令成.生物膜与植物寒性的关系.植物学通报,1983,1:17-23.
    3. 林元震,张志毅,刘纯鑫,郭海,朱保庆,陈晓阳.甜杨抗冻转录因子ICE1基因的insilico克隆及其分析.分子植物育种,2007,5:424-430.
    4.彭昌操,孙中海.低温锻炼期间柑橘原生质体SOD和CAT酶活性变化.华中农业大学学报,2000,19:384-387.
    5. 彭良志.对2008年柑橘冻害的思考和冻害果园管理建议.中国果业信息,2008,25:1-3.
    6. 王荣富.植物抗寒指标的种类及其应用.植物生理学通迅,1987,3:49-55.
    7. 王淑杰,王家民,李亚东,马秀华.可溶性蛋白、可溶性糖含量和葡萄抗寒性关系的研究.北方园艺,1996,107:13-14.
    8. 许凯扬,叶万辉,沈浩,李静.低温胁迫下喜旱莲子草幼苗膜脂过氧化及保护酶活性的变化。生态科学,2006,25:139-142.
    9. 章文才,江受良.中国柑橘冻害研究.北京:农业出版社,1983,1-17.
    10.赵福庚.植物逆境生理生态学.北京:化学工业出版社,2004,1-218.
    11. Agarwal PK, Agarwal P, Reddy MK, Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep,2006, 25:1263-1274.
    12. Aswath CR, Kim SH, Mo SY, Kim DH. Transgenic plants of creeping bent grass harboring the stress inducible gene,9-cis-epoxycarotenoid dioxygenase, are highly tolerant to drought and NaCl stress. Plant Grow Regula,2005,47:129-139.
    13. Aziz A, rher F. Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Sci,1995, 112:175-186.
    14. Blokhina O, Virolainen E, Fagerstedt KV, Antioxidants, oxidative damage and oxygen deprivation stress:a review. Ann Bot,2003,91:179-194.
    15. Bowler C, Montagu MV, Inze D. Superoxide Dismutase and Stress Tolerance. Plant Mol Biol,1992,43:83-116.
    16. Buchanan BB, Balmer Y. Redox regulation:a broadening horizon. Annu Rev Plant Biol,2005,56:187-220.
    17. Chen HH, Li PH. Biochemical Changes in Tuber-bearing Solanum Species in relation to frost hardiness during cold acclimation. Plant Physiol,1980,66:416-421
    18. Chen W, Provart NJ, Glazebroo kJ, Katagiri F, Chang HS, Eulgem T, et al. Expression profile matrix of Arabidopsis transcription factor gene ssuggests their putative functions in response to environmental stresses. Plant Cell,2002, 14:559-574.
    19. Chen ZZ, Zhang HR, Jablonowski D, Zhou XF, Ren XZ, Hong XH, Schaffrath R, Zhu JK, G ZZ. Mutations in ABO1/ELO2, a subunit of holo-elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol, 2006,26:6902-6912.
    20. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, etal. ICE1:a regulator of cold-induced transcript-tome and freezing tolerance in Arabidopsis. Gene Deve,2003,17:1043-1054.
    21. Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot,2004,55:225-236.
    22. Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends in Plant Science,2007,12:444-451.
    23. Choi H, Hong JH, Ha JO, Kang JY, Kim SY. ABFs, a family of ABA-responsive element binding factors. J Biol Chem,2000,275:1723-1730.
    24. Correa LGG, Riano-Pachon DM, Schrago CG, Vicentini dos Santos R, Mueller-Roeber B, MVincentz M. The role of bZIP transcription factors in green plant evolution:adaptive features emerging from four founder genes. PLoS One, 2008,13:3(8):e2944.
    25. Cushman JC, Bohnert HJ. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol,2000,3:117-124
    26. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol,2007,143:1739-1751.
    27. Eichberg J, Iyer S. Phosphorylation of myelin protein:recent advances. Neurochem Res 1996,21:527-535.
    28. Evans PT, Malmberg RL. Do polyamines have roles in plant development. Annu Rev Plant Physiol,1989,40:235-269.
    29. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress:effects, mechanisms and management. Agron Sustain Dev,2009,29:185-212.
    30. Feilner T, Hultschig C, Lee J, Meyer S, Immink RGH, Koenig A, Possling A, Seitz H, Beveridge A, Scheel D, Cahill DJ, Lehrach H, Kreutzberger J, Kersten B. High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol Cell Proteomics,2005,4:1558-1568.
