用户名: 密码: 验证码:
芒果SCoT分子标记与逆境和重要开花时间相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芒果是重要的热带水果之一,有“热带水果之王”的美誉。我国芒果种植历史悠久,种质资源丰富且品种繁多,其中许多芒果品种来源于实生选种,亲缘关系不明。长期以来我国芒果主栽品种、国外引进芒果品种以及地方特有芒果品种之间的遗传多样性和亲缘关系还不够清楚,给芒果种质资源的收集、保护和利用带来了诸多不利。近年来由于全球气候变化,导致非生物胁迫经常发生,而芒果对非生物胁迫比较敏感,非生物胁迫严重影响芒果的品质与产量。在提高芒果产量的同时又要保障经济效益,对芒果进行产期调节是增加芒果经济效益的有效途径。四季芒成花不需要低温,具有周年自然成花的特性,是目前进行芒果产期调节的最适宜品种。而关于四季芒成花的分子机理还未见报道。基于上述原因,本研究将率先采用新型目标性状SCoT分子标记对芒果进行遗传多样性和亲缘关系分析,改良cDNA-SCoT技术并首次应用于芒果逆境胁迫差异显示研究,克隆四季芒重要开花时间基因,并对其生物信息学、表达模式和功能进行研究。主要研究结果如下:
     1、首次运用SCoT分子标记对芒果遗传多样性进行研究。开发了44条新的SCoT引物,使SCoT分子标记引物总数达到80条。开展了芒果SCoT分子标记和ISSR分子标记比较研究,结果显示SCoT分子标记扩增多态性百分比高于ISSR分子标记,SCoT分子标记的聚类结果比ISSR分子标记更能准确反映研究样品之间的亲缘关系,不同地域来源的芒果品种能按照其起源聚类。证明SCoT分子标记在芒果遗传多样性和亲缘关系研究中是一种非常有效的分子标记。
     2、改良cDNA-SCoT技术并首次应用于芒果逆境胁迫差异显示研究。在cDNA的3’末端加锚定引物,利用SCoT分子标记引物结合3’末端锚定引物对cDNA进行扩增,可以保证扩增片段是功能基因,改良的cDNA-SCoT技术方法操作简单、实验成本低廉且节省时间。用37条SCoT分子标记引物结合3’末端加尾锚定引物对逆境胁迫处理和对照芒果样品进行差异显示研究,成功获得92个基因片段,其中与逆境胁迫、转录因子、生长发育和信号传导相关的基因共有40个。
     3、改良5’末端RACE技术克隆芒果逆境相关基因的全长。采用新的逆转录引物,增加cDNA产物和接头引物浓度,延长加尾时间,简化操作步骤,结合巢式PCR和降落PCR获得了一种操作简单、快速、高效、成本低廉的改良5’末端RACE方法。利用改良的5’末端RACE技术对cDNA-SCoT获得的芒果逆境相关基因的5’末端进行调取,成功获得40个芒果逆境相关基因的全长序列。
     4、芒果逆境胁迫相关基因表达模式分析。从40个逆境相关基因中选取6个逆境功能基因、6个转录因子和4个保护酶基因,利用实时荧光定量技术进行表达模式分析,低温、NaCl和PEG处理均能调控这些基因的表达,不同基因在同一逆境胁迫下的表达模式存在差异,在这三类基因中,转录因子对逆境胁迫的响应最明显。
     5、芒果重要逆境基因Harpin基因研究。利用cDNA-SCoT技术和5’末端RACE技术获得芒果Harpin基因全长。Harpin基因全长为1019bp,开放阅读框长666bp,编码222个氨基酸,与其它病原菌的hrp基因无同源性。芒果Harpin基因在各个组织中均表达,并随着果实发育,其表达水平持续上升;低温、NaCl、PEG、铅、镉和锌可诱导该基因表达;果实采后不同处理也诱导该基因表达。芒果Harpin基因转化烟草,其T0代植株高度比对照高,开花时间早于对照,并引起花形态发生变异;用NaCl、Pb(NO3)2和ZnSO4处理转Harpin基因烟草,T0代植株表型与对照差异不明显。芒果Harpin基因功能还需要进一步对T1和T2转基因植株进行研究才能确定。
     6、利用同源克隆法、染色体步移法或改良5'RACE法,从芒果中获得了LFY,CO、SOC1、FT和TFL1共5个开花时间基因的序列全长,并对这些基因的生物信息学、表达模式及其功能进行研究。
     基因生物信息学分析:LFY基因基因全长为1332bp,其中开放阅读框长1149bp,编码383个氨基酸,存在一个FLO_LFY superfamily结构域;LFY基因的启动子区域包含多个逆境和光响应元件,同时还存在ABA、GA、CTK、IAA和蔗糖响应元件。CO基因开放阅读框长为966bp,编码322个氨基酸,存在两个B-box锌子结构域和一个CCT结构域,属于第一类CO基因家族,与拟南芥COL4基因最相似。SOC1基因开放阅读框长为669bp,编码223个氨基酸,存在一个MADS结构域和一个K-box结构域,属于MADS-box基因家族,不同物种的SOC1基因编码氨基酸数差异很小FT基因开放阅读框长为588bp,编码196个氨基酸,存在一个PEBP结构域,属于FT/TFL1基因家族的FT-like类基因,但其编码氨基酸数明显多于其它FT/TFL1基因。TFL1基因开放阅读框长为516bp,编码172个氨基酸,也存在一个PEBP结构域,属于第一类FT,TFL1基因家族的TFL1-like类基因。
     基因表达模式分析:LFY和CO基因在营养组织和生殖组织中均表达,而SOCl基因主要在营养组织中表达。LFY、CO、SOC1、FT和TFL1基因在紫花芒和四季芒的成熟叶、成熟茎和嫩茎中的表达模式既类似又存在明显差异,在芒果花芽分化期的10月-12月份之间这些基因都具有较高的表达水平,在来年的3月-6月份之间还存在另外一个小的表达高峰;但在同一时间不同组织、同一组织不同时间以及不同芒果品种之间表达高峰出现的时间以及表达水平都存在差异;进一步分析显示,芒果开花时间基因之间也存在网络调控。
     基因功能研究:分别构建了LFY、CO、SOC1、FT和TFL1基因的正义和反义表达载体,并转化烟草。不同转基因烟草插入拷贝数存在差异,并且芒果基因在转基因烟草中正常表达。分别转LFY+、CO+、FT-和TFL1-基因的烟草,转基因T0代株高低于对照的株高,而分别转LFY-、CO-、SOC-、FT+和TFLl+基因的烟草,其T0代株高比对照烟草的株高高,SOC+转基因株高与对照差异不明显。在本研究中,这些芒果开花时间基因转化烟草后,转基因引起烟草花形态发生变异,但T0代转基因烟草开花时间未能达到预想效果,其功能还需要进一步验证。
Mango(Mangifera indica L) is one of the important tropical fruit, known as the king of fruits.There are a long history of cultivation, rich germplasm resources and many varieties or cultivars about mango in China. Because many mango cultivars were selected from naturally occurring open-pollinated seedlings, their parents were unknown. The genetic relationships among main cultivars, cultivars introduced and some local unique cultivars of mango in our country were unclear, which brought a lot of problems for mango germplasm resources collection, protection and utilization. Abiotic stresses often occur by the global climate change, while mango is sensitive to abiotic stress, therefore the abiotic stresses are major environmental factors that influence the quality and yield of mango seriously. Off-season of mango is the right chose to increase yield and benefit at the same time. Mangifera indica L. cv.'Chok Anand' can blossom several times without low temperature of the year, which is the most suitable for off-season production, while there have been no reports on the molecular mechanism of flowering about Mangifera indica L. cv.'Chok Anand'. Based on the above reasons, SCoT marker technique was firstly used to study the genetic diversity and relationships among mango accessions, cDNA-SCoT technology improved was first applied to isolate and characterize differential genes expressed under stress treated, and full length cloning, bioinformatics, expression patterns and preliminary functions of important flowering time genes were studied in the present study. The main results were as follows:
     1. In the present study, SCoT markers were first applied to identify the genetic diversity and relationships among mango cultivars.44new SCoT primers were designed, and the total number of SCoT primers amount to80. The usefulness of SCoT versus ISSR markers for identiying the closest mango cultivars was evaluated, the polymorphic percentages amplified by SCoT markers were higher than that of ISSR markers, and the UPGMA cluster result with SCoT markers was better than that with ISSR analysis in their genetic relationships. and mango varieties of the same or near to origin place.could be clustered to the same group by UPGMA cluster with SCoT markers The results demonstrated that the SCoT marker system is very useful in studying genetic diversity and relationship of mango cultivars.
