用户名: 密码: 验证码:
南支西风槽建立、传播和演变特征及其对中国天气气候的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用NCEP/NCAR再分析资料和全国站点降水资料,采用多种统计分析方法,首先从南支急流演变的角度,对冬半年副热带南支西风槽的定义进行讨论,然后从气候学上探讨其结构和演变特征,以及南支槽的传播和多尺度变率,最后就南支槽对中国天气的影响进行了研究,并以2007年11月14~17日云南德钦暴雪为例,探讨了南支槽与孟湾风暴结合下西南地区强烈天气产生的过程。全文主要结论有以下几个方面:
     (1)南支槽是冬半年副热带南支西风气流在高原南侧孟加拉湾地区产生的半永久性低压槽, 10月南支槽建立表明北半球大气环流由夏季型转变成冬季型,6月南支槽消失同时孟加拉湾槽建立是南亚夏季风爆发的重要标志之一。南支槽在700hPa表现最明显,其槽前干暖平流有利于昆明准静止锋的形成和维持;冬季行星尺度辐散环流下沉支抑制了南支槽前上升运动的发展;春季随着辐散环流减弱,东亚急流入口区南侧高层辐散使得槽前垂直运动向上迅速伸展。冬季水汽输送较弱,上升运动浅薄,无强对流活动,南支槽前降水较少,雨区主要位于高原东南侧昆明准静止锋至华南一带;春季南支槽水汽输送增大,同时副高外围暖湿水汽输送加强,上升运动发展和对流增强,南支槽造成的降水显著增加,因此春季是南支槽最活跃的时期。
     (2)冬半年北半球副热带西风急流下方存在3个南支波动,分别位于阿拉伯海、孟加拉湾和华南,其中孟加拉湾南支槽变率最小。从北非、阿拉伯海到孟加拉湾的“-+-”遥相关波列表明南支槽与北非槽呈正相关,与阿拉伯槽呈反相关。西风波动从北非东传到孟加拉湾的过程中,往往会在阿拉伯海有所停顿甚至加强,这种由西向东的传播过程约需20天,具有明显的低频振荡特征。源自北非的定常Rossby波沿着急流波导经阿拉伯海传播到孟加拉湾,可能是南支槽明显增幅的一个主要机制;另外,青藏高原东西两侧南下冷空气的活动是南支槽加深发展的又一重要因素。
     (3)南支槽季节内振荡以10~30天和30~60天为主,年际变化周期为准4年和准6年,年代际变化周期为10~20年,并在70年代末出现了由强到弱的年代际突变。南支槽低频振荡与我国冬半年南方降水紧密相关,南支槽在孟加拉湾加深或东移都有利于华南低涡产生,当南支槽加深与斯里兰卡低涡打通时,槽前从孟加拉湾带来的大量水汽与来自南印度洋的偏南越赤道水汽输送相结合,并在菲律宾低频反气旋作用下向北输送,华南低涡使得低层辐合加强,对流活跃,以至于冬半年我国低频降水主要集中在南方。南支槽异常偏强(弱)年,副热带高空西风急流异常偏强(弱),有利于(不利于)上游西风波动向下游传播。中高纬环流经向度偏大(小)有利(不利)于冷空气南下,南支西风波动偏强(弱),副热带高压带显著偏弱(强),槽前水汽输送和垂直上升运动偏强(弱),使得我国南方降水异常偏多(少)。南支槽年代际偏强(弱)阶段,北非急流偏强(弱)位置偏南(北)有利(不利)于西风波动向下游传播;同时东亚急流偏弱(强)位置偏北(南),有利于(不利于)槽前垂直运动的发展。中高纬环流经向度加大(减小)有利于(不利于)冷空气向南爆发。南支西风较常年偏强(弱),槽前水汽输送偏强(弱),我国东部上空异常偏南(北)风水汽输送使得多雨区偏北(南)。
     (4)南支冷空气沿高原南缘东进时受横断山脉阻挡有干冷空气堆积,北支冷空气从中高纬沿近地层南下在高原东侧形成干冷气团,南支槽前西南风在低层绕过横断山脉转向北上时变性成为暖湿气流,形成中间暖湿两侧干冷的结构,在高原东侧形成昆明准静止锋,高原西侧形成另一个弱锋面。冬季南支槽前上升运动使锋面垂直环流得到加强,春季,受华南槽和急流入口区南侧高层辐散的影响,沿锋面抬升的垂直运动迅速加强;南支槽前干平流输送使得锋前降水偏少,而锋后850hPa和700hPa湿平流在春季迅速加强有利于华南水汽辐合和降水。华南冷空气活动频繁,冬季冷空气来源于南支急流和中高纬低层,春季冷空气主要来源于南支急流。此外,南支槽影响中国天气有移动和静止两种方式,且以静止居多。移动性南支槽在东移的过程中不但输送水汽,槽前辐合上升也提供必要的动力条件。静止性南支槽对我国降水的影响主要是源源不断的水汽供应。
     (5)南支槽和孟加拉湾风暴相结合,加上北方冷空气和有利的地形作用造成德钦暴雪天气。等熵位涡分析表明冷空气从里海附近的对流层上层下传,沿南支西风到达孟加拉湾使南支槽加深有利于引导孟湾风暴北上。槽前西南风低空急流把风暴产生的云和水汽向东北方向输送,随着风暴北上,低空急流加强将水汽输送上高原,受地形抬升高层大气最先增湿,德钦位于水汽输送大值带中,湿层深厚并有大量水汽通量辐合,同时冷空气从高原南下使槽前上升运动迅速增强有利于暴雪的产生。倾斜涡度发展和条件性对称不稳定可能是暴雪形成的重要因子。
Using NCEP/NCAR reanalysis data and the observational precipitation collected in China which are then treated with various statistical methods, study is performed firstly of the definitions of the wintertime southern branch trough in the subtropical westerlies (WEBTISR) in terms of evolution of the southern branch jet, then the climatology features as the structure, development, propagation and the multi-scale variability of the WEBTISR, and finally its impacts on the weather and climate all over China. Also, a severe snowstorm in Deqin of Yunnan Province on November 14th-17th, 2007 has been taken as an example to investigate the formation process of the strong weather in Southwest China under the combined action of the WEBTISR and the storm over the Bay of Bengal. And the main results of this paper are as follows:
     (1) The WEBTISR is a semi-permanent low pressure trough brought about by the wintertime southern branch of the subtropical westerlies over the Bay of Bengal on the south of Qinghai-Tibet Plateau. The fact that WEBTISR established in October indicates that the Northern-Hemispheric circulation transits from summer pattern to winter pattern, while its disappearance in June, together with the Bay of Bengal trough establishment, is one of the important indications of summer monsoon onset. The trough is noticeable at 700 hPa, while the dry and warm advection in its front is favorable for formation and development of the quasi-stationary front in Kunming. In winter, the descending branch of the wintertime divergence circulation inhibits development of the ascending motion in front of the WEBTISR. And in the spring, as the descending branch of the divergence circulation weakened, divergence field is strengthened on the south of the entrance region of the East Asian jet stream, which makes a rapidly upward extension of the vertical movement. In detail, due to the weak moisture transportation, limited upward motion and no strong convection in winter, there is less rainfall in front of the study trough, with the rainfall mainly over regions from the Kunming quasi-stationary front on the southwest of the Plateau to South China, as opposed to the situation in spring. Consequently, the WEBTISR is most significant in spring.
