用户名: 密码: 验证码:
水果内部品质可见/近红外光谱无损检测方法的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水果是人类饮食结构的基本组成部分,为人体提供了丰富的营养物质。我国是水果生产大国,但并不是水果生产强国,产后加工和处理水平低是导致我国水果品质差、国际市场竞争力弱的主要原因之一,因而实现水果外观和内部品质的快速无损检测及分级已经成为我国水果产业化的必要前提。本研究是对本课题组前期研究(基于机器视觉技术的水果外观品质检测和基于近红外(near infrared, NIR)光谱技术的水果糖、酸度检测)的进一步深入和拓展,目的是为实现水果品质的多指标综合评价。
     本课题以梨和猕猴桃为研究对象,利用可见/近红外光谱分析技术、光纤传感技术和化学计量学分析方法,结合理化分析、水果生理和病理知识,开展水果内部品质主要包括坚实度、维生素C含量的检测研究,并在此基础上建立各品质指标的近红外光谱定量预测模型。本文还利用可见/近红外光谱分析技术结合模式识别方法,对水果内部缺陷、水果品种进行鉴别研究,并建立相应的定性判别或分类模型。
     本研究的主要内容、结果和结论为:
     (1)探索了光谱采集参数对分析结果的影响。解释了Nexus智能型傅立叶变换(Fourier transform, FT)光谱仪在光谱采集时增益、动镜速度和光圈大小等参数的设定依据,并分析了扫描次数和分辨率对光谱和建模结果的影响,结果显示:模型性能随分辨率增加而提高,但扫描时间也随之增加,而扫描次数为64次的时候模型的性能相对较好;分析了用USB4000便携式微型光纤光谱仪采集光谱时积分时间和平均次数等参数的设置依据;
     (2)分析了原始光谱及经预处理后的光谱(包括微分光谱和平滑光谱)的谱线特征,结果显示水果的漫反射原始光谱特征吸收主要在970 nm.1190 nm.1450 nm.1790 nm和1940 nm附近,与O-H和C-H基团的振动和倍频吸收相关;水果的原始透射光谱在680-690 nm.790-800 nm附近的透过率变化比较显著,具有内部褐变缺陷的梨在柄-蒂垂直放置采集的光谱低于750 nm时比完好的梨具有更强的吸收,而在高于750 nm时吸收变弱;在柄-蒂水平放置采集的光谱的特性与柄-蒂垂直放置时的光谱的特性基本一致,只是这一分界点移到了720 nm左右。对平滑光谱的平均吸光度和均方根噪声的方差分析结果显示:不同点数平滑处理对两台光谱仪器所采集的光谱的特征信息的影响不显著。
     (3)分析了水果不同检测部位的光谱信息的差异,对同一水果三个纬度和三个经度的光谱平均吸光度和均方根噪声的方差分析结果显示:水果不同纬度上的光谱差异较大而不同经度上的差异较小。
     (4)基于Chauvenet检验方法对各组样本中的光谱异常样本进行分析,在剔除光谱异常样本后进行梨内部缺陷判别和梨品种分类的定性建模分析;基于杠杆值和学生残差T检验方法对各组样本中的浓度异常样本进行分析,将杠杆值和学生残差值较大的样本暂定为异常样本,通过比较逐一回收后的模型性能确定最终剔除的浓度异常样本,定量分析所用样本同时基于光谱异样本剔除结果和浓度异常样本剔除结果。
     (5)研究了梨内部缺陷的定性判别分析:比较不同仪器和检测方式的判别结果显示,用USB4000微型光纤光谱仪采集的透射光谱建立的模型的判别正确率要高于用FT-NIR光谱仪采集的漫反射光谱建立的模型,由此可以认为用透射光谱进行梨内部缺陷判别的效果要优于漫反射光谱;比较判别分析(Discriminant analysis, DA)、簇类的独立软模式分类法(Soft independent modeling of class analogy, SIMCA)、判别偏最小二乘法(Discriminant partial least squares, DPLS)及概率神经网络(Probobilistic neural network, PNN)四种判别方法对梨内部缺陷的判别结果显示,DPLS模型和PNN模型不适合用于梨内部缺陷的判别分析,SIMCA模型的判别结果略优于DA模型;对两种水果放置方式(柄-蒂垂直和柄-蒂水平)的比较结果显示,在水果柄-蒂水平放置时所采集的透射光谱对缺陷的判别效果更优;比较多种光谱预处理方法和不同建模波段对梨内部缺陷判别结果的影响显示,对储藏期的雪青梨,较优的模型是基于水果水平放置时获得的450-1000 nm经平滑处理后的透射光谱所建的SIMCA模型,校正集和预测集的判别正确率分别为92.68%和78.57%;对储藏期的翠冠梨,较优的模型是基于水果水平放置时获得的450-1000 nm经多元散射校正(Multiplicative scatter correction, MSC)处理后的透射光谱所建的SIMCA模型,校正集和预测集的判别正确率分别为96.15%和88.24%。
     (6)研究了不同品种梨的定性分类分析:比较不同仪器和检测方式的分类结果显示,漫反射光谱的分类效果要优于透射光谱,由USB4000光纤光谱仪获得的漫反射光谱的校正模型的分类效果要优于由傅立叶变换光谱仪获得的漫反射光谱的校正模型,但其预测效果不如InGaAs检测器所获得的漫反射光谱模型的预测效果,综合考虑校正集和预测集的分类正确率,用InGaAs检测器获得的800-2500 nm的近红外漫反射光谱的分类效果最优;比较DA、SIMCA、DPLS及PNN四种方法对不同品种梨的分类结果显示,DA和SIMCA两者的分类结果比较接近的,且明显优于DPLS模型分类结果,PNN校正模型的分类效果与DA或SIMCA分类模型的分类效果相近,但PNN预测模型的预测性能不及DA和SIMCA模型的预测性能,综合考虑校正集和预测集的分类正确率,DA模型的性能最优;比较多种光谱预处理方法和不同建模波段对不同品种梨分类结果的影响显示,基于1100-2500 nm的漫反射光谱经25点平滑后所建立的DA综合模型的分类效果最好,校正集和预测集的分类正确率分别为99.43%和99%。