     2. The cDNA-SCoT technology was improved and applied in differential gene expression analysis of mango under stresses for the first time. The3'end anchor primer was added to cDNA and combined with SCoT primer for PCR amplification. The cDNA-SCoT technology improved is a simple, low-cost, time saving and efficient method for differential gene expression research, and the fragment amplified by cDNA-SCoT is a function gene.37SCoT primers combined with anchor primer were applied to differential genes expression analysis of mango under stresses in the present study,92fragments were successful obtained and most of these genes were first cloned from mango. The40genes among the92fragments were presumed to be transcription factors and the genes of,stress-related protein, growth development and signal transduction.
     3. The5'end RACE technology was modified and applied in cloning the full length of stress related genes in mango. The main modifications for normal5'end RACE were as followed:Using new reverse transcriptase primer, increasing the concentration of cDNA and tail primer, extending tailing time, simplifying the process, combined with nested PCR and touchdown PCR. The5' end RACE technology modified was testified to be a new, simple, rapid, high-efficient and low-cost method. In the present study,40full-length genes related with stress were successful obtained by using the51end RACE technology modified.
     4. Expression analysis of the important stress-related genes in mango. Expression patterns of six stress-responsive functional genes, six transcription factors and four protective enzyme genes were estimated by real-time quantitative PCR, the results showed that these genes were all regulated by low temperture, NaCl and PEG treatments, but there were different expression patterns under the same stress treatment. The transcription factors among the three kinds of stress-related genes were strong response to the stresses.
     5. Cloning, expression and function analysis Harpin gene of mango. The full length of mango Harpin gene was obtained by cDNA-SCoT technology and RACE technology. The full length of Harpin cDNA is1019bp and contains a complete open reading frame (ORF) of666bp, which encoding222amino acids. The sequence of mango Harpin is no homology with pathogenic bacteria hrp genes. Harpin gene of mango can express in all tissues, and the expression level rise continuely with the fruit development. The expression analysis revealed mango Harpin gene was regulated by low temperature, NaCl, PEG, heavy metal and different treatments after fruit harvest. Sense Harpin vector of mango was successful transformed into tobacco. Sense transgenic plants leaded to early flowering, increase plant height and cause flower structure mutant. More treatments including NaCl, Pb(NO3)2and ZnSO4all did not differ significantly in To generations between transgenic plants and non-transgenic plants. The function of mango Harpin gene could be identified by further studying the T1and T2transgenic plants.
     6. The full length of mango flowering time genes LFY, CO, SOC1, FT and TFL1were obtained by homology cloning strategy, genome walking and5'end RACE technology modified, and their bio informatics, expression patterns and functions of these genes have been further studied.
     Bio informatics analysis:The full length of LFY cDNA is1332bp and contains a complete open reading frame (ORF) of1149bp, encoding383amino acids. The LFY protein contains one conserved FLO_LFY superfamily domains. LFY promoter contains several cis-regulatory elements related to stress-induce and light-response, and cis-acting elements involved in ABA-, GA-, CTK-, IAA-and sugar-responsive were also identified in the promoter. The full length of CO cDNA is1141bp and contains a complete open reading frame (ORF) of966bp, encoding322amino acids. The CO protein contains two B-box domains and one CCT domains, belong to the first group of CO gene, and is close to Arabidopsis AtCOL4gene. The full length of SOC1cDNA is841bp and contains a complete open reading frame (ORF) of669bp, encoding223amino acids. The SOC1protein contains one MADS-box domains and one K-box domains, belong to MADS-box gene family. The full length of FT cDNA is781bp and contains a complete open reading frame (ORF) of588bp, encoding196amino acids. The FT protein contains one PEBP domains, belong to FT/TFL1gene family. The full length of TFL1cDNA is721bp and contains a complete open reading frame (ORF) of516bp, encoding172amino acids. The TFL1protein contains one PEBP domains, belong to FT/TFL1gene family.
     Expression pattern analysis:Real-time-PCR analysis showed that LFY and CO expressed in all vegetative tissues and reproductive organs, but SOC1gene mainly expressed in vegetative tissues. The expression patterns of LFY, CO, SOC1, FT and TFL1in mature leaves, mature stems and young stems in two cultivars of Mangifera indica L. cv.'Chok Anand'and Mangifera indica L. cv.'ZiHua'were almost similar, but also exist obvious difference. The flowering time genes expressed highly during floral induction from November to December, and another peak appeared from March to June in the following year. Whereas the time of peak appeared and the expression level of these genes were different in different tissues at the same time, in the same tissues at different time and in different mango varieties, further analysis showed that mango flowering time genes also existed regulation network.
     Function analysis:The sense and antisense vector of the five mango flowering time genes were constructed and successful transferred into tobacco, respectively. The copy numbers were differences between transgenic plants, and these flowering time genes normally expressed in the transgenic plants. The plant heights of the To generations of transgenic plants with LFY+、CO+、FT-and TFL-respectively were lower than that of non transgenic plants, but the plant heights of the To generations of transgenic plants with LFY-、CO-、SOC-、FT+and TFL+respectively showed higher. The SOC+transgenic plants did not differ significantly between transgenic plants and non transgenic plants. In the present study, floral organs of transgenic tobacco To generations with mango flowering time genes had happened mutants, but flowering time have not worked as well as had been hoped,. The functions of these genes could be further studied by the T1and T2transgenic plants.
引文
[1]安新民,王冬梅,王泽亮,等.毛白杨PtLFY在花芽发育中的表达模式与花芽形态分化.林业科学,2010,46(2):32-38
    [2]曹秋芬,和田雅人,孟玉平,等.苹果LEAFY同源基因的cDNA克隆与表达分析.园艺学报,2003,30(3):267-271
    [3]常丽丽,吴连成,库丽霞,等.植物FLOWERING LOCUS T/TERMINAL FLOWER 1基因家族的研究进展.西北植物学报,2008,28(4):843-851
    [4]陈虎,何新华,罗聪,等.龙眼SCoT-PCR反应体系的优化.基因组学与应用生物学,2009,28(5):970-974
    [5]陈虎,何新华,罗聪,等.龙眼24个品种的SCoT遗传多样性分析.园艺学报,2010,37(10):1651-1654
    [6]陈清,汤浩茹,董晓莉,等.植物Myb转录因子的研究进展.基因组学与应用生物学,2009,28(2):365-372
    [7]陈万利,刘宗旨,李文华.植物富含甘氨酸蛋白质(GRP)及其基因研究进展.东北农业大学学报,36(4):512-519
    [8]陈香玲,李杨瑞,杨丽涛,等.低温胁迫下甘蔗抗寒相关基因的cDNA-SCOT差异显示.生物技术通报,2010,8:120-124
    [9]陈香玲,李杨瑞,杨丽涛,等.cDNA-SCOT基因差异表达两种电泳方法的比较研究.生物技术通报,2010,10:93-95
