用户名: 密码: 验证码:
冬季大风事件下渤黄海环流及泥沙输运过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冬季大风降温过程是渤黄海冬季常见而重要的天气现象,其对环流发展、泥沙输运有重要的影响。然而目前却鲜有在高时空分辨率的海表面风场、热通量场及波浪场作用下,对渤黄海环流和泥沙输运过程对大风降温事件响应的研究。论文以ECOMSED数值模型为基础,耦合SWAN浅海浪模式,以数值模拟为手段,采用6小时一次ERA40风场及海表热通量数据,对1999年~2000年冬季12月19日~21日的一次大风降温事件对渤黄海环流和泥沙输运过程的影响进行数值模拟。在这种高频、灾害性天气条件下,辽东湾及北黄海水位较冬季平均风时要降低超过50cm,北黄海水位降低的最大幅度达1m,在Ekman输运作用下,中国苏北沿岸出现水位的堆积;剧烈海表降温使得渤海以及黄海的大部分海域温度降低2~4oC,而在黄海东南海域温度有上升趋势,而底层升温区域甚至一直向西北扩展至山东半岛的东南,温度升高近1oC,升温范围与黄海暖流路径相一致,此现象预示了随风力加强的黄海暖流的热平流作用;大风事件的海底淤积结果可以用来解释山东半岛东南海域的淤积带:大风事件使得山东半岛东北部泥沙被再悬浮并受鲁北沿岸流的输送南移,并在山东半岛东南海域岬角环流的弱流区沉积,一次大风事件可导致山东半岛东南海域中心厚度0.5cm的带状淤积泥沙;并且一次大风事件可使得从渤海海峡向黄海和从北黄海向南黄海的净泥沙通量增大为平均风时的3~4倍。
     大风事件中,水位及流场的变化表现出分别滞后于最大风力0.5天和1天的位相差,南、北黄海的3个站位的流场观测结果,亦显示流速(尤其是黄海暖流)峰值与风力峰值有12~48小时的位相差,悬浮泥沙更是在风力减弱后数天才得以沉积。风驱动环流数值试验表明,冬季偏北风作用下水位的调整,是大风事件中黄海暖流的增强滞后于风力最大值的原因,正压梯度力控制下的逆风北向流流速极值要待风力松弛后滞后于风力极值约1天。除了极值出现时间的位相差,在风场建立和消失时,海面的调整和消失亦分别需要10天和20天的时间,加之黄海暖流微弱的北向流速,是海表温度数据显示的季节变化中黄海暖舌滞后于偏北风一个月的原因;另外,科氏力和底地形对黄海暖流的西偏起决定性作用。
     黄海暖流和海表热通量在冬季渤黄海热收支问题上的不同作用,一直存有争议。利用气候态卫星海表温度数据计算渤、黄海冬季热含量变化率,结果为-106 Wm-2,而NOC1.1a、ERA40、OAFlux+ISCCP和NCEPR四种海表热通量数据显示,冬季气候态渤黄海海域平均海表净热通量为-150 Wm-2,这就意味着海表热通量在渤黄海冬季热含量变化中起主要作用,而超过29%的正的热含量变化,则主要是黄海暖流热平流的作用。1999-2000年冬季一次大风事件,使得渤黄海海域平均热含量变化为-241Wm-2,海表净热通量作用为-281Wm-2,因此黄海暖流的热平流输送在此次大风事件中可超过40 Wm-2,是正常天气条件下的2倍。
     潮动力学对泥沙的再悬浮、输移等有重要的作用,同时,高浓度的泥沙又会使得底边界层层化,弱化底应力而反过来影响潮动力学,后者往往是研究者所忽略的。因为论文以黄河口潮动力过程生成的黄河口切变锋出发,讨论了切变锋的生成机制和对河口泥沙分布的影响。黄河口切变锋是以潮流流向相反或者流速显著不同而形成的切变带,黄河口外陡坡地形上的最大潮流等时线存在最大梯度,且潮流椭圆主轴与最大潮流等时线平行分布,是其主要生成机制;底摩擦、径流只能改变切变锋的强度,岸线变化对切变锋影响不大。黄河口外的高泥沙浓度主要是再悬浮产生,而与切变锋的作用关系不大。再谈回潮流作用下的渤、黄海泥沙分布,在苏北浅滩、朝鲜沿岸以及渤海海峡、辽东湾存在的较大泥沙浓度,亦主要是泥沙再悬浮产生;在这些悬沙高浓度区,会导致底边界层的层化,减弱底应力,抑制泥沙再悬浮,在泥沙浓度高的苏北浅滩、北黄海朝鲜沿岸,潮汐振幅和迟角被明显增大。
     总体来看,论文讨论了大风降温事件对水位、流场及泥沙输运过程的影响,从动力学上解释了山东半岛东南海域带状淤积区的形成,并初步分析了黄海暖流在短时间尺度和季节变化上与冬季风的位相差以及西偏于黄海深槽的原因;结合卫星资料和数值模式结果,对冬季平均及大风降温事件下的渤黄海冬季热收支进行了分析,给出海表热通量和黄海暖流所起的不同作用;论文从河口潮动力学与泥沙分布关系出发,首次给出黄河口切变锋的生成机制,并探讨了切变锋对黄河口泥沙分布的影响,在此基础上,进一步讨论了渤、黄海潮动力学与泥沙分布的相互关系,并给出泥沙浓度对潮动力学的反作用。
The winter storm event, a familiar synoptic phenomenon in winter of the Bohai Sea and Yellow Sea, has the important effect on the circulation and sediment transport. However, few works has been carried on this subject by high resolution wind stress, heat flux and wave. Thus in this study, a 3-D numerical model, ECOMSED, coupled with shallow sea wave model, SWAN was used to study the effect of winter storm event on the circulation and sediment transport, taking the event on 19 to 21 December in the winter of 1999~2000 as an example. The model was driven by 6-h wind stress and surface heat flux in the Bohai Sea and Yellow Sea. Due to the Ekman transport, water was accumulated along the Subei and water level decreased over 50 cm to 100 cm in the Liaodong Bay and north Yellow Sea. Almost all the area the water temperature decreased 2 to 4oC, while