     (2) There are three southern disturbances under the wintertime subtropical westerlies jet in the Northern Hemisphere, located in the Arabian Sea, the Bay of Bengal and South China, respectively, in which the WEBTISR over the Bay of Bengal has the smallest variability. A teleconnection wave train with negative, positive and negative centers, migrated from North Africa to the Bay of Bengal via Arabian Sea, suggests that the WEBTISR is positive related with the trough over North Africa, but negative related with the trough over Arabian Sea. During the eastward process from North Africa to the Bay of Bengal, the westerlies waves has always stalled or even strengthened in the Arabian Sea. The eastward process costs about 20 days, marked by characteristics of low-frequency oscillations. It is likely to be a major mechanism of WEBTISR strengthening that the stationary Rossby wave originated in North Africa propagates from the Arabian Sea to the Bay of Bengal along the jet waveguide. Besides, the activity of the southward cold air on the west and east of the Plateau is another important factor for the deepening and development of the study trough.
     (3) The WEBTISR is marked by seasonal periods at 10-30 and 30-60 days, inter-annual periods at quasi-4 and quasi-6 yrs, as well as inter-decadal periods at 10-20 yrs, with an abrupt strong-to-weak change in the late 1970s on the inter-decadal scale. A good correlation between the low-frequency WEBTISR and the rainfall in South China. Till the WEBTISR is joined with the Sri Lanka low vortex, a great number of water vapors from the Bay of Bengal in front of the trough unite with the cross-equatorial transportation of water vapor from the South Indian Ocean. And then the moisture transports northward under the impacts of low-frequency anti-cyclone in Philippines, as in coactions with the South China low vortex, resulting in increased convergence at the lower level and active convection, which is responsible for the fact that the low-frequency rainfall in winter-half year is mainly concentrated in the South China. In the years with stronger(weaker) WEBTISR, the upper-level subtropical westerly jet is extraordinary increased (decreased), which is favorable (unfavorable) to the upstream-to-downstream propagation of the westerlies waves. The increased/decreased meridional circulation the mid-high latitudes is favorable/unfavorable to the southward transmission of cold air, resulting in the stronger/weaker southern branch of the westerlies waves, then the subtropical high is significantly weakened/strengthened along with the enhanced/reduced water vapor transmission and vertical ascension in front of the trough, so that the rainfall is plentiful/scarce in South China. During the period of the increased/decreased WEBTISR on an inter-decadal scale, the North Africa jet is enhanced/reduced and southward/northward than normal, as advantageous/disadvantageous to the upstream-to-downstream propagation of the westerlies waves. Meanwhile, the East Asia jet is reduced/enhanced and northward/southward than normal, which is prosperous/unprosperous to the development of the vertical ascension in front of the trough. The increased (decreased) meridional circulation the mid-high latitude is favorable (unfavorable) to the southward transmission of cold air. The southern branch of the westerlies is stronger (weaker) than the normal years, water vapor transmission is increased (decreased) in front of the trough, and the water vapor is transmitted by winds which are greatly southward (northward) than normal in East China, all these making the precipitation belt northward/southward than normal.