    [10]陈晓,陈彦惠,任永哲.植物开花转换的分子生物学研究.分子植物育种,2005,3(4):557-565
    [11]陈由强,朱锦懋,叶冰莹.水分胁迫对芒果(Mangifera indica L.)幼叶细胞活性氧伤害的影响.生命科学研究,2000,4(1):60-64
    [12]仇艳光,田景汉,葛荣朝,等.TAIL-PCR的改良及其在分离小麦基因启动子中的应用.生物工程学报,2008,24(4):695-699
    [13]董登峰,李杨瑞,白云彩.几个提高抑制消减杂交(SSH)文库质量的技术改进.西南农业学报,2011,24(5):1849-1852
    [14]窦俊辉,喻树迅,范术丽,等.SOD与植物胁迫抗性.分子植物育种,2010,8(2):359-364
    [15]段艳欣,郭文武.木本植物开花调节基因的分离及其童期控制.中国生物工程杂志,2004, 24(10):22-26
    [16]房玉林,惠竹梅,陈洁,等.水分胁迫对葡萄光合特性的影响.干旱地区农业研究,2006,24(2):135-138
    [17]付建新,王琳琳,戴思兰.FT/TFL1基因家族调控高等植物生长发育的分子机理.分子植物育种(网络版),2011,9:1662-1672
    [18]付建新,王翊,戴思兰.高等植物CO基因研究进展.分子植物育种,2010,8(5):1008-1016
    [19]高雪.差异表达基因分离技术的研究进展.生物技术通报,2009,6:72-74
    [20]谷俊涛,鲍金香,王效颖.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因.作物学报,2009,35(9):1597-1605
    [21]郭长禄,陈力耕,何新华,等.银杏LEAFY同源基因的时空表达.遗传,2005,27(2):41-244
    [22]郭春晓,田素波,郑成淑,等.光周期途径植物开花决定关键基因FT.基因组学与应用生物学,2009,28(3):613-618
    [23]韩斌,彭建营.cDNA-AFLP技术及其在植物基因表达研究中的应用.西北植物学报,2006,26(8):1753-1758
    [24]韩国辉,汪卫星,向素琼,等.多倍体枇杷SCoT分析体系的建立与优化.果树学报,2011b,28(3):433-437
    [25]韩国辉,向素琼,汪卫星,等.柑橘SCoT分子标记技术体系的建立及其在遗传分析中的应用.园艺学报,2011a,38(7):1243-1250
    [26]郝敏,谷守芹,韩建民,等cDNA末端扩增技术的研究进展.河北林果研究,2006,21(2):157-161
    [27]洪登峰,万丽丽,杨光圣.侧翼序列克隆方法评价.分子植物育种,2006,4(2):280-288
    [28]侯小改,王娟,贾甜,等.牡丹SCoT分子标记正交优化及引物筛选.华北农学报,2011,26(5):92-96
    [29]胡桂兵,林顺权,叶自行,等.芒果LEAFY同源基因的分离及序列分析.亚热带植物科学,2004,(2):1-4
    [30]胡美姣,高兆银,李敏,等.热水和1-MCP处理对杜果贮藏效果的影响.果树学报,2005,22(3):243-246
    [31]黄国弟,罗聪,何新华,等.桂热杧系列品种(系)的亲缘关系分析.热带亚热带植物学报,2008,16(6):521-525
    [32]黄国弟.我国芒果选育种研究现状及发展趋势.中国果树,2000,(3):47-49
    [33]黄锦文,骆娟,陈冬梅,等.低温胁迫下高羊茅抑制消减文库的构建与分析.中国生态农业学报,2009,17(6):1162-1167
    [34]黄欣,彭克勤,周浩,等.植物中热激蛋白的研究进展.湖南农业科学,2007,(4):55-57
    [35]贾贞,赵菲佚,吴存祥.FT及其同源基因在植物发育调控中的多功能效应.西北植物学报,2011,31(12):2558-2564
    [36]蒋巧巧,龙桂友,李武文,等.SCoT结合克隆测序鉴别湖南甜橙变异类型.中国农学通报,2011,27(6):148-154
    [37]焦芳婵,毛雪,李润植.金属结合蛋白基因及其在清除重金属污染中的应用.遗传,2002,24(1):82-86
    [38]雷新涛,王家保,徐雪荣,等.芒果主要品种遗传多态性的AFLP标记研究.园艺学报,2006,33(4):725-730
    [39]雷新涛,姚全胜,徐雪荣,等.中国野生芒果种质资源及其AFLP分子标记.热带作物学报,2009,30(10):1408-1412
    [40]李鹏,黄耿青,李学宝.植物NAC转录因子.植物生理学通讯,2010,46(3):294-300
    [41]李平,陆徐忠,邵敏,等.水稻黄单胞细菌Harpin蛋白的遗传多样性及其诱导烟草过敏反应和抗病性功能.中国科学C辑,2004,34(2):136-143
    [42]李清清,李大鹏,李德全.茉莉酸和茉莉酸甲酯生物合成及其调控机制.生物技术通报,2010,1:54-62
    [43]李汝刚,范云六.表达Harpin蛋白的转基因马铃薯降低晚疫病斑生长率.中国科学C辑,1999,29(1):56-61
    [44]梁成真,张锐,郭三堆.染色体步移技术研究进展.生物技术通报,2009,10:75-87
    [45]林清芳,王学峰,李记园,等.蒙古沙冬青干旱胁迫全长cDNA文库构建及序列分析.生物工程学报,2012,28(1):86-95
    [46]刘博,苏乔,汤敏谦,等.应用于染色体步移的PCR扩增技术的研究进展.遗传,2006,28(5):587-595
    [47]刘佳杰,林清芳,李连国.蒙古沙冬青冷冻胁迫SMART cDNA文库的构建及序列分析.植物遗传资源学报,2011,12(5):770-774
    [48]刘蕾,杜海,唐晓凤,等.MYB转录因子在植物抗逆胁迫中的作用及其分子机理.遗传,2008,30(10):1265-1271
    [49]刘伟,曲凌慧,刘洪庆,等.低温胁迫对葡萄保护酶和氧自由基的影响.北方园艺,2008, 5:21-24
    [50]刘育梅,胡宏友,李学梅.蛋黄果在NaCl胁迫下的生理生态响应.厦门大学学报(自然科学版),2011,50(5):951-954
    [51]马玲莉,霍蓉,高学文,等.转harpinXooc蛋白编码基因hrf2对油菜抗菌核病的影响.中国农业科学,2008,41(6):1655-1660
    [52]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展.遗传,2003,25(2):225-231
    [53]孟凡宏,宋从凤,纪兆林,等.表达全长与截短harpinXoo对转基因烟草抗病性的影响.南京农业大学学报.2007,30(3):47-52
    [54]孟玉平,曹秋芬,孙海峰.枣树ZjLFY基因cDNA片段的克隆与表达分析.果树学报,2010,27(5):719-724
    [55]苗雨晨,白玲,苗琛,等.植物谷胱甘肽过氧化物酶研究进展.植物学通报,2005,22(3):350-356
    [56]欧世金.中国作物及其野生近缘植物[果树卷].北京:中国农业出版社,2003
    [57]彭辉,于兴旺,成慧颖,等.植物NAC转录因子家族研究概况.植物学报,2010,45(2):236-248
    [58]曲泽洲和孙云蔚.中国果树种类论.北京:农业出版社,1990
    [59]全先庆,张洪涛,单雷,等.植物金属硫蛋白及其重金属解毒机制研究进展.遗传,2006,28(3):375-382
    [60]阮松林,童建新,赵杭苹.植物响应逆境胁迫蛋白质组学研究进展.杭州农业科技,2007,2:15-18
    [61]沈元月.葡萄果实成熟过程中ABA信号传导研究进展.果树学报,2010,27(5):778-783
    [62]施宗明.杧果优质丰产技术.云南:云南科技出版社,1998
    [63]石胜友,张燕梅,武红霞,等.36个杧果引进品种的遗传相似性研究.果树学报,2010,276:914-917
    [64]石胜友,武红霞,王松标,等.杧果种质遗传多样性的表型分析和AFLP分析.园艺学报.2011,38:449-456
    [65]宋冰,洪洋,王丕武,等.植物C2H2型锌指蛋白的研究进展.基因组学与应用生物学,2010,29(5):1133-1141
    [66]宋伟,王凤格,易红梅,等.功能标记及在品种鉴定和辅助育种中的应用前景.分子植物育种.2009,7(3):612-618
    [67]孙昌辉,邓晓建,方军,等.高等植物开花诱导研究进展.遗传,2007,29(10):1182-1190
    [68]孙芳,夏新莉,尹伟伦.逆境胁迫下ABA与钙信号转导途径之间的相互调控机制.基因组学与应用生物学,2009,28(2):391-397
    [69]孙洪波,贾贞,韩天富.PEBP家族基因在植物发育调控中的作用.植物生理学通讯,2009,45(8):739-747
    [70]汤承,李士丹.Harpin蛋白的研究进展.草业与畜牧,2006,131(10):1-3
    [71]汤新慧,高静,徐强.线粒体电压依赖性阴离子通道及其调控功能.细胞生物学杂志,2005,27:113-116
    [72]唐慧,陈善娜,鄢波,等.一种cDNA5’末端的克隆方法.云南大学学报,2001,23(3):238-240
    [73]唐利,朱春花,李静,等.Harpin蛋白处理对苹果采后腐烂及品质的影响.安徽农学通报,2011,17(22):20,133
    [74]田路明,黄丛林,张秀海,等.逆境相关植物锌指蛋白的研究进展.生物技术通报,2005,6:12-16
    [75]王海英,孙建设,王旭静,等.果树耐盐性研究进展.河北农业大学学报.2000,23(2):54-57
    [76]王家保,王令霞,杜中军,等.部分杜果品种亲缘关系的ISSR分析.园艺学报,2007,34(1):87-92
    [77]王进,欧毅,武峥.高温胁迫对早熟梨生理效应和早期落叶的影响.西南农业学报,2011,24(2):546-551
    [78]王静毅,王家保,武耀廷,等.广西主要杜果资源遗传关系的SSR分析.热带作物学报,30(9):1301-1307
    [79]王丽娜,刘青林.花序分生组织特性基因TFL1的系统发育及其功能分析.中国生物工程杂志,2008,28(1):106-112
    [80]王丽娜.月季TFL1同源基因的分离与表达分析:学位论文.中国农业大学,2009
    [81]王利琳,梁海曼,庞基良,等.拟南芥LEAFY基因在花发育中的网络调控及其生物学功能.遗传,2004,26(1):137-142
    [82]王琳琳,付建新,戴思兰.新的FLOWERING LOCUS T同源基因:甘菊ClFT基因,分子植物育种(网络版),2011,9:1062-1064
    [83]王令霞,吴志祥,王家保,等.海南主要芒果品种的模糊聚类分析.热带作物学报,2003,24:29-34
    [84]王少丽,盛承发,乔传令.cDNA末端快速扩增技术及其应用.遗传,2004,26(3):419-423
    [85]王新超,梅菊芬,杨亚军.mRNA差异显示技术在植物学领域的应用.浙江农业学报,2008,20(2):144-148
    [86]王燕,刘艳艳,杨永清,等.cDNA末端快速扩增技术研究进展.生命科学研究,2005,9(4):31-36
    [87]吴建明,李杨瑞,王爱勤,等.赤霉素诱导甘蔗节间伸长基因的cDNA-SCoT差异表达分析.作物学报,2010,36(11):1883-1890
    [88]吴强盛,刘琴.果树对盐胁迫的响应和耐盐机制研究进展.长江大学学报(自科版)农学卷,2007,4(4):9-12
    [89]谢江辉,刘成明,马蔚红,等.芒果种质遗传多样性的ISSR分析.果树学报,2005,22(6):649-653
    [90]熊发前,蒋菁,钟瑞春,等.目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用.作物学报,2010,36(12):2055-2061
    [91]熊发前,唐荣华,陈忠良,等.目标起始密码子多态性(SCoT):一种基于翻译起始位点的目的基因标记新技术.分子植物育种,2009,7(3):635-638
    [92]徐雷,贾飞飞,王利琳.拟南芥开花诱导途径分子机制研究进展.西北植物学报,2011,31(5):1057-1065
    [93]杨景华,王士伟,刘训言,等.高等植物功能性分子标记的开发与利用.中国农业科学,2008,41(1]):3429-3436
    [94]晏利波,陈普普,官春云.抑制消减杂交技术在植物基因克隆研究中的应用.作物研究,2008,22(5):295-199
    [95]杨渊,钟才高.电压依赖性阴离子通道在线粒体依赖性细胞凋亡中作用的研究进展.中国药理学与毒理学杂志,2011,25(2):211-215
    [96]姚全胜,雷新涛,黄忠兴,等.芒果人工杂交授粉试验初报.热带农业科学,2009,29:17-19
    [97]叶武威,赵云雷,王俊娟,等.高温胁迫下紫花苜蓿抑制消减文库的构建.棉花学报,2009,21(5):339-345
    [98]于可明,王海山,陈文博,等.小热休克蛋白家族的研究进展.安徽农学通报,12009,15(5):49-51
    [99]余贤美,艾呈祥.杜果野生居群遗传多样性ISSR分析.果树学报,2007,24(3):329-333
    [100]詹妍妮,郁松林,陈培琴.果树水分胁迫反应研究进展.中国农学通报,2006,2(24):238-243
    [101]张冰玉,苏晓华,周祥明.林木花发育的基因调控.植物学通报.2008,25(4):476-482
    [102]张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制.植物学通报.2007,24(1):114-122
    [103]张建业,陈力耕,胡西琴,等.银杏LFY同源基因的分离与克隆.林业科学,2002,38(4):167-170
    [104]张珏,曹茂林,黄玉碧,等.HrpNCSDS001基因克隆及其表达产物诱导拟南芥基因表达谱变化的研究.遗传,2007,29(5):629-636
    [105]张君玉,郭大龙,龚莹,等.葡萄目标起始密码子多态性反应体系的优化.果树学报,2011,28(2):209-214
    [106]张水军,曾千春,卢秀萍,等.植物富含甘氨酸蛋白的研究进展.中国农学通报,2010,26(14):54-58
    [107]张育英,陈三阳.热带亚热带果树分类学.上海:上海科学技术出版社,1992
    [108]赵宏亮,徐碧玉,金志强.脱落酸、胁迫、成熟诱导基因研究进展.生命科学研究,2005,9(4):19-22
    [109]赵利锋,柴团耀.AP2/EREBP转录因子在植物发育和胁迫应答中的作用.植物学通报,2008,25(1):89-101
    [110]郑岑,张立平,唐忠辉,等.TA1L-PCR技术及其在植物基因中的克隆.基因组学与应用生物学,2009,28(3):544-548
    [111]郑善清,段瑞军,郭建春.盐生植物海马齿盐胁迫全长cDNA文库的构建与分析.基因组学与应用生物学,2010,29(1):155-159
    [112]郑小林,田世平,李博强,等.外源草酸延缓采后芒果成熟及其生理基础的研究.中国农业科学,2007,40(8):1767-1773
    [113]郑小林,吴小业.柠檬酸处理对采后芒果保鲜效果的影响.食品科学.2010,31(18):381-384
    [114]郑阳霞,李焕秀,严泽生.RACE技术及其在植物基因研究中的应用.安徽农业科学,2009,36(7):2674-2676
    [115]周博如,王雷,吴丽丽,等.转金属硫蛋白基因(MT1)烟草耐NaCl胁迫能力.生态学报,2010,30(15):4103-4108
    [116]周江菊,夏快飞.植物体内Ca2+信号转导过程的研究进展.广西植物,2005,25(4):386-392