the water temperature in the southeastern Yellow Sea increased 1oC at the bottom which indicated the effect of heat advection due to the strengthen Yellow Sea Warm Current. The mud ridge to the southeast of Shandong Peninsula can be described as result of winter storm event. High concentration sediment was transported from the northeast of the Shandong Peninsula to the southeast and deposited in the area of weak circulation. 0.5cm mud accumulation can be found to the southeast of Shandong Peninsula due to one storm event. And the net sediment flux is 3 and 4 times more than the effect of climitological wind, respectively from the Bohai Strait to Yellow Sea and from north Yellow Sea to the south.
     During the winter storm event, the phase of water level and circulation are 0.5 and 1 day lagged to the wind, respectively. Furthermore, field observation in the Yellow Sea also showed the 12 to 48 hours phase difference between wind and northern currents. The numerical experiment indicated that the positive pressure gradient, due to water accumulation in the south Yellow Sea, was the main force to drive the northward flow.
     Water adjustment made the maximum northward current lag behind the maximum northerly wind by 1day. And it took almost 10 and 20 days respectively for the surface slope to adjust to a stable state as the wind started and stopped. The combination effect of weak speed and phase lag of the wind driven compensation current can be used to explain the one month phase delay between the beginning/ending of winter northwesterly wind and the emergence/disappearance of the warm tongue in the Yellow Sea detected from the satellite SST data. And the sensitivity experiments indicated that the Coriolis force and topography played major roles in the westward shift path of the Yellow Sea Warm Current in the Yellow Sea.
     Different effect of heat advection and surface heat flux on the Yellow Sea heat budget in winter was still in heat debate. There was heat loss all over the Yellow Sea during winter and the winter averaged heat content change decreased with an area averaged rate of - 106 W m-2. Comparing with the similar horizontal distribution and winter averaged value of surface heat flux of -150 W m-2 averaged from four data sources, we conclude that surface heat flux played a dominant role in the YS heat content change during winter, while the effect of positive heat advection of the YSWC can account for between 17 % and 41% of the YS heat content change, calculated by four different heat flux data sets. During a winter storm event in winter of 1999 to 2000, the heat content change is -241Wm-2, while the effect of surface net heat flux is -281Wm-2, thus the heat advection transported 40Wm-2 heat into the Yellow Sea, which is two times more than the climatologic effect.