     (4) The southern branch of the cold air along the southern edge of the plateau to the east when there are the Hengduan Mountains to block the accumulation of dry and cold air, and the northern branch of the cold air has composed the dry and cold air masses on the east of the plateau when it is moving southward along the surface layer from the mid-high latitudes. The southwesterly in front of the WEBTISR has transformed into warm and wet flows when it is bypassing the Hengduan Mountains to the north in lower level. They merge into a structure that is warm and wet in the center and dry and cold on the both sides, Kunming quasi-stationary front on the south of the Qinghai-Tibet plateau, as well as a weak front on the west of the plateau. In winter, the vertical circulation of the front is strengthened by the ascension in front of the study trough. In spring, under the impacts from the South China trough and the upper divergence on the south of the jet’s entrance region, the vertical motion along the front has enhanced markedly. The dry advection in front of the WEBTISR always makes decreased rainfall before the front, while the rapid increase in the wet advection at 850 hPa and 700 hPa behind the front is beneficial to the water vapor convergence and rainfall in South China. Cold air is active in South China. In winter, cold air is from the southern branch of the westerly jet and the lower levels of the mid-high latitudes. And in spring, cold air is basically from the southern branch of the westerly jet. The WEBTISR influencing rainfall in South China can be divided into mobile and static patterns, and the latter is the major means. Mobile trough transports moisture, and the ascending convergence in its front provides dynamic conditions which are necessary to the rainfall. And the static trough provides plenty of moisture for precipitation in China.
     (5) The severe snowstorm in Deqin was formed under the collaboration of the WEBTISR and storm over the Bay of Bengal, while combined with the north cold air and favorable topography there. Isentropic potential vorticity analysis indicates that cold air originates from the upper troposphere near the Caspian Sea, traveling along the southern branch of the westerlies to the Bay of Bengal, which deepens the trough and beneficial to leading the storm over Bay of Bengal to move northward. The southwest lower-level jet occurs in front of the trough, which transports the storm-induced cloud and moisture to the northeast. And then the uplifting topography humidifies first the upper atmosphere. Deqin is located in the belt of strong moisture transport, where the wet level is thick with convergence of a large number of water vapor flux therein. With the northward shift of the storm, the lower jet has strengthened but obstructed by the Plateau, resulting in convergence and shear over Deqin. The combination of the storm and the WEBTISR, and southward movements of cold air from the plateau make rapid enhancement of the ascension in front the trough. Generally, the slantwise vorticity development and conditional symmetric instability are the important factors for the heavy snow formation.
引文
1.布和朝鲁,纪立人. 1999.东亚冬季风活动异常与热带太平洋海温异常.科学通报, 44 (3): 252~259.
    2.陈百炼,汤筑强,黄继用等. 1997.春季南支槽暴雨客观预报方法研究.贵州气象.21(3):7~9.
    3.陈隆勋,朱乾根,罗会邦等. 1991.东亚季风.北京:气象出版社,362pp.
    4.陈隆勋,李薇,赵平等. 2000 .东亚地区夏季风爆发过程.气候与环境研究, 5(4):345~355.
    5.陈文. 2002. El Nino和La Nina事件对东亚冬、夏季风循环的影响.大气科学, 26(5):595~610.
    6.陈艳. 2006.东南亚夏季风的爆发与演变及其对我国西南地区天气气候影响的研究.南京信息工程大学理学博士学位论文.37~83.
    7.陈艳,丁一汇,肖子牛等. 2006.水汽输送对云南夏季风爆发及初夏降水异常的影响.大气科学. 30(1):25~37.
    8.董海萍.2006.云南初夏印缅槽维持期间强降水的诊断分析与数值模拟研究.中国科学院研究生院博士学位论文.235pp.
    9.丁一汇. 1979.从气象卫星看青藏高原的天气系统.叶笃正与高由禧主编.青藏高原气象学.北京:科学出版社,141~152.
    10.丁一汇. 1989.天气动力学中的诊断分析方法.北京:科学出版社. 293pp.