    [117]朱利军,长孙东亭,罗素兰.全长cDNA文库构建方法及应用研究.海南大学学报自然科学版,2009,27(2):185-189
    [118]Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science,2005,309:1052-1056
    [119]Abogadallah G M, Nada R M, Malinowski R, et al. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta,2011,233:1265-1276
    [120]Alvarez J, Guli C L, Yu X H, et al. Terminal flower:a gene affecting inflorescence development in Arabidopsis thaliana. The Plant Journal,1992,2:103-116
    [121]Ambrosone I, Costa A, Leone A, et al. Beyond transcription:RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Science,2012,182:12-18
    [122]An X M, Wang D M, Wang Z L, et al. Isolation of a LEAFY homolog from Populus tomentosa: expression of PtLFY in P.tomentosa floral buds and PtLFY-IR-mediated gene silencing in tobacco (Nicotiana tabacum). Plant Cell Reports,2011.30:89-100
    [123]Argiriou A, Michailidis G and Tsaftaris A S. Characterization and expression analysis of TERMINAL FLOWER 1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors. Journal of Plant Physiology,2008,165:1636-1646
    [124]Baloglu M C, Oz M T, Oktem H A, et al. Expression Analysis of TaNAC69-1 and TtNAMB-2, Wheat NAC Family Transcription Factor Genes Under Abiotic Stress Conditions in Durum Wheat (Triticum turgidum). Plant Molecular Biology Reporter,2012, DOI 10.1007/s11105-012-0445-3
    [125]Blazquez M A, Soowal LN, Lee L, et al. LEAFY expression and flower initiation in Arabidopsis. Development,1997,124:3835-3844
    [126]Bompard J M and Schnell R J. Taxonomy and systematics. In the mango:botany, production and uses. Edited by R.E.Litz. CAB International, Wallingford, UK,1997, pp.21-47
    [127]Borner R, Kampmann G, Chandler J, et al. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant Journal,2000,24:591-599
    [128]Boss P K, Bastow R M, Mylne J S, et al. Multiple pathways in the decision to flower:enabling, promoting, and resetting. The Plant Cell,2004,16:S18-S31
    [129]Bush D S. Calcium regulation in plant cells and its role in signaling, Annual Review of Plant Physiology and Plant Molecular Biology,1995,46:95-122
    [130]Carmona M J, Calonje M, and Martinez-Zapater J M. The FT/TFL1 gene family in grapevine, Plant Molecular Biology,2007,63:637-650
    [131]Carmona M J, Cubas P, Martinez-Zapater J M. VFL, the grapevine FLFORCAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiology,2002, 130:68-77
    [132]Chaboute M E, Combettes C, Clement B, et al. Molecular characterization of tobacco ribonucleotide reductase RNR1 and RNR2 cDNAs and cell cycle regulated expression in synchronized plant cells. Plant Molecular Biology,1998,38:797-806
    [133]Chang L L, Wu L C, Chen Y H, et al. Expression and functional analysis of the ZCN1 (ZmTFLl) gene, a TERMINAL FLOWER 1 homologue that regulates the vegetative to reproductive transition in maize. Plant Molecular Biology Reporter,2012,30:55-66
    [134]Chardon F and Damerval C. Phylogenomic analysis of the PEBP gene family in cereals. Journal of Molecular Evolution,2005,61:579-590
    [135]Chen J Y, Liu D J, Jiang Y M, et al. Molecular characterization of a strawberry FaASR gene in relation to fruit ripening. Plos One,2011,6(9):1-14
    [136]Cheng X F and Wang Z Y. Overexpression of COL9, a CONSTANS-UKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana, The Plant Journal,2005, 43:758-768
    [137]Coen E S, Romero J M, Doyle S, et al. Floricaula:a homeotic gene required for flower development in Antirrhinum majus. Cell.1990,63:1311-1322
    [138]Collard B C Y and Mackill D J. Start codon targeted (SCoT) polymorphism:a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 2009,27:86-93
    [139]Corbesier L, Vincent C, Jang S, et al. FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science,2007,316:1030-1033
    [140]Crane O, Halaly T, Pang X Q, et al. Cytokinin-induced VvTFLIA expression may be involved in the control of grapevine fruitfulness. Planta,2012,235:181-192
    [141]Dai X Y, Xu Y Y, Ma Q B. et al. Overexpression of an R1R2R3 MYB Gene, OsMKB3R-2,Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis. Plant Physiology,2007,143; 1739-1751
    [142]Danilevskaya O N, Meng X, Hou Z L, et al. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol,2008,146:250-264
    [143]Datta S, Hettiarachch G H C M, Deng XW, et al. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. The Plant Cell,2006,18:70-84
    [144]Desai M K, Mishra R N, Verma D, et al. Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiology and Biochemistry,2006,44:483-493
    [145]Dietz K J, Vogel M O and "Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma,2010,245:3-14
    [146]Dong H, Delaney T P, Bauer D W, et al. Harpin induces disease resistance in Arabidospsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIMI gene. The Plant Journal,1999,20:207-215
    [147]Dong H P, Peng J, Bao Z, et al. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology,2004,136:3628-3638
    [148]Dong H P, Yu H, Bao Z, et al. The AB12-dependent abscissic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta,2005,221:313-327
    [149]Dubos C, Provost G, Pot D, et al. Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiology,2003, 23:169-179
    [150]Eiadthong W, Yonemori K, Sugiura A, et al. Identification of mango cultivars of Thailand and evaluation of their genetic variation using the amplified fragments by simple sequence repeat-(SSR-) anchored primers. Scientia Horticulturae,1999,82:57-66
    [151]Endo T, Shimada T, Fujii H, et al. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange(Poncirus trifoliata L. Raf.). Transgenic Research, 2005,14:703-712
    [152]Esumi T, Kitamura Y, Hagihara C, et al. Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Scientia Horticulturae,2010,125:608-616
    [153]Flachowsky H, Hattasch C, Hofer M, et al. Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta,2010,231(2):251-263
    [154]Freiman A, Shlizerman L, Golobovitch S, et al. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta,2012, DOI:10.1007/s00425-011-1571-0
    [155]Gao H S, Song A P, Zhu X R, et al. The heterologous expression in Arabidopsis of a chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Planta, 2012,DOI:10.1007/s00425-011-1558-x
    [156]Gimeno J, Gadea J, Forment J, et al. Shared and novel molecular responses of mandarin to drought. Plant Molecular Biology,2009,70:403-420
    [157]Gothandam K M, Nalini E, Karthikeyan S, et al. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Molecular Biology,2010,72:125-135
    [158]Gower J C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika,1966,53:325-338
    [159]Gu L L, Xu D S, You T Y, et al. Analysis of gene expression by ESTs from suppression subtractive hybridization library in Chenopodium album L. under salt stress. Molecular Biology Reports,2011, 38:5285-5295
    [160]Guo J L, Yu C L, Fan C Y, et al. Cloning and Characterization of a potato TFL1 gene involved in tuberization regulation. Plant Cell, Tissue and Organ Culture,2010,103:103-109