     On the one hand, sediments can be resuspended and transported by tidal current. On the other hand, tidal current can be affected by high sediment concentration by stratified bottom boundary layer. Tidal shear front off the Yellow River mouth is the result of tidal dynamics. Thus the mechanism of this front and its effect on the sediment distribution off the river mouth were studied. The sensitivity numerical experiments showed that the topography with a strong slope off the Yellow River mouth was a determining factor for the front generation, and a parallel orientation between the major axes of ellipses and co-tidal lines of maximum tidal current was a necessary condition. While the bottom friction and the river runoff had no effect on the front location but affected the front intensity, the front generation was not sensitive to the coastline variation. The study concluded that the bottom slope off the river mouth induces a strong variation in the bottom stress in a cross-shore direction, which produces both maximum phase gradient and sediment concentration variability across the tidal shear front. As for the sediment distribution in the Bohai Sea and Yellow Sea, it is high sediment concentration in the shallow water along Subei, Korea, in Bohai Strait and Liaodong Bay, which are resuspended by strong tidal currents. The high sediment concentration can stratify the bottom boundary layer, reduce the bottom shear stress then damp the sediment resuspension. Therefore, the sediment concentration was significantly reduced in above places, and the tidal amplitude and phase were increased and delayed.
     Therefore, based on the simulation of the circulation and sediment transport during the winter storm event, the formation of mud ridge to the southeast of Shandong Peninsula was described in dynamic method. The phase lag of Yellow Sea Warm Current to the northerly wind and westward shift path were discussed. Based on the satellite data and numerical simulation, the heat budge of Yellow Sea and Bohai Sea in winter was studied by discussing the effect of heat advection and surface heat flux. The generation mechanism of tidal shear front off the Yellow River mouth was first studied and its effect on the sediment distribution off the river mouth was also described. Although the effect of high sediment concentration on the tidal dynamics was studied in this work, it still needs further detailed study.
引文
[1] Wang, X. H., Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary, J. Phys. Oceanogr. 2002, 32: 3113~3131
    [2]冯士筰,李凤岐,李少菁。海洋科学导论。北京:高等教育出版社,1999,1~533
    [3]王强,高会旺.青岛沿海风应力和海气交换研究.海洋科学进展,2003,21(1):19~23
    [4]阎俊岳.中国邻海海-气热量、水汽通量计算和分析.应用气象学报,1992, 10(1):1-4
    [5]曲海涛,刘学萍.黄渤海大风统计分析和预报方法.辽宁气象,2002,4: 11~12
    [6]中国大百科全书,大气·海洋·水文卷,中国大百科全书出版社,1987,北京
    [7]方国洪,郭丰义。近30年渤海水文和气象状况的长期变化及其相互关系。海洋与湖沼。2002,33(5):515~523
    [8] Chuanlan Lin,etc.. Long-term variations of temperature and salinity of the Bohai sea and their influence on its ecosystem. Progress in Oceanography, 2001(49):7~19
    [9]吴德星、牟林、李强等,渤海盐度长期变化特征及可能的主导因素。自然科学进展,2004,14(2):191~195
    [10]郭炳火.黄海物理海洋学的主要特征.黄渤海海洋,1993,11(3):7~18
    [11]万修全.渤海冬夏季环流特征及变异的初步研究. 2003.硕士论文.
    [12] Huang D. J., X. P. Fan, D. F. Xu, Y. Z. Tong, J. L. Su. Westward shift of the Yellow Sea warm salty tongue. Geophysical Research Letters, 2005, 32, L24613
    [13] http://bbs.ccit.edu.cn/kepu/100k/read.php?tid=11293&fpage=2,教学基础资源库(,海洋科学)
    [14]李广雪,成国栋,魏合龙,等.现代黄河口区流场切变带.科学通报,1994,39(10): 928~932。
    [15] Li, G.X., Tang, Z.S., Yue, S.H., et al.. Sediment in the shear front off the Yellow River mouth. Continental Shelf Research, 2001, (21): 607~625.
    [16]王厚杰,杨作升,毕乃双,黄河口泥沙输运三维数值模拟I-黄河口切变锋,泥沙研究,2006,(2):1~9
    [17] Wang, H. J., Yang, Z. S., Li, Y. H., et al.. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental Shelf Research, 2007, in press.