    31. Ferre-D'Amare AR, Pognonec P, Roeder RG, Burley SK. Structure and function of the b/HLH/Z domain of USF. EMBO J,1994,13:180-189.
    32. Fiil BK, Petersen K, Petersen M, Mundy J. Gene regulation by MAP kinase cascades. Curr Opin Plant Biol,2009,12:615-621.
    33. Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol,2011,155:93-100.
    34. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell,2005,17:3470-3488.
    35. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA, 2006,103:1988-1993.
    36. Garrell J, Campuzano S. The helix-loop-helix domain:a common motif for bristles, muscles and sex. Bioessays,1991,13:493-498.
    37. Godiard L, Lepage A, Moreau S, Laporte D, Verdenaud M,Timmers T,Gamas P. MtbHLHl, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges. New Phytol,2011, 191:391-404.
    38. Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad net work and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol,2000,16: 653-699.
    39. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trend Plant Sci, 2006,11:192-198.
    40. Harb A, Krishnan A, Ambavaram MMR, Pereira A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol,2010,154:1254-1271.
    41. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol,2001,42:462-468.
    42. Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era:past, present and future. Plant J,2010,61:1041-1052.
    43. Horsh RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SC, Fraley RT. A simple and general method for transferring genes into plants. Science,1985,227:1229-1231.
    44. Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB. The bZIP transcription factor OsABFl is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol,2010,72: 557-566.
    45. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol,2002,129:1086-1094
    46. Huang XS, Chen XJ, Liu JH. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol,2010,10:230.
    47. Huang XS, Liu JH:Cloning, molecular characterization and heterologous expression of a mitogen-activated protein kinase PtrMAPK of Poncirus trifoliata conferred dehydration/drought tolerance in tobacco. J Exp Bot,2011,62:5191-5206.
    48. Hundertmark M, Hincha DK. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics,2008,9:118.
    49. Hurst HC. Transcription factors 1. bZIP proteins. Protein Profile,1994,1:123-168.
    50. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J,2000,24: 655-665.
    51. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trend Plant Sci,2002,7:106-111
    52. Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Zhao CX, Shao HB, Panneerselvam R. Antioxidant defense response:physiological plasticity in higher plants under abiotic constraints. Act Physiol Plant,2009,31:427-436.
    53. Jang EK, Min KH, Kim SH, Nam SH, Zhang S, Kim YC, Cho BH, Yang KY. Mitogen-activated protein kinase cascade in the signaling for polyamine biosynthesis in tobacco. Plant Cell Physiol,2009,50:658-664.
    54. Jonak C, Ligterink W, Hirt H. MAP kinases in plant signal transduction. Cell Mol Life,1999,55:204-213.
    55. Kang JY, Choi HI, Im MY, Kim SY. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell,2002,14:343-357.
    56. Kim JB, Kang JY, Kim SY. Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotech J, 2004a,2:459-466.
    57. Kim S, Kang JY, Cho DI, Park JH, Kim SY. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J,2004b,40:75-87.
    58. Kim SY The role of ABF family bZIP class transcription factors in stress response. Physiologia Plantarum,2006,126:519-527.
    59. Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta,2008,227: 867-881
    60. Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, etal. Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem,2005, 69:1042-1054.
    61. Kiribuchi K, Sugimori M, Takeda M, Otani T, Okada K, Onodera H, et al. RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein. Biochem Biophys Res Commun,2004,325:857-863.
    62. Knight H, Knight M R. Abiotic stress signalling pathways:specificity and cross-talk. Trends Plant Sci,2001,6:262-267.
    63. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA-response element-binding factors. Plant J,2005,44:939-949.
    64. Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y. The MAP Kinase MPK4 Is required for cytokinesis in Arabidopsis thaliana. Plant Cell,2010,22:3778-3790.
    65. Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol,2008,147:381-390.
    66. Kumar KR, Kirti PB. A mitogen-activated protein kinase, AhMPK6 from peanut localizes to the nucleus and also induces defense responses upon transient expression in tobacco. Plant Physiol Biochem,2010,48:481-486.
    67. Ledent V, Vervoort M. The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis. Genome Res,2001,11:754-770.
    68. Liang YC, Chen Q, Liu Q, Zhang W, Ding R. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol,2003,160:1157-1164
    69. Liqiang J. Is Reactive Oxygen Species (ROS) the underlying factor for inhibited root growth in Osspr1? Plant Sign Beha,2011,6:1024-1025.