    [161]Guo Z J, Chen X J, Wu X L, et al. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Molecular Biology,2004,55: 607-618
    [162]Hafez, O M, Saleh M A, Ellil A, et al. Impact of ascorbic acid in salt tolerant of some mango rootstock seedlings. Journal of Applied Sciences Research,2011,7(11):1492-1500
    [163]Haluskova L, Valentovicova K, Huttova J, et al. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiology and Biochemistry,2009,47:1069-1074
    [164]Hanano S and Goto K. Arabidopsis TERMINAL FLOWER 1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell, 2011,23:3172-3184
    [165]Hashimoto M and Komatsu S. Proteomic analysis of rice seedlings during cold stress. Proteomics, 2007,7:1293-1302
    [166]HassidimM, HarirY, Yakir E, et al. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta,2009,230:481-491
    [167]Hattasch C, Flachowsky H, Kapturska D. Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple(Malus xdomestica). Tree Physiology,2008,28,1459-1466
    [168]Hayama R and Coupland G. The Molecular Basis of diversity in the photoperiodic flowering responses of Arabidopsis and Rice. Plant Physiology,2004,135:677-684
    [169]He C Y, Zhang J S and Chen S Y. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theoretical and Applied Genetics,2002,104:1125-1131
    [170]He S Y, Huang H C and Collmer A. Pseudomonas syringae pv. syringae harpinPss:A protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell,1993, 73,1255-1266
    [171]He X H, Guo Y Z, Li Y R, et al. Assessment of the genetic relationship and diversity of mango and its relatives by cplSSR marker. Agricultural Sciences in China,2007a,6:137-142
    [172]He X H, Li Y R, Guo Y Z, et al. Identification of closely related mango cultivars by ISSR. Guihaia, 2007b,27:44-47
    [173]He X H, Li Y R, Guo Y Z, et al. Genetic analysis of 23 mango cultivar collection in Guangxi province revealed by ISSR. Molecular Plant Breeding,2005,3:829-834
    [174]Hegedus D, Yu M, Baldwin D, et al. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology, 2003,53:383-397
    [175]Hepworth S R, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motif. The EMBO Journal,2002,20: 4327-4337
    [176]Hirano R, Htun O T and Watanabe K N. Myanmar mango landraces reveal genetic uniqueness over common cultivars from Florida, India, and Southeast Asia Genome,2010,53:321-330
    [177]Hoenicka, H., Fladung, M. Faster evaluation of sterility strategies in transgenic early flowering poplar. Silvae Genetica,2006,55:241-292
    [178]Holefors A, Opseth L, Rosnes A K R, et al. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiology and Biochemistry,2009,47:105-115
    [179]Honsho C, Nishiyama K, Eiadthong W, et al. Isolation and characterization of new microsatellite markers in mango (Mangifera indica L.). Molecular Ecology Notes,2005,5:152-154
    [180]Hoth S, Morgante M, Sanchez J P, et al. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abil-1 mutant. Journal of Cell Science,2005,115:4891-4900
    [181]Hou C J and Yang C H. Functional analysis of FT and TFL1 orthologs from orchid (oncidium gower ramsey) that regulate the vegetative to reproductive transition, Plant Cell Physiology,2009, 50(8):1544-1557
    [182]Hsu Y F, Yu S C, Yang C Y, et al. Lily ASR protein-conferred cold and freezing resistance in Arabidopsis. Plant Physiology and Biochemistry,2011,9:937-945
    [183]Huang G Q, Gong S Y, Xu W L, et al. GhHyPRP4, a cotton gene encoding putative hybrid proline-rich protein, is preferentially expressed in leaves and involved in plant response to cold stress. Acta Biochimica et Biophysica Sinica,2011,43:519-527
    [184]Huang J, Yang X, Wang M M, A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochimica et Biophysica Acta,2007, 1769:220-227
    [185]Huang T, Bohlenius H, Eriksson S, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science,2005,309:1694-1696
    [186]Igasaki T, Watanabe Y, Nishiguchi M, et al. The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in lombardy poplar. Plant Cell Physiology,2008,49(3):291-300
    [187]Iqbal Z, Rahman M, Dasti A A, et al. RAPD analysis of Fusarium isolates causing mango malformation disease in Pakistan. World Journal of Microbiology and Biotechnology,2006, 22:1161-1167
    [188]Jaeger K and Wigge P A. FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology,2007,17:1050-1054
    [189]Jayaraman A, Puranik S, Rai N K, et al. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Molecular Biotechnology,2008, 40:241-251
    [190]Jeong D H, Sung S K and An G. Molecular Cloning and Characterization of CONSTANS-Like cDNA Clones of the Fuji Apple. Journal of Plant Biology,1999,42(1):23-31
    [191]Jiang Y Q, Yang B, Harris N S, et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany,2007,58(13):3591-3607
    [192]Joshi C P, Zhou H, Huang X, et al. Context sequences of translation initiation codon in plants. Plant Molecular Biology,1997,35:993-1001
    [193]Jung C and Muller. Flowering time control and applications in plant breeding. Trends in Plant Science,2009,14(10):563-573
    [194]Jung J H, Ju Y, Seo P J, et al. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal,2012,69:577-588
    [195]Kang J M, Xie W W, Sun Y, et al. Identification of genes induced by salt stress from Medicago truncatula L. seedlings. African Journal of Biotechnology,2010,9(45):7589-7594
    [196]Kardailsky I, Shukla V K, Ahn J, et al. Activation tagging of the floral inducer FT. Science,1999, 286:1962-1965
    [197]Karihaloo J L Dwivedi Y K, Archak S, et al. Analysis of genetic diversity of Indian mango cultivars using RAPD markers. The Journal of Horticultural Science and Biotechnology.2003, 78:285-289
    [198]Karlgren A, Gyllenstrand N, Kallman T, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiology,2011,156:1967-1977
    [199]Kashkush K, Fang J G, Tomer E, et al. Cultivar identification and genetic map of mango (Mangifera indica L). Euphytica,2001,122:129-136
    [200]Kikuchi R, Kawahigashi H, Ando T, et al. Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiology,2009, 149:1341-1353
    [201]Kim I S, Kim Y S and Yoon H S. Rice ASR1 Protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in saccharomyces cerevisiae. Molecules and Cells,2012, DOI:10.1007/s10059-012-2253-x
    [202]Kim J S, Jung H J, Lee H J, et al. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal, 2008,55:455-466
    [203]Kim J F and Beer S V. hrp genes and harpins of Erwinia amylovora:a decade of discovery, in: Vanneste JL ed. Fire Blight. CAB International, Oxon, UL,2000, pp.141-161
    [204]Kotoda N, Iwanami H, Takahashi S, et al. Antisense expression og MdTFLl, a TFLl-like gene, reduces the juvenile phase in apple. Journal of the American Society for Horticultural Science, 2006,131(1):74-81
    [205]Kotoda N, Hayashi H, Suzuki M, et al. Molecular characterization of FLOWERING LOCUS T-Like genes of apple(Malus×domestica Borkh.). Plant Cell Physiology,2010,51(4):561-575
    [206]Kotoda N and Wada M. MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Science,2005,168(1):95-104