    [18]赵保仁,庄国文,曹德明,雷方辉.渤海的环流、潮余流及其对沉积物分布的影响.海洋与湖沼,1995,26(5):466-473
    [19]管秉贤.黄海冷水团的水温变化以及环流特征的初步分析.海洋与湖沼,1963,5(4):255-284
    [20]张淑珍,奚盘根,冯士笮.渤海环流数值模拟.山东海洋学院学报,1984,14(2):12-19
    [21]缪经榜,刘兴泉.北黄海和渤海冬季环流动力学的数值试验.海洋学报,1989,11(1):15-22
    [22]匡国瑞,张琦等.渤海中部长期流的观测与余流分析.海洋湖沼通报,1991,(2):1-11
    [23]顾玉荷,修日晨.渤海海流概况及其输沙作用初析.黄渤海海洋,1996,14(1):1-6
    [24]黄大吉等.三维陆架海模式在渤海中的应用,I.潮流、风生环流及其相互作用.海洋学报,1996,18(5),1-13
    [25]赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟.海洋学报,1994,16(5):1-10
    [26]赵保仁,方国洪,曹德明.渤海、黄海和东海的潮余流特征及其与近岸环流输运的关系.海洋科学集刊,1995,36:1-11
    [27]赵保仁,庄国文,曹德明等.渤海环流、潮余流及对沉积物分布的影响.海洋与湖沼,1995,26(5):466-473
    [28]赵保仁,曹德明.渤海冬季环流形成机制动力学分析及数值研究.海洋与湖沼,1998,29(1):86-96
    [29]鲍献文吴德星. 2000年夏末和翌年初冬渤海水文特征.《海洋学报(中文版)》,2004,26(1):14~24
    [30]万修全,鲍献文,吴德星,姜华.渤海夏季潮致-风生-热盐环流的数值诊断计算.海洋与湖沼,2004,35(1):
    [31]赵保仁,曹德明.渤海冬季环流形成机制动力学分析及数值研究.海洋与湖沼,1998,29(1):86~96
    [32]魏皓,武建平, POHLMAN Thomas.渤海环流与输运季节变化的数值模拟.黄渤海海洋,2002,19(2):01~09
    [33]梁书秀,孙昭晨, NAKATSUJI Keiji , YAMANAKA Ryoichi , LIANG Shu-xiu , SUN Zhao-chen , NAKATSUJI Keiji , YAMANAKA Ryoichi.渤海典型余环流及其影响因素研究.大连理工大学学报, 2006,第1期:103~110
    [34]郭炳火.黄海物理海洋学的主要特征.黄渤海海洋,1993,11(3):7~18
    [35]刘兴泉.黄海冬季环流的数值模拟.海洋与湖沼,1996, 27(5):546~555
    [36] Hsueh, Y., Romea, R. D., and DeWitt, P. W.. Wintertime winds and coastal sea level fluctuations in the northeast China Sea. Part 2: Numerical model. J. Phys. Oceano., 1986,16(2),:241~261
    [37] Uda, M., The results of simultaneous oceanographical investigations in the Japan Sea and its adjacent waters during October and November, J. Imp. Fish Ecrp. St,,1936, (7): 91~151.
    [38]管秉贤,黄东海浅海水文学的主要特征,黄渤海海洋, 1985, 3(4):1~10
    [39] Nitani, H.. Beginning of the Kuroshio. In Kuroshio: Physical Aspects of the Japan Current, edited by H. Stommel and K. Yoshida, 1972, University of Wash. Press, Seattle, 129 ~156.
    [40] Beardsley, R. C., Limeburner, R, and Yu, H., and Cannon, G. A.. Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont. Shelf Res., 1985, (4): 57~76.
    [41] Hsueh Y..A wind-driven Yellow Sea Warm Current, Chinese Journal of Oceannology and Limnology. 1987,5(4):289~298
    [42] Wang, J., and Y. Yuan. Numerical modeling of wintertime circulation in the East China Sea. Chinese J. Oceano. Limno., 1988, 6(4): 300~319.