    11.丁一汇. 1990.东亚冬季风的统计研究.热带气象,6:119~128.
    12.丁一汇. 1991.东亚寒潮冷空气的传播和行星尺度作用.应用气象学报, 2(2):123~132.
    13.丁一汇. 1997.东亚冬季风的演变特征.应用气象学报, 2:186~196.
    14.丁一汇. 2005.高等天气学(第二版).北京:气象出版社.585pp.
    15.丁一汇,马晓青. 2007. 2004/2005年冬季强寒潮事件的等熵位涡分析.气象学报, 65(5):695~707.
    16.段旭,李英,孙晓东. 2002.昆明准静止锋结构.高原气象, 2:205~209.
    17.杜正静,丁治英,张书余. 2007.2001年1月滇黔准静止锋在演变过程中的结构及大气环流特征分析.热带气象学报. 23(3):284~292.
    18.樊平. 1955.康藏低槽的初步研究.天气月刊附刊,4月号,1~9.
    19.樊平. 1956.昆明准静止锋.天气月刊附刊, 3:14~16.
    20.樊平. 1980.春季的“南支槽”.夏季的“南支槽”.冬季的“南支槽”.云南气象文选(1949~1979).云南省气象学会和云南省气象局编.42~53,66~73.
    21.顾震潮. 1951.西藏高原对东亚环流的影响和牝底重要性.气象学报,1:283~303.
    22.高由禧. 1952.从对流层的温度分析来探讨我国上空冬半年西风环流.气象学报,(Z1):48~56.
    23.郭其蕴,王日生. 1990 .东亚冬季风活动与厄尔尼诺的关系.地理学报, 45(1): 68~77.
    24.郭其蕴. 1994.东亚冬季风的变化与中国气温异常的关系.应用气象学报. 5 (2):218~225.
    25.耿全震,陈受钧. 1996.定常辐散场产生的涡源和定常波能量传播.大气科学. 20(3):298~305.
    26.黄荣辉,张振洲,黄刚等. 1998 .东亚季风区的水汽输送特征及其与印度季风区的差别.大气科学, 22: 460~469.
    27.黄荣辉,陈文,丁一汇等. 2003 .关于季风动力学以及季风与ENSO循环相互作用的研究.大气科学, 27 (4) :484~502.
    28.何金海,温敏,施晓晖等. 2002.南海夏季风建立期间副高带断裂和东撤及其可能机制.南京大学学报(自然科学), 38(3):318~330.
    29.何金海,祁莉,韦晋等. 2007.关于东亚副热带季风和热带季风的再认识.大气科学. 31(6): 1257~1265.
    30.何溪澄等. 2006.中国南方地区冬季风降水异常的分析.气象学报. 64(5):594~604.
    31.何溪澄等. 2008.东亚冬季风对ENSO事件的响应特征.大气科学, 32(2):335~344.
    32.金祖辉,孙淑清. 1996.东亚大陆冬季风的低频振荡特征.大气科学, 20 (1):101~111.
    33.金祖辉,陶诗言,l999.ENSO循环与中国东部地区夏季和冬季降水关系的研究,大气科学,23:664~672.
    34.李崇银. 1990.北半球大气运动的30~50天振荡,长期天气预报论文集.北京:气象出版社. 63~73.
    35.李崇银. 2000.气候动力学引论(第二版).北京:气象出版社, 196~232.
    36.李英,段旭. 1998.冰雹大风天气下昆明准静止锋的结构分析.云南气象, 4:35~39.
    37.李英,段旭,潘里娜. 1999.昆明准静止锋的准地转Q矢量分析.气象,8:6~10.
    38.李英. 1999.条件性对称不稳定与昆明准静止锋风雹.热带气象学报, 3:273~279.
    39.李英,段旭. 1999.倾斜涡度的发展与云南冬季强降水.南京气象学院学报. 22(4):705~710.
    40.李家垣,王明.1987.高原对新生南支槽影响的分析.云南气象.4:23~26.
    41.李坚辉,谢巨伦,吴阳. 2000.3~5月粤西地区南支槽降水分析.广东气象. 5~14.
    42.雷兆崇. 1991.Plumb三维波作用通量和EP剖面图——对定常波模式输出结果的诊断分析.南京气象学院学报.
    14(1):25~33.
    43.梁志和,黄香杏. 1995.春季南支槽与广西暴雨关系的研究.广西气象. 16(1):8~15.
    44.林振敏,黄海洪. 1995.广西春季南支槽暴雨短期预报业务系统介绍.广西气象.16(4):4~9.
    45.林国民,贾星星.1994.昆明准静止锋转变成冷锋的非线性统计预报.四川气象.2:18~21.
    46.刘永强,丁一汇. 1995. ENSO事件对我国季节降水和温度的影响.大气科学, 19(2):200~208.
    47.刘还珠,张绍晴. 1996.湿位涡与锋面强降水天气的三维结构.应用气象学报, 7(3):275~283.