    [207]Kusano T, Tateda C, Berberich T, et al. Voltage-dependent anion channels:their roles in plant defense and cell death. Plant Cell Reports,2009,28:1301-1308
    [208]Kwak K J, Park S J, Han J H, et al. Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. Journal of Experimental Botany,2011,62(11):4003-4011
    [209]Lagercrantz U and Axelsson T. Rapid evolution of the family of CONSTANS LIKE genes in plants. molecular biology and evolution,2000,17(10):1499-1507
    [210]Lander E S. The new genomics:global views of biology. Science,1996,274:536-539
    [211]Ledger S, Strayer C, Ashton F, et al. Analysis of the function of two circadian-regulated CONSTANS-L1KE genes. The Plant Journal,2001,26(1):15-22
    [212]Lee H, Suh S, Park E, et al. The AGAMOUS-LIKE20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Development,2000,14:2366-2376
    [213]Lee J and Lee I. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany,2010,61(9):2247-2254
    [214]Lee J, Oh M, Park H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. The Plant Journal,2008,55:832-843
    [215]Lee S M, Hoang M H, Han H J, et al. Pathogen inducible Voltage-Dependent Anion Channel (AtVDAC) isoforms are localized to mitochondria membrane in Arabidopsis. Molecules and Cells, 2009,27:321-327
    [216]Lee H, Suh S, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development,2000,14:2366-2376
    [217]Li G and Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics,2001,103:455-461
    [218]Li D, Liu C, Shen L, et al. A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell,2008,15:110-120
    [219]Lifschitz E and Eshed Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato, Journal of Experimental Botany,2006, 57(13):3405-3414
    [220]Liljegren S J, Gustafson-Brown C, Pinyopich A, et al. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER 1 specify meristem fate. The Plant Cell,1999,11:1007-1018
    [221]Liu C, Chen H Y, Er H L, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development,2008,135:1481-1491
    [222]Liu H Y, Dai J R, Feng D R, et al. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. Journal of Integrative Plant Biology,2010,52 (3):315-323
    [223]Lopez V J A, Martinez O and Paredes L O. Geographic differentiation and embryo type identification in Mangifera indica L. cultivars using RAPD markers. Horticultural Science,1997, 32(6):1105-1108
    [224]Liu K M, Wang L, Xu Y Y, et al. Overexpression of OsCOIN, a putative cold inducible zinc Wnger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta,2007,226:1007-1016
    [225]Lu X, Lin X Y, Shen Q, et al. Characterization of the jasmonate biosynthetic gene allene oxide cyclase in Artemisia annua L., source of the antimalarial drug artemisinin. Plant Molecular Biology Reporter,2011,29:489-497
    [226]Lu X, Zhang F Y, Jiang W M, et al. Characterization of the first specific jasmonate biosynthetic pathway gene allene oxide synthase from Artemisia annua. Molecular Biology Reports,2012, 39:2267-2274
    [227]Luo X, Bai X, Zhu D, et al. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta,2012, DOI:10.1007/s00425-011-1563-0
    [228]Ma G Y, Ning G G, Zhang W, et al. Overexpression of Petunia SCC1-like gene FBP21 in tobacco promotes flowering without decreasing flower or fruit quantity. Plant Molecular Biology Reporter, 2011,29:573-581
    [229]Ma Y P, Fang X H, Chen F, et al. DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues. Plant Cell Reports,2008,27:647-654
    [230]Macknight R, Duroux M, Laurie R, et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. The Plant Cell,2002,14:877-888
    [231]Marcela D M, Ingrid S G, Manuel R G, et al. Analysis of diversity among six populations of Colombian mango(Mangifera indica L. cvar. Hilacha) using RAPDs markers. Electronic Journal of Biotechnology,2009,12:1-8
    [232]Miao W G, Wang X B, Li M, et al. Research article Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biology,2010,10:67
    [233]Michaels S D and Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell,1999,11:949-956
    [234]Milla M A R, Maurer A, Huete A R, et al. Glutathione peroxidase genes in Arabidpisis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant Journal, 2003,36:602-615
    [235]Miller T A, Muslin E H and Dorweiler J E. A maize CONSTANS-Like gene, conzl, exhibits distinct diurnal expression patterns in varied photoperiods, Planta,2008,227:1377-1388
    [236]Mimida N, Ureshino A, Tanaka N, et al. Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus×domestica Borkh.) revealed by in situ hybridization. Plant Cell Reports,2011,30:1485-1492
    [237]Mimida N, Kidou S I, Iwanami H, et al. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiology,2011, 31:555-566
    [238]Mimida M, Kotoda N, Ueda T, et al. Four TFL1/CEN-Like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malusxdomestica Borkh.). Plant and Cell Physiology,2009,50(2):394-412
    [239]Mimida N, Goto K, Kobayashi Y, et al. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes to Cells,2001,6(4): 327-336
    [240]Mimida N, Kidou S I, Iwanami H, et al. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiology,2011, 31,555-566
    [241]Mizoi J, Shinozaki K and Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta,2012,1819(2):86-96
    [242]Moon J, Lee H, Kim M, et al. Analysis of flowering pathway intergrators in Arabidpsis. Plant Cell Physiology,2005,46(2):292-299
    [243]Moon J, Suh S S, Lee H, et al. The SOCI MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal,2003,35:613-623
    [244]Mukherjee S K. Origin, distribution and phylogenetic affinities of the species of Mangifera L. Journal of the Linnean Society of Botany,1953,55:65-83
    [245]Mutasa-Gottgens E and Hedden P. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany.2009,60:1979-1989
    [246]Nakano Y, Kawashima H, Kinoshita T, et al. Characterization of FLC, SOCI and ET homologs in Eustoma grandiflorum:effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiologia Plantarum,2011,141:383-393
    [247]Nakatsuka T, Abe Y, Kakizaki Y, et al. Over-expression of Arabidops is FT gene reduces juvenile phase and induces early flowering in ornamental gentian plants. Euphytica,2009,168:113-119
    [248]Narusaka Y, Nakashima K, Shinwari Z K, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal,2003,34:137-148
    [249]Nogueira F T S, Schlogl P S, Camargo S R, et al. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Science,2005, 169:93-106
    [250]Nishikawa F, Endo T, Shimada T, et al. Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc). Journal of Experimental Botany, Journal of Experimental Botany,2007,58(14):3915-3927
    [251]Nishikawa F, Endo T, Shimada T, et al. Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiology,2009, 29:921-926
    [252]Nishikawa F, Iwasaki M, Fukamachi H, et al. Fruit bearing suppresses citrus FLOWERING LOCUS T expression in vegetative shoots of Satsuma Mandarin (Citrus unshiu Marc.). Journal of the Japanese Society for Horticultural Science,2012,81(1):48-53