     (7)研究了梨坚实度的定量分析:比较偏最小二乘回归(Partial least squares regression, PLSR)、主成分回归(Principal components regression, PCR)、多元线性回归(Multi linear regression, MLR)及最小二乘支持向量机(Least square support vector machine, LS-SVM)四种定量校正方法对梨坚实度的检测结果显示,PCR模型和MLR模型的性能总体上不如PLSR模型;基于PCA的LS-SVM模型在包含10个主成分时的模型性能与PSLR原始光谱全波段模型性能相近,05年西子绿梨的LS-SVM模型的校正集和预测集相关系数分别为0.870、0.849, SEC和SEP分别为2.85 N、2.78 N,05年翠冠梨的LS-SVM模型的校正集和预测集相关系数分别为0.943.0.731, SEC和SEP分别为1.15 N、1.98 N,05年雪青梨的LS-SVM模型的校正集和预测集相关系数分别为0.898、0.774, SEC和SEP分别为1.78 N、2.41N;比较多种光谱预处理方法和不同建模波段对梨坚实度检测结果的影响显示,05年西子绿梨的光谱经15点平滑处理后在800-1880 nm和2190-2220 nm所建PLSR模型的性能较优,校正和交互验证的相关系数分别为0.916和0.746, SEC、SEP和SECV分别为2.25 N、3.26 N和3.77 N;05年翠冠梨的光谱经SNV校正处理后在1374-1565 nm、1814-1894 nm和2017-2217 nm所建PLSR模型的性能较优,校正和交互验证的相关系数分别为0.922和0.731, SEC、SEP分别为SECV和1.22 N、2.02 N年雪青梨的光谱2.18 N; 05经15点平滑处理后在所建800-2500 nm模型的性能较优,校正和交互验证的PLSR相关系数分别为0.893和和0.808, SEC、SEP分别为SECV和2.31 N。1.75 N、2.32 N(8)研究了梨坚实度的定量模型修正:用斜率/截距法对05年采收期梨坚实度
     模型的修正结果显示,对于无预处理模型和经平滑、微分和散射校正处理后的模型,经修正后的模型预测结果均有明显改善,预测误差SEP比未修正之前明显减小,修正后坚实度实际值与预测值的差值分布比修正前更接近于零线。
     (9)研究了猕猴桃维生素C含量的定量分析:比较PLSR、PCR、MLR及LS-SVM四种定量校正方法以及多种光谱预处理方法和不同建模波段对猕猴桃维生素C含量的检测结果显示,用猕猴桃原始光谱在全波段范围建立的PLSR模型对维生素C含量的预测性能较优,校正集和预测集的相关系数分别为0.932、0.616,SEC、SEP和SECV分别为7.95 mg/100g.15.8 mg/lOOg和17.5 mg/100g; PCR模型的性能总体上不如PLSR模型;用11个波长的光谱信息建立MLR模型的校正集相关系数达到0.9以上,基本接近PLSR模型的校正性能,交互验证的性能则明显优于PLSR模型,不过预测性能比较差;基于PCA的LS-SVM模型随着所含主成分数的增加,性能不断地改善,但总体性能不如PLSR模型;用PLS因子权重替代主成分建立的LS-SVM模型的性能也随着模型所含因子数的增加而不断地改善,与PLSR较优模型使用相同因子数时,校正集和预测集的相关系数分别为0.926和0.907,SEC和SEP分别为8.44mg/100g和8.78mg/100g,虽然校正性能略微变差,但预测性能明显提高。
Fruit is one of the main components of human diet. It provides abundant nutritional elements for human body. China is a big fruit producer, but not powerful. One of the important reasons is the low fruit quality and weak competitiveness in world market caused by low commercialization treatment ability for post-harvest fruit. Therefore, rapid and nondestructive detection and classification of fruit external and internal qualities becomes necessary for fruit industrialization of our country. This study is a further extension of the former research projects done by our group members-fruit external quality detection using machine vision technique and fruit sugar content and acidity detection using near infrared (NIR) spectroscopy, in order to evaluate the fruit quality with multiple quality indices.