    70. Liu HY, Feng DR, Liu B, He YM, Wang HB, Wang JF. Studies on subcellular localization of mpasr in onion epidermal cells mediated by Agrobacterium. Journal of Tropical and Subtropical Botany,2009,17:218-222. (in Chinese)
    71. Liu JH, Inoue H, Moriguchi T. Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Exp Environ Bot,2008,62:28-35.
    72. Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechn,2007,24:117-126.
    73. Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotech,2007,24:117-126.
    74. Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T. Polyamine biosynthesis of apple callus under salt stress:importance of the arginine decarboxylase pathway in stress response. J Exp Bot,2006,57:2589-2599.
    75. Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation. J Biochem,1999,262:247-257.
    76. Liu X, Wang Z, Wang L, Wu R, Phillips J, Deng X. LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Sci,2009,176:90-98.
    77. Liu X, Wang Z, Wang L, Wu R, Phillips J, Deng X. LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Sci,2009,176:90-98.
    78. Mahajan S, Tuteja N. Cold, salinity and drought stresses:An overview. Arch Biochem Biophys,2005,444:139-158.
    79. Massari ME, Murre C. Helix-loop-helix proteins:regulators of transcription in eukaryotic organisms. Mol Cell Biol,2000,20:429-440.
    80. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ,2010,33: 453-457.
    81. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell,2007,19:1403-1414.
    82. Morris PC. MAP kinase signal transduction pathways in plants. New Phytol,2001, 151:67-89.
    83. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum,1962,15:473-497.
    84. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989,56:777-783.
    85. Nadarajah N, Sidek HM. The Green MAPKs. Asian J Plant Sci,2010,9:1-10.
    86. Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci,2005,10:339-346.
    87. Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol,2009,149: 88-95.
    88. Ning J, Li X, Hicks LM, Xiong L. A raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol, 2010,152:876-890.
    89. Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J,2007,51:366-377.
    90. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol,2005,138:341-351.
    91. Ortiz-Masia D, Perez-Amador MA, Carbonell P, Aniento F, Carbonell J, Marcote MJ. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta,2008,227:1333-342.
    92. Pastori GM, Foyer CH. Common components, networks, and pathways of cross-tolerance to stress. The central role of "dox" and abscisic acid-mediated controls. Plant Physiol,2002,129:460-468.
    93. Payne D M, Rossomando A J, Martino P et al. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBOJ,1991,10:885-892.
    94. Pedley KF, Martin GB. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol,2005,8:541-547.
    95. Pitzschke A, Djamei A, Bitton F, Hirt H. A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol Plant,2009,2:120-137.
    96. Pogany M, Koehl J, Heiser I, Elstner EF, Barna B. Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant Pathol,2004,65:39-47.
    97. Price A H, Taylor A, Ripley S J, Griffiths A, Trewavas AJ. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell,1994,6:1301-1310
    98. Qin X, Zeevaart JAD. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol,2002,128:544-551.
    99. Qin X, Zeevaart JAD. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Nat Acad Sci USA,1999,96:15354-15361.
    100.Quail PH. Phytochrome-interacting factors. Semin Cell Dev Biol,2000,11:457-466.
    101.Rhee HJ, Kim EJ, Lee JK:Physiological polyamines:simple primordial stress molecules. J Cell Mol Med,2007,11:685-703.
    102.Rohila JS, Yang YN. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Inte Plant Biol,2007,49:751-759.
    103.Saibo NJM, Lourenco T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot,2009, 103:609-623.
    104.Samuel MA, Ellis BE. Double jeopardy:both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell,2002,14:2059-2069.
    105.Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001,13:61-72.
    106.Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, AKamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Kazuko Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J,2002,31:279-292.
    107.Serrano R, Mulet J M, Rios G, Marquez J A, de Larrinoa I F, Leube M P, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R,Montesinos C. A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot,1999,50:1023-1036.
    108.Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol,2010,30:914-922.
    109.Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany,2007,58:221-227.
    110.Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signalling pathways. Curr Opin Plant Biol,2000,3:217-223.
    111.Smirnoff N. Plant resistance to environmental stress. Curr Opin Biotech,1998, 9:214-219.
    112.Song F, Goodman RM. OsBIMKl, a rice MAP kinase gene involved in disease resistance responses. Planta,2002,215:997-1005.
    113.Sreenivasulu N, Sopory S K, Kavi Kishor P B. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene,2007, 388:1-13.
    114.Stulemeijer IJE, Stratmann JW, Joosten MHAJ. Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol,2007,144:1481-1494.