    [253]Notaguchi M, Abe M, Kimura T, et al. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering. Plant Cell Physiology,2008,49(11): 1645-1658
    [254]Onouchi H and Igeno M I. Mutagenes is of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. The Plant Cell,2000,12.885-900
    [255]Pandit S S, Mitra S, Giri A P, et al. Genetic diversity of mango cultivars using inter simple sequence repeat markers. Current Science,2007,93:135-1141
    [256]Pena L, Martin-Trillo M, Juarez J, et al. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology,2001,19:263-267
    [257]Peng J, Dong H, Dong HP, et al. Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiological and Molecular Plant Pathology,2003, 62:317-26
    [258]Peng L X, Gu L K, Zheng C C, et al. Expression of MaMAPK gene in seedlings of Malus L. under water stress. Acta Biochimica et Biophysica Sinica,2006,38(4):281-286
    [259]Pillitteri L J, Lovatt C J and Walling L L. Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in Citrus. Plant Physiology,2004, 135:1540-1551
    [260]Pla M, Vilardell J, Guiltinan M J, et al. The ris-regulatory element CCACG1TGG is involved in ABA and water-stress responses of the maize gene rub28. Plant Molecular Biology,1993,259-266
    [261]Poovarodom S, Haruenkit R, Vearasilp S, et al. Comparative characterization of durian, mango and avocado. Food Science and Technology,2010,45:921-929
    [262]Puranik S, Bahadur R P, Srivastava P S, et al. Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. Molecular Biotechnology,2011,49:138-150
    [263]Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showering similarities to zinc finger transcription factors. Cell,1995,80: 847-857
    [264]Rodriguez-Gamir J, Ancillo G, Aparicio F, et al. Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots. Plant Soil,2011,347:91-104
    [265]Qu C Q, Xu Z R, Liu G J, et al. Differential expression of copper-zinc superoxide dismutase gene of polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress. International Journal of Molecular Sciences,2010,11:5234-5245
    [266]Rahman M L, Rabbani M G, Siddique M N A, et al. Molecular characterization of 28 mango germplasm using RAPD. Plant Tissue Culture and Biotechnology,2007,17(1):71-77
    [267]Rajwana I A, Tabassam N, Malik A U, et al. Assessment of genetic diversity among mango (Mangifera indica L.) genotypes using RAPD markers. Scientia Horticulturae,2008,117:297-301
    [268]Ratcliffe O J, Bradley D J and Coen E S. Separation of shoot and floral meristem identity in Arabidopsis. Development,1999,126:1109-1120
    [269]Ravishankar K V, Chandrashekara P, Sreedhara S A, et al. Diverse genetic bases of Indian polyembryonic and monoembryonic mango(Mangifera indica L) cultivars. Current Science,2004, 87(7):870-871
    [270]Ritter E, Ruiz D G J I, Van E H J, et al. Construction of a potato transcriptome map based on the cDNA-AFLP technique. Theoretical and Applied Genetics,2008,116:1003-1013
    [271]Robson F, Costa M M R, Hepworth S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal,2001,28(6):619-631
    [272]Rottmann W H, Meilan R, Sheppard L A, et al. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal,2000,22(3):235-345
    [273]Samach A, Onouchi H, Gold S, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science,2000,288:1613-1617
    [274]Sato H, Heang H, Sassa D, et al. Identification and characterization of FT/TFLI gene family in cucumber. Breeding Science,2009,59:3-11
    [275]Sawant S V, Singh P K, Gupta S K, et al. Conserved nucleotide sequences in highly expressed genes in plants. Journal of Genetics,1999,78:123-131
    [276]Schmutz U and Ludders P. Effect of NaCl salinity on growth, leaf gas exchange, and mineral composition of grafted mango rootstocks (var.'13-1'and'Turpentine'). Gartenbauwissenschaft, 1999,64(2):60-64
    [277]Schnell R J, Brown J S, Olano C T, et al. Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. Journal of the American Society for Horticultural Science,2006,131:1-11
    [278]Schnell R J, Ronning C M and Knight R J J. Identification of cultivars and validation of genetic relationships in Mangifera indica L. using RAPD markers. Theoretical and Applied Genetics,1995, 90:269-274
    [279]Schnell R J, Olano C T, Quintanilla W E, et al. Isolation and characterization of 15 microsatellite loci from mango(Mangifera indica L.) and cross-species amplification in closely related taxa. Molecular Ecology Resources,2005,5:625-627
    [280]Searle I, He Y H, Turck F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Development,2006,20:898-912
    [281]Seo E, Lee H, Jeon J, et al. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. The Plant Cell,2009,21:3185-3197
    [282]Shannon S and Meeks-Wagner O R. A Mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. The Plant Cell,1991,3:877-892
    [283]Shao M, Wang J S, Dean R A, et al. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnology Journal.2008,6:73-81
    [284]Shen L L, Chen Y, Su X H, et al. Two FT orthologs from Populus simonii Carriere induce early flowering in Arabidopsis and poplar trees. Plant Cell, Tissue Organ Culture,2012,108:371-379
    [285]Shiokawa T, Yamada S, Futamura N, et al. Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Physiology,2008, 28:21-28
    [286]Shitsukawa N, Ikari C, Mitsuya T, et al. Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiologia Plantarum, 2007,130:627-636
    [287]Shoshan-Barmatz V, Pinto V D, Zweckstetter M, et al. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular Aspects of Medicine,2010,31:227-285
    [288]Simon R, Igeno M I and Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature,1996,384:59-62
    [289]Simpson G G. The autonomous pathway:epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology,2004,7:570-574
    [290]Song J C, Clemens J and Jameson P E. Quantitative expression analysis of the ABC genes in Sophora tetraptera, a woody legume with an unusual sequence of floral organ development. Journal of Experimental Botany,2008,59(2):247-259
    [291]Southerton S G, Strauss S H, Olive M R, et al. Eucalytus has a functional equivalent of the Arabidopsis floral meristem identify gene LFY. Plant Molecular Biology,1998,37(6):897-910
    [292]Spreer W, Ongprasert S, Hegele M, et al. Yield and fruit development in mango(Mangifera indica L. cv. Chok Anan) under different irrigation regimes. Agricultural Water Management,2009, 96:574-584
    [293]Sreekantan L and Thomas M R. VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Functional Plant Biology,2006,33:1129-1139
    [294]Suarez-Lopez P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature,2001,410:1116-1120
    [295]Sumitomo K, Li T P and Hisamatsu T. Gibberellin promotes flowering of chrysanthemum by upregulating CmFL, a chrysanthemum FLORICAULA/LEAFY homologous gene. Plant Science, 2009,176:643-649
    [296]Sun H, Jia Z, Cao D, et al. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS ONE,2011,6(12):1-12
    [297]Tahery Y, Abdullah M P, Norlia B, et al. Terminal Flower 1 (TFL1) homolog genes in dicot plants. World Applied Sciences Journal,2011,12(4):545-551