    [43]郭炳火,邹娥梅,熊学军等.黄海、东海水交换的季节变异.海洋学报(增刊),2000, 22(1): 13~23
    [44]汤毓祥,邹娥梅,Lie, H. J..冬至初春黄海暖流的路径和起源.海洋学报,2001, 23(1): 1~12
    [45] Jacobs, G. A., H. B. Hur, S. K. Riedlinger. Yellow and East China Seas response to winds and currents. Geophys. Res., 2000, (105): 21947~21968.
    [46] Le, K. T., and Mao, H. L.. Wintertime structures of temperature and salinity of the southern Huanghai (Yellow) Sea and its current systems. Oceanologia Limnologia Sinica, 1990,21(6), 505~515.
    [47]袁业立郭炳火孙湘平.泛黄海海区的物理海洋特征.黄渤海海洋, 1993,11(3),1~6.
    [48]郭炳火.黄海物理海洋学的主要特征.黄渤海海洋,1993,11(3), 7~18.
    [49]臧家业,汤毓祥,邹娥梅,Lie Heung-Jae.黄海环流的分析.科学通报2001 46 (S1 ): 7~15.
    [50]汤毓祥,邹娥梅,H J Lie.冬至初春黄海暖流的路径和起源.海洋学报,2001,23(1): 1~12
    [51]李广雪,成国栋,魏合龙,等.现代黄河口区流场切变带.科学通报,1994(10):66~70
    [52] Li Guangxue, Wei Helong, Han Yeshen, Chen Yiji. Sedimentation in the Yellow River delta, partⅠ:flow and suspended sediment structure in the upper distributary and the estuary. MARINE GEOLOGY,1998(149): 93~111.
    [53] Wang H., Yang Z., Li Y., Guo Z., Sun X. and Wang Y.. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental Shelf Research, 2007, 27(6), 854~871
    [54]秦蕴珊等,1985.渤海地质(中、英文),北京:科学出版社
    [55] J.P. Liu, J.D. Milliman, Shu Gao et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Marine Geology, 2004,209: 45~67
    [56] J.P. Liu, J.D. Milliman, S. Gao. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea. Geo-Marine Letters, 2002, 21(4): 212~218.
    [57] Yang, Z. S. and J.P. Liu. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology, 2007, (240):169~176.
    [58]杨作升,郭志刚,王兆祥,等.黄东海及其毗邻海域悬浮体与水团的对应关系及其影响因素.青岛海洋大学学报, 1991, 25(3): 55—69
    [59]杨作升,郭志刚.黄东海陆架悬浮体向其东部深海区输运的宏观格局.海洋学报, 1992,14(2):81-90
    [60]江文胜,苏健,杨华,张英娟,姜华,王庆业,张凯,田恬.渤海悬浮物浓度分布和水动力特征的关系.海洋学报(中文版),2002(1):212~217
    [61]曹祖德.波浪掀沙,潮流输沙的数值模拟.青岛海洋大学学报, 1993, 31(3):120~131
    [62]江文胜,孙文心.渤海悬浮颗粒物的三维输运模式.海洋与湖沼,1999,31(6):682~688
    [63] T.Yanagi, I.Kon-ichi. A Numerical Experiment on the Sedimentation Processes in the Yellow Sea and the East China Sea, Journal of Oceanography. 1995,(51):537~552
    [64]朱玉荣.潮流场对渤、黄、东海陆架底质分布的控制作用.海洋地质与第四纪地质,2001,21(2):7~13
    [65]朱玉荣.全新世渤、黄、东海陆架泥沙输运演变过程模拟研究.黄渤海海洋,2001, 19(2):25~38
    [66]江文胜;孙文心.渤海悬浮颗粒物三维输运模式的研究Ⅱ.模拟结果.海洋与湖沼,2001,32(1):94~100
    [67] CHOI Byung Ho , MUN Jong Yoon , KO Jin Seok. Wintertime suspended sediment simulation in the Huanghai and East China Seas.海洋学报(英文版),2005,25,(1):46~59
    [68]秦蕴珊,李凡,南黄海海水中悬浮体的研究,海洋与湖沼,1989,20(2):101~121
    [69]秦蕴珊,李凡等,渤海海水中悬浮体的研究,海洋学报,1982,14(2):191~200
    [70] X. H. Wang, G. Symonds. Coastal embayment circulation due to atmospheric cooling. Journal of Geophysical Research, 1999, 104(12):29801~29816
    [71] X. H. Wang. Circulation and heat budget of the northern Adriatic Sea(Italy) due to a Bora event in January 2001: a numerical model study. Ocean Modeling, 2005(10): 253~271
    [72] X. H. Wang, N. Pinardi, V. Malacic. Sediment transport and resuspension due to combinedmotion of wave and current in the northern Adriatic Sea during a Bora event in January 2001: A numerical modellming study. Continental Shelf Research, 2007, (27): 613~633
    [73] Donelan M A, Fred W, Dobson, Stuart, Smith D. On the dependence of sea surface roughness on wave development. Phys. Oceanogr. 1993, 23: 2143~2149
    [74] Davies and Lawrence, 1995 A.M. Davies and J. Lawrence. Modelling the effect of wave-current interaction on the three-dimensional wind driven circulation of the eastern Irish Sea, Journal of Physical Oceanography. 1995,25(1):29–45.