    115.Suarez Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology,2010,61:621-649.
    116.Tadolini B. Polyamine inhibition of lipoperoxidation. The influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochem J,1988,249:33-36.
    117.Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol,2003,131:454-462.
    118.Tena G, Asai T, Chiu WL, Sheen J. Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol,2001,4:392-400.
    119.Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell,2003,15:1749-1770.
    120.Turkan I, Demiral T. Recent developments in understanding salinity tolerance. Environ Exp Bot,2009,67:2-9.
    121.Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants:discovering and tailoring genes unlock the future. Curr Opin Biotech,2006,17:113-122.
    122.Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress response and developmental stages. Plant Cell Environ,2003,26:1917-1926.
    123.Urao T, Yakubov B, Satoh R et al. A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor. Plant Cell,1999,11:1743-1754.
    124.Vierling E, Kimpel JA. Plant responses to environmental stress. Curr Opin Biotech, 1992,3:164-170.
    125.Viswanathan C, Zhu J and Zhu JK. Gene regulation during cold acclimation in plants. Physiol Plant,2006,126:52-61.
    126.Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J,2005,41:195-211.
    127.Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. Journal of Integrative Plant Biology,2010,52:442-452.
    128.Wang J, Liu JH, Yu An, Xiang Y, Kurosawa T, Nada K, Ban Y. Cloning, biochemical identification, and expression analysis of a gene encoding S-adenosylmethionine decarboxylase in Citrus sinensis Osbeck. J Hort Sci Biotech, 2010,85:219-226.
    129.Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot,2011,62:2899-2914.
    130.Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003, 218:1-14.
    131.Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, et al. A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet,2003,107: 1402-1409.
    132.Wingsle G, Hallgren J E. Influence of SO2 and NO2 Exposure on Glutathione, Superoxide Dismutase and Glutathione Reductase Activities in Scots Pine Needles. J Exp Bot,44:463-470.
    133.Witte CP, Keinath N, Dubiella U, Demouliere R, Seal A, Romeis T. Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biol Chem,2010,285:9740-9748.
    134. Wright WE. Muscle basic helix-loop-helix proteins and the regulation of myogenesis. Curr Opin Gene Dev,1992,2:243-248.
    135.Wu L, Zhang Z, Zhang H, Wang XC, Huang R. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol,2008,148: 1953-1963.
    136.Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought and salt stress. Plant Cell,2002,14:165-183.
    137.Xiong LZ, Yang YN. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell,2003,15:745-759.
    138.Yamada Y, Kokabu Y, Chaki K, Yoshimoto T, Ohgaki M, Yoshida S, Kato N, Koyama T, Sato F. Isoquinoline Alkaloid Biosynthesis is Regulated by a Unique bHLH-Type Transcription Factor in Coptis japonica. Plant Cell Physiol,2011, 52:1131-1141.
    139.Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory net works in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006,57:781-803.
    140.Yanez M, Caceres S, Orellana S, Bastias A, Verdugo I, Ruiz-Lara S, Casaretto JA. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep,2009,28:1497-1507.
    141.Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, etal. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol,2005, 138:2087-2096.
    142.Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J,2010,61: 672-685.
    143.Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol,2001,42: 1012-1016.
    144.ZaTdi I, Ebel C, Touzri M, Herzog E, Evrard JL, Schmit AC, Masmoudi K, Hanin M. TMKP1 is a novel wheat stress responsive MAP Kinase phosphatase localized in the nucleus. Plant Mol Biol,2010,73:325-338.
    145.Zhang A, Jiang M, Zhang J, Tan M, Hu X. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol,2006, 141:475-487.
    146.Zhang F, Klessig DF. MAPK cascades in plant defense signaling. Trends Plant Sci, 2001,11:520-527.
    147.Zhang T, Yang T, Zhang L, Xu S, Xue L, An L. Diverse signals converge at MAPK cascades in plant. Plant Physiol Biochem,2006,44:274-283.
    148.Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z. Increased expression of OsSPXl enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotech J,2009,7:550-561.
    149.Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis. J Plant Physiol,166:1296-1306.
    150.Zhu J K, Hasegawa P M, Bressan RA. Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci,1997,16:253-277.
    151.Zhu J, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Cur Opin Plant Sci, 2007,10:290-295.
    152.Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol, 2001b,4:401-40.
    153.Zhu JK. Plant salt tolerance. Trends Plant Sci,2001a,6:66-71.
    154.Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002,53:247-273.
    155.Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta,2009,229:485-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700