    [298]Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell,2005,17:3311-3325
    [299]Takase T, Kakikubo Y, Nakasone A, et al. Characterization and transgenic study of CONSTANS-LIKE8 (COL8) gene in Arabidopsis thaliana:expression of 35S:COL8 delays flowering under long-day conditions. Plant Biotechnology,2011,28:439-446
    [300]Tan F C and Swain S M. Functional characterization of AP3, SOC1 and WUS homologues from citrus(Citrus sinensis). Physiologia Plantarum,2007,131:481-495
    [301]Tao Z, Shen L, Liu C, et al. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. The Plant Journal,2012, DOI:10.1111/j.1365-313X.2012.04919.x
    [302]Tezcan H, Akbudak N and Akbudak B. The effect of harpin on shelf life of peppers inoculated with Botrytis cinerea. Journal of Food Science and Technology,2011, DOI:10.1007/s13197-011-0432-y
    [303]Trankner C, Lehmann S, Hoenicka H, et al. Over-expression of an FT homologous gene of apple induces early flowering in annual and perennial plants. Planta,2010,232:1309-1324
    [304]Tu T Y, Dillon M O, Sun H, et al. Phylogeny of Nolana (Solanaceae) of the Atacama and Peruvian deserts inferred from sequences of four plastid markers and the nuclear LEAFY second intron. Molecular Phylogenetics and Evolution,2008,49:561-573
    [305]Turck F, Fornara F and Coupland G. Regulation and identity of florigen:FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology,2008,59:573-594
    [306]Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science,2004,303:1003-1006
    [307]Viruel M A, Escribano P, Barbieri M, et al.2005. Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L) with microsatellites. Molecular Breeding.15, 383-393
    [308]Wada M, Cao QF, Kotoda N, et al. Apple has two orthologues of FLORICAULA/LEAFY genes involved in flowering. Plant Molecular Biology,2002,49:567-577
    [309]Wan C Y and Wilkins T A. A modified hot borate method significantly enhances the yield of high guality RNA from cotton (gossypium hirsutum L.). Andlytical Biochemistry,1994,223:7-11
    [310]Wang L N, Liu Y F, Zhang Y M, et al. The expression level of Rosa Terminal Flower 1 (RTFL1) is related with recurrent flowering in roses. Molecular Biology Reports,2012, DOI:10.1007/ S11033-011-1149-8
    [311]Wang Z J, Huang J Q, Huang Y J, et al. Cloning and characterization of a homologue of the FLORICAUL4/LEAFY gene in gickory (Carya cathayensis Sarg). Plant Molecular Biology Reporter, DOI:10.1007/s11105-011-0389-z
    [312]Watson J M and Brill E M. Eucalyptus grandis has at least two functional SOCl-like floral activator genes. Functional Plant Biology,2004,31:225-234
    [313]Wei Z M and Beer S V. Harpin from Erwinia Amylovora induces plant resistance. Acta Horticulture,1996,411:223-225
    [314]Wei Z M, Laby R J, Zumoff C H, et al. Harpin, elicitor of the hyper-sensitive response produced by the plant pathogen Erwinia amylovora. Science,1992,257:85-88
    [315]Weigel D, Alvarez J, Smyth D R, et al. LEAFY controls floral meristem identity in Arabidopsis. Cell,1992,69:843-859
    [316]Wisniewski M, Bassett C, Norelli J, et al. Expressed sequence tag analysis of the response of apple(Malus x domestica'Royal Gala') to low temperature and water deficit. Physiologia Plantarum,2008,133:298-317
    [317]Wu Q, Wu J J, Sun H J, et al. Sequence and expression divergence of the AOC gene family in soybean:insights into functional diversity for stress responses. Biotechnology Letters,2011, 33:1351-1359
    [318]Xiong F Q, Zhong R C, Han Z Q, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reports,2011,38:3487-3494
    [319]Yamagishi N, Sasaki S, Yamagata K, et al. Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Molecular Biology,2011,75:193-204
    [320]Yamaguchi A, Kobayashi Y, Goto K, et al. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant and Cell Physiology,2005,46(8):1175-1189
    [321]Yamanaka N, Hasran M, Xu D H, et al. Genetic relationship and diversity of four Mangifera species revealed through AFLP analysis. Genetic Resources and Crop Evolution,2006,53: 949-954
    [322]Yan J P, He H, Tong S B, et al. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in ABA-Mediated early seedling. International Journal of Molecular Sciences,2009,10:2476-2486
    [323]Yan S P, Tang Z C, Su W A, et al. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics,2005,5:235-244
    [324]Yang Y Y, Yao A Y, Wang J L, et al. The effect of sucrose on the expression of the VvTFLl and VFL genes during flower development in the "Xiangfei" grapevine. Scientia Horticulturae,2011, 129:299-305
    [325]Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000,12:2473-2483
    [326]Yoo S K, Chung K S, Kim K, et al. CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology,2005,139:770-778
    [327]Yuceer C, Harkess R L, Land S B, et al. Structure and developmental regulation of CONSTANS-LIKE genes isolated from Populus deltoides. Plant Science,2002,163:615-625
    [328]Zeba N, Ashrafuzzaman M and Hong C B. Molecular characterization of the Capsicum annuum RING zinc finger protein 1 (CaRZFP) gene induced by abietic stresses. Journal of Plant Biology,2006,49(6):484-490
    [329]Zeevaart J A. Leaf-produced floral signals. Current Opinion in Plant Biology,2008,11:541-547
    [330]Zhang C L, Qian J, Bao Z L, et al. The induction of abscisic-acid-mediated drought tolerance is independent of ethylene signaling in Arabidopsis plants responding to a Harpin protein. Plant Molecular Biology Reporter,2007,25:98-114
    [331]Zhang H L, Harry D E, Ma C, et al. Precocious flowering in trees:the FLOWERING LOCUS T gene as a research and breeding tool in Populus. Journal of Experimental Botany,2010, 61(10):2549-2560
    [332]Zhang J X, Wu K L, Tian L N, et al. Cloning and characterization of a novel CONSTANS-like gene from Phalaenopsis hybrida. Acta Physiologiae Plantarum,2011,33:409-417
    [333]Zhang L, Xiao S S, Li W Q, et al. Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. Journal of Experimental Botany,2011. DOI:10.1093/jxb/err131
    [334]Zhang L C, Zhao G Y, Jia J Z, et al. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. Journal of Experimental Botany,2012, 63(1):203-214
    [335]Zhang M H, Li G, Huang W, et al. Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics,2010,10:3117-3129
    [336]Zhang M Z, Ye D, Wang L L, et al. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosd). Plant Molecular Biology,2008,67:419-427
    [337]Zheng X Y, Hu C Y, Spooner D, et al. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae). BMC Evolutionary Biology,2011,11:255
    [338]Zhong X F, Dai X, Xv J H, et al. Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean. Molecular Biology Reports,2012, DOI:10.1007/s11033-012-1524-0
    [339]Zhu Q, Zhang J T, Gao X S, et al. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene,2010,457:1-12
    [340]Zuazo V H D, Raya A M and Ruiz J A. Impact of salinity on the fruit yield of mango (Mangifera indica L. cv.'Osteen')-European Journal of Agronomy,2004,21:323-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700