    [75] Xie, L., K. Wu, L. J. Pietrafesa, and C. Zhang. A numerical study of wave-current interaction through surface and bottom stresses: Part I: Wind-driven circulation in the South Atlantic Bight under uniform winds. J. Geophys. Res., 2001, 106, 16841~16856.
    [76] A. S. Ogston, D. A. Cacchione, R. W. Sternberg, G. C. Kineke. Observations of storm and river flood-driven sediment transport on the northern California continental shelf. Continental Shelf Research 1999, 20(16): 2141~2162
    [77] D. N. WALKER, B. A. HAMMACK, Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay Region, Louisiana, Journal of coastal research, 2000,16(4): 996~1010
    [78] J. T.Wells1, Y. A. Park, J. H. Choi. Storm-induced fine-sediment transport: west coast of south Korea. Geo-Marine Letters, 1984, 4(3): 177~180
    [79] Blumberg, A.F. and G.L. Mellor, "A Description of a Three-Dimensional Coastal Ocean Circulation Model," In: Three-Dimensional Coastal Ocean Models, N. Heaps, Ed., 1~16, American Geophys. Union, 1987.
    [80] Lick, W., Lick, J. and Ziegler, C.K., The Resuspension and Transport of Fine-Grained Sediments in Lake Erie, J. Great Lakes Res., 1994, 20(4):599~612.
    [81] Mellor, G.L. and T. Yamada. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys. Space Phys., 1982, 20, 851~875
    [82] Galperin, B., L.H. Kantha, S. Hassid and A. Rosati. A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows. J. Atmosph. Sci., 1988, 45, 55~62,
    [83] Soulsby, R. L.. Dynamics of marine sands, Thomas Telford Ltd, London, 1997.
    [84] Parchure, T.M. and Mehta, A.J.. Erosion of Soft Cohesive Sediment Deposits, ASCE J. Hydr. Engr.. 1985, 111(10):1308~1326
    [85] Tsai, C.H. and Lick, W.. Resuspension of sediments from Long Island Sound, Wat. Sci. Tech.. 1987, 21(6/7):155~184
    [86] Graham, D.I., James, P.W., Jones, T.E.R., Davies, J.M. and Delo, E.A., Measurement and Prediction of Surface Shear Stress in Annular Flume, ASCE J. Hydr. Engr.. 1992, 118(9):1270~1286.
    [87] Hawley, N., Preliminary Observations of Sediment Erosion from a BottomResting Flume, J.Great Lakes Res., 1991,17(3):361~367.
    [88] Amos, C.L., Grant, J., Daborn, G.R. and Black, K.. Sea Carousel– A Benthic, Annular Flume. Estuar. Coast. and Shelf Sci., 1992, 34, 557~577.
    [89] Krone, R.B.. Flume Studies of the Transport of Sediment in Estuarial Processes, Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, 1962, Berkeley
    [90] Burban, P.Y., Xu, Y., McNeil, J., and Lick, W. Settling Speeds of Flocs in Fresh and Sea Waters. J. Geophys. Res., 1990, 95(C10):18213~18220.
    [91] Mehta, A.J. and Partheniades, E., An Investigation of the Depositional Properties of Flocculated Fine Sediments, J. Hydr. Res., 1975, 12(4):361~381.