    48.陆汉城,杨国祥. 2004.中尺度天气原理和预报(第二版).北京:气象出版社, 301pp.
    49.卢孟明. 1994.1992/93年冬季寒潮与大气低频波动之关系.见:海峡两岸天气与气候学术研讨会论文汇编.台湾,49~63.
    50.穆明权,李崇银. 1999.东亚冬季风年际变化的ENSO信息I.观测资料分析.大气科学, 23(3):276~285.
    51.马晓青. 2006.中国暖冬时期强寒潮事件的分析.南京信息工程大学理学理学硕士论文.80pp.
    52.马晓青.丁一汇.徐海明等. 2008.2004/2005年冬季强寒潮与大气低频波动关系的研究.大气科学. 32(2):380~394
    53.宁夏回族自治区银川气象台.1977.青藏高原东侧准静止锋(北段)的分析.青藏高原气象论文集(1975~1976).青藏高原气象科研协作领导小组.435~439.
    54.潘菊芳.1952.冬半年西南低压槽初步研究.天气.21,46~57.
    55.潘菊芳. 1953.冬半年华南的准静止锋.天气月刊.3,1~9.
    56.潘里娜,李英.1999.冬春季昆明准静止锋若干统计特征.云南气象.4:37~40.
    57.潘静,李崇银.2006.夏季南海季风槽与印度季风槽的气候特征之比较.大气科学.30(3):377~390.
    58.秦剑,潘里娜,石鲁平.1990.南支槽与强冷空气结合对云南冬季天气的影响.气象.17(3):39~43.
    59.秦剑,琚建华,解明恩等编著. 1997.低纬高原天气气候.北京:气象出版社. 210pp.
    60.祁莉,何金海,张祖强. 2007 .纬向海陆热力差异的季节转换与东亚副热带季风环流.科学通报.52(24):2895~2899
    61.陶诗言. 1953.冬季由印缅来的低槽对于华南天气的影响.气象学报, 3,172~192.
    62.陶诗言.1956.冬季中国上空平直西风环流条件下的西风波动.气象学报.27,345~360.
    63.陶诗言,陈隆勋.1957.夏季亚洲大陆上空大气环流的结构.气象学报.28(3):234~246.
    64.陶诗言,张庆云,1998.亚洲冬夏季风对ENSO现象的响应,大气科学, 22,399~407.
    65.王绍武, 2001.现代气候学研究进展,北京:气象出版社, 161pp.
    66.王启一,丁一汇.1997.东亚冬季风的演变特征.应用气象学报.8(2),186~196.
    67.王恒康,潘里娜,余雄鹏.1991.春季南支西风槽的天气气候分析.云南气象.3:1~14.
    68.王恒康,潘里娜.1992.春季南支西风槽的活动规律及其与云南大雨、暴雨的关系.云南气象.(3.4): 6~10.
    69.王黎娟,何金海,管兆勇.2006.东亚副热带夏季风槽的气候特征及其与南海夏季风槽的比较.气象学报.64(5):583~593.
    70.王建中,马淑芬,丁一汇. 1996.位涡在暴雨成因分析中的应用.应用气象学报, 7(1): 19~27.
    71.王遵娅,丁一汇,何金海等. 2004.近50年来中国气候变化特征的再分析.气象学报. 62(2):228~236.
    72.王遵娅,丁一汇. 2006.近53年中国寒潮的变化特征及其可能原因.大气科学. 30(6):1068~1076.
    73.王遵娅. 2007.中国夏季降水的气候变率及其可能机制研究.中国科学院研究生院博士学位论文. 155pp.
    74.王遵娅,丁一汇. 2008.中国雨季的气候学特征.大气科学, 32(1):1~13.
    75.魏风英. 1999.现代气候统计诊断与预测技术.北京:气象出版社, 31~33.
    76.吴国雄,蔡雅萍,唐晓菁. 1995.湿位涡和倾斜涡度发展.气象学报, 53(4):387~404.
    77.吴国雄,蔡雅萍. 1997.风垂直切变和下滑倾斜涡度发展.大气科学, 21(3):273~281.
    78.吴国雄,张永生. 1998.青藏高原的热力和机械强迫作用以及亚洲风的爆发.Ⅰ.爆发地点.大气科学, 22(6): 825~838.
    79.吴国雄,刘屹岷,刘平. 1999.空间非均匀加热对副热带高压带形成和变异的影响.Ⅰ.尺度分析.气象学报, 57(3): 257~263.
    80.吴国雄,刘还珠. 1999.全型垂直涡度倾向方程和倾斜涡度发展.气象学报, 57(1):1~15.
    81.吴国雄,刘屹岷,刘新等. 2005.青藏高原加热如何影响亚洲夏季的气候格局.大气科学, 29(1): 47~56.