    [92] Partheniades, E.. Estuarine Sediment Dynamics and Shoaling Processes, in Handbook of Coastal and Ocean Engineering. 1992, (3): 985~1071.
    [93] MacIntyre, S., Lick, W. and Tsai, C.H.. Variability of Entrainment of Cohesive Sediments in Freshwater. Biogeochemistry, 1990, 9:187~209.
    [94] Businger, J. A., J. C. Wyngaard,. Y. Izumi, and E. F. Bradley. Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 1971, (28): 181~189
    [95] Smith, J. D., and S. R. McLean. Spatially averaged flow over a wavy surface. J. Geophys. Res.. 1977, (82): 1735~1746
    [96] Soulsby, R. L., and B. L. S. A. Wainwright. A criterion for the effect of suspended sediment on near-bottom velocity profiles. J. Hydraul. Res., 1987, (25): 341~356
    [97] Adams, C. E., Jr., and G. L. Weatherly. Some effects of suspended sediment stratification on an oceanic bottom boundary layer. J. Geophys. Res., 1981, (86):4161~4172
    [98] Anwar. H. O. Turbulence measurements in stratified and well-mixed estuarine flows. Estuarine Coastal Shelf Sci, 1983, (17): 243~260
    [99] Glenn, S. M., and W. D. Grant. A suspended sediment stratification correction for combined wave and current flows. J. Geophys. Res., 1987, (92): 8244~8264
    [100] Tayor, P. A., and K. R. Dyer. Theoretical models of flow near the bed and their implications for sediment transport. Marine Modeling, 1977, Vol.6, 579~601
    [101] X. H. Wang. Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary with a muddy bed. J. Phys. Oceanogr., 2002, (32): 3115~3127
    [102] MacCready, P., and P. B. Rhines. Slippery bottom boundary layers on a slope. J. Phys. Oceanogr., 1993, (90): 5~22
    [103] Donelan, M. A. A simple numerical model for wave and wind stress application, Report, National Water Research Institute, Burlington, Ontario, Canada, 1977, 28 pp
    [104] Schwab, D.J., J.R. Bennett, P.C. Liu, and M.A. Donelan. Application of a Simple Numerical Wave Prediction Model to Lake Erie. J. Geophys. Res., 1984, (89): 3586~3592.
    [105] Grant, W.D. and Madsen, O.S.. Combined Wave and Current Interaction with a Rough Bottom. J. Geophys. Res., 1979. 84(C4):1797~1808.
    [106] Phillips, N.A.. A Coordinate System Having Some Special Advantages for Numerical Forecasting. J. Meteorol., 1957, (14): 184~185
    [107] Blumberg A F,Herring H J. Circulation model using orthogonal curvilinear coordinates[M] Amsterdam: Elsevier Scinence Publishers B V,1987:55~88
    [108]黄大吉,陈宗镛,苏纪兰.三维陆架海模式在渤海中的应用:Ⅰ潮流、风生环流及其相互作用.海洋学报,1996,18(5):1~13
    [109] X. W. Bao, J Yan,W X Sun. A three-dimensional tidal model in boundary-fitted curvilinear grids. Estuarine Coastal and shelf Science,2000,60:775~788.
    [110]赵天保,符淙斌.中国区域ERA一40、NCEP一2再分析资料与观测资料的初步比较与分析.气候与环境研究,2006,11(1):62~67
    [111] Signell R.P., Carniel S., Cavaleri L., Chiggiato J., Doyle J.D., Pullen J. and Sclavo M., Assessment of wind quality for oceanographic modeling in semi-enclosed basins. Journal of Marine Systems, 2005, 53, 217~233
    [112] Cavaleri L. and Bertotti L.. Notes and correspondence in search of the correct wind andwave fields in a minor basin. Monthly Weather Review, 1997, 25, 1964~1975
    [113] Weller, R. A., M. F. Baumgartner, A. S. Josey, A. S. Fischer, and J. Kindle. Atmospheric forcing in the Arabian Sea during 1994–1995: Observations and comparisons with climatology and models. Deep Sea. Rev., 1998, 45, 1961–1999.
    [114] Renfrew, I. A., G. W. K. Moore, P. S. Guest and K. Bumke. A comparison of surface-layer and surface heat flux observations over the Labrador Sea with ECMWF and NCEP reanalyses. J. Phys. Oceanogr. 2002, 32: 383~400.