    82.吴正贤,李崇银,吴国雄,1990.1982~1983年冬季厄尔尼诺期间大气环流异常的诊断分析,热带气象,6:253~264.
    83.万日金,吴国雄. 2006.江南春雨的气候成因机制研究.中国科学D辑地球科学, 36(10):936~950.
    84.席世平,寿绍文,范学峰. 2006.一次区域暴雪过程中的等熵位涡分析.河南气象, 4: 17~19.
    85.谢义炳,陈玉樵.1951.冬季西太平洋及东亚大陆北部上空的温度场及流场.2:279~297.
    86.许梓秀,王慕维. 1965.春季华南在冷空气垫上空南支西风中低压槽东移时的天气过程分析.气象学报. 35(2):117~124.
    87.杨鉴初,陶诗言,叶笃正,顾震潮等. 1960.西藏高原气象学.北京:科学出版社. 280pp.
    88.叶笃正,高由禧,刘匡南. 1952.1945—46年亚洲南部与美洲西南部急流进退之探讨.气象学报, (Z1):1~32.
    89.叶笃正. 1953.1945~1946年冬季中国上空对流层上层的环流的研究.气象学报. 24(2):118~132.
    90.叶笃正,罗四维,朱抱真. 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡.气象学报, 28(2): 108~121.
    91.叶笃正,朱抱真.1958.大气环流的若干基本问题.北京:科学出版社,159pp.
    92.叶笃正,陶诗言,李麦村.1958.在6月和10月大气环流的突变现象,气象学报,29:249~263.
    93.叶笃正,高由禧等. 1979.青藏高原气象学.北京:科学出版社. 278pp.
    94.晏红明,肖子牛,张小玲等.2005.低纬高原地区南支槽强降水中尺度MCS系统的模拟与分析.高原气象.24(5):672~684.
    95.祝从文,何金海,谭言科.2004.春夏季节转换中亚洲季风区副热带高压断裂特征及其可能机制分析.热带气象学报.20(3):237~248.
    96.赵其庚. 1990.侵入青藏高原冷空气过程的等熵位涡分析.气象, 16(6): 9~14.
    97.赵振国,王永光,陈桂英等. 1999.中国夏季旱涝及环境场.北京:气象出版社, 297pp.
    98.赵平,陈隆勋. 2001.35年来青藏高原大气热源气候特征及其于中国降水的关系.中国科学,D辑,31(4): 327~332.
    99.赵亮. 2008.中高纬系统与东亚夏季风相互作用研究.南京信息工程大学理学博士学位论文.216pp.
    100.张鹏飞,鲁亚斌,张杰,普贵明. 2006.一次低纬高原地区大到暴雪天气过程的诊断分析.高原气象. 25 (4):696~703.
    101.朱炳海.1950.中国春季之锋面活动.中国科学.1(1): 71~83.
    102.朱抱真. 1951.西风急流发展过程中的垂直运动.气象学报, 22(2~3):127~135.
    103.朱乾根,谢立安. 1988.1986~1987年北半球冬季亚、澳地区大气环流异常及其与西太平洋SST异常的联系.热带气象. 4 (3):254~262.
    104.朱乾根. 1990.我国的东亚冬季风研究.气象. 16 (1): 3~10.
    105.朱乾根,林锦瑞,寿绍文等.2000.天气学原理和方法.(第三版).北京:气象出版社.649pp.
    106.朱福康等. 1998.藏南暴雪过程的水汽图像.科学通报. 43(20):2232~2235.
    107. Ambrizzi T, Hoskins B J, Hsu H H. 1995. Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52: 3661~3672.
    108. Banerji, S. K., 1950. Methods of foreshadowing monsoon and winter rainfall in India. Indian. J. Meteor. Geophys. 1: 4~14.
    109. Bennetts D A, Hoskins B J. 1979. Conditional symmetric instability- a possible explanation for frontal rainbands. Quart J. Roy. Meteo. Soc., 105: 945~961.
    110. Bjerknes.J., 1966. A possible response of the atmosphere Hadley circulation equatoral anomalies of ocean temperature. Tellus. 18:820~829.
    111. Bolin, B., 1950. On the influence of the Earth's orography on the general character of the westerlies.Tellux,2:184~195.
    112. Brian J. Hoskins and Tercio Ambrizzi. 1993. Rossby wave propagation on a realistic longitudinally varingflow. J Atmos Sci , 50(12):1661~1671.
    113. Chaudhury, A. M. 1950. On the vertical distribution of wind and temperature over Indo-Pakistan along meridian 76°E in Winter. Tellus 2: 56~62.
    114. Charney J.and Eliassen A., 1949. A numerical method for forecasting the perturbations of the middle latitude westerlies. Ibid, 1: 38~54.
    115. Cressman G. P. 1981. Circulation of the West Pacific jet stream. Mon. Wea. Rev., 109:2450~2463.
    116. Davis C. A, Emanuel K.A. 1991. Potential vorticity diagnostics of cyclogenesis. Mon Wea Rev, 119 (8): 1929~1953 .
    117. Davies H. C, Rossa A. M. 1998. PV Frontogenesis and Upper-Tropospheric Fronts. Mon Wea Rev, 126(6): 1528~1539.
    118. Ding Y H., Krishnamurti T N. 1987. Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 105: 2428~2449.
    119. Ding Y H. 1990. Build-up, air mass transformation and propagation of Siberian High and its relation to cold surge in East Asia. Meteorol. Atmos. Phys., 44: 281~292.
    120. Ding Y H. 2007.The variability of the Asian summer monsoon. Journal of the meteorological society of Japan, 85B:21~54.
    121. Dimri A. P., U. C. Mohanty,M. Mandal, 2004. Simulation of Heavy Precipitation Associated with an Intense Western Disturbance over Western Himalayas. Natural Hazards. 31:499~521.
    122. Ganesan. V.1955. Upper and midtropospheric temperature changes associated with upper level troughs over North India. Indian of Journal of Met. & Geophys.6:225~227.
    123. Lou H B, M Yanai.1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979, Part II: Heat and moisture budgets. Mon. Wea. Rev., 112: 966~989.
    124. Lou H B, M Yanai.1983. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979, Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111: 922~944.
    125. He Jinhai, Sun Chenhu, Liu Yunyun,et al. 2007. Seasonal transition features of large-scal moisture transport in the Asian-Australian monsoon region.Advances in atmospheric sciences, 24(1):1~14.
    126. Hseih, Y. P. 1951. On the variation of intensity of the jet stream. The Science Report. Tsing Hwa Univ. 2(2).
    127. Hoskins B J, R Pearce. 1987.大气中大尺度动力过程.孙照渤,屠其璞,雷兆崇译,北京:气象出版社,129pp.
    128. Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc, 111 (470): 877~946.
    129. Huang, R. H.1986. Physical mechanism of influence of heat source anomaly over low latitudes on general circulation over Northern Hemisphere in winter.Scientia Sinica(Series B),29.970~985.
    130. Huang-hsiung Hsu and Shih-Hsun Lin. 1992. Global Teleconnections in the 250mb Streamfunction Fieldduring the Northern Hemisphere Winter. Mon Wea Rev, 120: 1169~1190.
    131. http:// www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.html.
    132. James W. Hurrell. 1995. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269:676~679.
    133. Jong P. C. 1950. The Kumming Quasi-Stationary Front. Jour. Chinese Geophy. Soc., 2, 87~103.
    134. Ju Jianhua,LüJunmei,Caojie,Ren Juzhang.2005. Possible impacts of the Arctic Oscillation on the interdecadal variation of summer monsoon rainfall in East Asia. Adv. Atmos. Sci., 22(1): 39~48.
    135. Krishnamurti T. N., 1961. The subtropical Jet Stream of winter, Journal of meteorology, 16:172~191.
    136. Krishnamurti T. N., 1961. On the role of the subtropical jet stream of winter in the atmospheric general circulation, Journal of Meteorology, 18: 657~670.
    137. Liu Huaqiang, Sun Zhaobo, Wang Ju,et al. 2004. A modeling study of the effects of anomalous snow cover over the Tibetan Plateau upon the south Asian summer monsoon. Adv. Atmo. Sci., 21(6):964~975.
    138. Martin J E, Dloccatelli J, Hobbs P V. 1991.The synoptic evolution of a deep tropospheric frontal circulation and attendant cyclonegenesis. Fifth Conference on Mesoscale Processes,3~9.
    139. Mohri. K. 1953. On the fields of wind and temperature over Japan and adjacent waters during winter of 1950~1951.Tellus.5.
    140. Moore J T , B lak ley P D. 1988. The ro le of frontogenet ical fo rcing and condit ional symmet ric instability in them idw est snow storm of 30~31 January 1982. Mon W ea Rev, 116: 2155~2171.
    141. Murakami T.1981. Orographic influence of the Tibetan plateau on the Asiatic winter monsoon circulation. Part I. Large-scale aspects. Part II. Diurnal variations. Part III. Short-period oscillations. J. Meteor. Soc. Japan, 59:40~84,173~220.
    142. Murakami T, H Nakamura.1983. Orographic effects on the surges and lee- cyclogenesis as revealed by a numerical experiment. Part II. Transient aspects. J. Meteor. Soc. Japan, 61:547~567.
    143. Nakamura H. 1978. Dynamical effects of mountains on the general circulation of the Atmosphere: I. Development of finite -difference schemes suitable for incorporating mountains. II. Effects of mountain barriers on the barotropic jet. J. Meteor. Soc. Japan, 56: 317~352.
    144. Nakamura H. and T. Murakami.1983. Orographic effects on the surges and lee- cyclogenesis as revealed by a numerical experiment. Part I. Time mean aspects. J. Meteor. Soc. Japan, 61:524~546.