    [115] Cronin, M. F., N. A. Bond, Fairall, C. W., R. A. Weller. Surface cloud forcing in the EastPacific stratus deck/cold tongue/ITCZ complex. J. Clim. 2006, 19(3): 392~409.
    [116] Yu, L., R. A. Weller. Objectively Analyzed air-sea heat Fluxes (OAFlux) for the global oceans (1981-2005). Bull. Ameri. Meteor. Soc., 2007, 88, 527~539.
    [117] Yu, L., X. Jin, R. A. Weller, Annual seasonal and interannual variability of air-sea heat fluxes in the Indian Ocean. J. Climate, 2007, in press.
    [118] Josey, S. A., E. C. Kent and P. K. Taylor. The Southampton Oceanography Centre (SOC) Oceaa-Atmosphere Heat, Momentum and Freshwater Flux Atlas. 1998.Southampton Oceanography Centre Rep. 6, Southampton, UK, 30pp + figs.
    [119] Josey, S. A., E. C. Kent and P. K. Taylor. New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. Journal of Climate, 1999, 12, 2856~2880.
    [120] http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=19113,水信息网
    [121] Riedlinger, S. K., and G. A. Jacobs. Study of the dynamics wind-driven transports into the Yellow Sea during winter. J. Geophys. Res., 2000, 105 (C12): 28695~28708
    [122] Csanady G T and Reidel Pub D. Circulation in the coastal ocean. 1982, Dordrecht, 279
    [123]汤毓祥,邹娥梅, Lie H.J.冬至初春黄海暖流的路径和起源.海洋学报, 2001, 23(1):1~12
    [124] Mask A C and O'Brien J J. Wind-driven effects on the Yellow Sea Warm Current. J Geophy Res, 103, 30713~30729
    [125]宋德海、鲍献文、徐玲玲等,黄海暖流主轴年际变化及其影响因素探析,2008,海洋学报,审稿中
    [126]藏家业,汤毓祥,邹娥梅,Lie H.-J..黄海环流的分析.科学通报,2001,46(增刊):7~15
    [127]杨作升,戴慧敏,王开荣. 1950~2000年黄河入海水沙的逐日变化及其影响因素.中国海洋大学学报,2005,35(2):237~244
    [128] Yu, L.S. The Huanghe (Yellow) River: Recent changes and its countermeasures. Continental Shelf Research 2006, 26:2281~2298
    [129] Wang H., Yang Z., Li Y., Guo Z., Sun X. and Wang Y.. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental Shelf Research, 2007,27(6), 854~871
    [130] Van Rijn. L. C.. Sediment transport. Part II: Suspended load transport. J. Hydraul. Eng., ASCE, 1984, 110, 1613~1641
    [131] Soulsby. R. L., B. L. S. A. Wainwright. A criterion for the effect of suspended sediment on near-bottom velocity profiles. J. Hydraul. Res., 1987, 25, 341~356
    [132] Glenn. S. M., W. D. Grant. A suspended sediment stratification correction for combined wave and current flows. J. Geophys. Res., 1987, 92, 8244~8264
    [133] King, B., E. Wolanski. Bottom friction reduction in turbid estuaries. Mixing in Estuaries and Coastal Studies, C. Pattiaratchi, Ed., Amer. Geophys. Union, 1996, 325~337
    [134] Sangiorgi. F., R. Setti. G. Gabbianelli., C. Trombini. Geo-chemical characterization of Hg-contaminated sediments of the‘Pialassa Baiona’, Rapp. Comm. Lnt. Explor. Sci. Mer Mediterr., 1998, 35,96~97
    [135]张衡,朱建荣,吴辉.东海黄海渤海8个主要分潮的数值模拟.华东师范大学报,2005 (3):71~78
    [136]李东风,张红武,钟德钰,吕志咏.黄河河口水沙运动的二维数学模型.水利学报,2004(6):1~6
    [137]刘成,李行伟,韦鹤平,王兆印.长江口水动力及污水稀释扩散模拟.海洋与湖沼,2003,34(5):474~483
    [138]李孟国,王正林,瓯江口潮流数值模拟,2002,长江科学院院报,19(2):19~22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700