    145. Namias, J., and P. F. Clapp, 1949. Confluence theory of the high tropospheric jet stream. J. Meteor., 6,330~336.
    146. Pisharoty P. R. and Desai B. V. 1956. Western disturbances and Indian weather. Ind. J. Meteor. And Geophy.7,333~338.
    147. Plumb R A. 1985. On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42: 217~229.
    148. Queney, P., 1948. The problem of air flow over mountains: A summary of theoretical studies. Bull.of Amer. Met.Soc., 29, 16~26.
    149. Qian Yongfu, Zheng Yiqun,Zhang Yan,et al. 2003. Responses of China’s monsoon climate to snow anomaly over the Tibetan Plateau.International Journal of Climatology, 23: 593~613.
    150. Qinghua Ding, Bin Wang. 2005. Circumglobal Teleconnection in the Northern Hemisphere Summer. J. climate, 18: 3483~3505.
    151. Qin Dahe, Liu Shiyin, Li Peiji. 2006. Snow Cover Distribution, Variability, and Response to Climate Change in Western China. J. climate, 19: 1820~1833.
    152. Ramage C.S. 1952. The relationship between the atmospheric circulation and the normal weather of the Southern Asia and the Western Pacific in winter. Jour. Meteor., 9: 403~408
    153. Ramage C.S.1971.季风气象学,97pp.
    154. Rasmusson E. and T. Carpenter.1982.Variations in tropical sea surface temperature and surface wind field associated with the Southern Oscillation /El Nino. Mon. Wea. Rev., 110:364~384
    155. Shukla J. and J. M. Wallace, 1983. Numerical simulation of the atmosphere response to equatorial sea surface temperature anomalies. J. Atmos. Sci.,40:1613~1630
    156. Tao Shiyan, and Staff Members of Academia Sinica. 1957. On the general circulation over the Eastern Asia(Ⅰ). Tellus, 9:432~446.
    157. Tao Shiyan, and Staff Members of Academia Sinica. 1958. On the general circulation over the Eastern Asia(Ⅱ). Tellus, 10,58~75;(Ⅲ):299~312.
    158. Tercio Amvrizzi, Brian J. Hoskins, Huang-Hsiung Hsu. 1995. Rossby wave and teleconnection patterns in the austral winter. J Atmos Sci , 52(21):3661~3672.
    159. Thompson, B. W., 1951. An essay on the general circulation of the atmosphere over South-East Asia and the west pacific. Quart. J. R. Meteor. Soc., 77:569~597.
    160. Tian S F, Yasunari T. 1998.Climatological aspects and mechanism of Spring Persistent Rains over central China. J Meteorol Soc Jpn, 76(1): 57~71.
    161. Tu-Cheng Yeh, 1950: The circulation of the high troposphere over China in winter of 1945-46. Tellus, 2: 173~183.
    162. Wallace, J M, D S Gutzler.1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109:784~812.
    163. Wang B , Wu R , Fu X. 2000. Pacific East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13: 1517~1536.
    164. Wang B , Wu R , Li T. 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16: 1195~1211.
    165. Wu,T.-W., and Z.Qian. 2003. The relation bwtween the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. climate, 16:125~134.
    166. Yang S, Lau K M, Kim K M. 2002.Variations of the east Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15L: 306~325.
    167. Yao zhensheng.1940.On the origin of the depression in Southern China. Bull. Am. Met. Soc.21: 9~12.
    168. Yin, M. T. 1949. A synoptic-seorologic study of the onset of the Summer monsoon over India and Burma.J. Meteor.6:393~400.
    169. Yihui Ding and T.N. Krishnamurti, 1987. Heat Budget of the Siberian High and the Winter Monsoon. Mon. Wea. Rev. 115:2428~2449.
    170. Yongsheng Zhang,Tim Li,Bin Wang. 2004. Decadal change of the spring snow depth over the Tibetan Plateau: the associated circulation and influence on the east summer monsoon. J. Climate. 17:2780~2793.
    171. Yeh T C.Tao S Y,Li M C.1959.The abrupt change of circulation over the Northern Hemisphere during J une and October.In:The Atmosphere and the Sea in Motion,Scientific Contribution to Rossby Memorial Volume, New York:The Rockefellers Press,249~267.
    172. Yanai M, Song Z. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn, 70: 189~221.
    173. Yanai M, Li C. 1994. Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon Weather Rev, 122(2): 305~323.
    174. Zhang Y., J. M. Wallace, and D. S. Battisti, 1997. ENSO-like interdecadal variability: 1900-93 , J. Climate, 10:1004~1020.
    175. Zhang R., A. Sumi and M. Kimoto, 1996.Impact of El Nino on the East Asian monsoon: A diagnostic study of the 86/87 and 91/92 events, J. Meteor. Soc. Japan, 74:49~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700