     The research objects are pears and kiwifruits. Detection of pear firmness and kiwifruit vitamin C content were studied using visible/NIR spectroscopy, optic fiber sensor and chemometrics techniques combined with physical-chemical analysis and fruit physiological and pathological knowledge. Quantitative models were established based on visible/NIR spectra for fruit firmness and vitamin C content determination. In this dissertation, pear internal defect discriminant and pear variety classification were also studied using visible/NIR spectroscopy technique and pattern recognition methods. Qualitative models were established for pear internal defect discriminant and variety classification.
     The main results and conclusions were:
     1. The influence of spectra acquisition parameters on spectra and modeling results were analyzed. For FT-NIR spectrometer, the setting principal of gain, moving mirror velocity and aperture parameters were explained. The influence of scan number and resolution on spectra and modeling results were analyzed. The results indicated that: model performance was improved with resolution increasing, but the time cost for scanning also increased. Models were relatively better when the scan number was 64. For USB2000/4000 miniature optic fiber spectrometer, the setting principal of integral time and average time were also explained.
     2. The curve characteristics of fruit original spectra and spectra after derivative and smoothing pretreatments were analyzed. Main absorption properties on fruit diffuse reflectance spectra were around 970 nm,1190 nm,450 nm,1790 nm and 1940 nm, which were related to O-H and C-H functional groups. The transmittance changes on transmission spectra were much obvious around 680-690 nm and 790-800 nm. With fruit stem-calyx vertical, spectra of pears with internal defect have absorbed more light than sound pears below 750 nm, and absorbed less light than sound pears above 750 nm. With fruit stem-calyx horizontal, the characteristics of defect pear and sound pear were nearly the same, but the threshold moved to 720 nm. The results of variation analysis (ANOVA) of average absorbance and root mean square noise for original spectra and smoothed spectra showed that the spectra characteristics were not influenced by smoothing pretreatments with different points for both FT-NIR and USB2000/4000 spectrometers.
     3. The difference of spectra acquired from different fruit locations was analyzed. The results of ANOVA of average absorbance and root mean square noise for spectra acquired from three latitudes and three longitudes (nine points) on each fruit shown that the difference of spectra from different latitudes were much more than the difference of spectra from different longitudes.
     4. Spectra outliers in each sample set were analyzed by Chauvenet testing method. Qualitative models for pear internal defect discriminant and pear variety classification were established after eliminating spectra outliers. Concentration outliers in each sample set were analyzed by leverage and student residual testing method. Samples with relatively larger leverage value or student residual value were considered as outlier and removed from the sample set firstly. And then they were reclaimed to the model one by one to see whether they provided any useful information or not. Quantitative models for pear firmness and kiwifruit vitamin C content detection were established based on both spectra outlier elimination and concentration outlier elimination.
     5. Qualitative analysis of pear internal defect: Comparison results of different spectrometers (or detectors) and detection modes indicated that discriminant accuracy of models based on transmission spectra using USB4000 miniature optic fiber spectrometer were much better than the accuracy of models based on diffuse reflectance spectra using FT-NIR spectrometer, which can be concluded that transmission spectra were more suitable for pear internal defect discriminant. Comparison results of different pattern recognition methods of discriminant analysis (DA), soft independent modeling of class analogy (SIMCA), discriminant partial least squares (DPLS), and probabilistic neural networks (PNN) indicated that DPLS and PNN models were not suitable for pear internal defect discriminant, and the discriminant results of SICMA model were a bit better than those of DA model. Comparison results of two fruit placing modes (stem-calyx vertical and stem-calyx horizontal) indicated that discriminant accuracy of the model using spectra acquired with fruit stem-calyx horizontal was much better. Comparison results of different spectra pretreatments and different wavebands showed that:For Xueqing pears after storage, the SIMCA model based on spectra acquired with fruit stem-calyx horizontal in 450-1000 nm after smoothing pretreatment was much better. The discriminant accuracy of calibration and validation were 92.68%and 78.57%, respectively. For Cuiguan pears after storage, the SIMCA model based on spectra acquired with fruit stem-calyx horizontal in 450-1000 nm and using multiplicative signal correction (MSC) pretreatment was much better. The discriminant accuracy of calibration and validation were 96.15%and 88.24%, respectively.
     6. Qualitative analysis of pear variety: Comparison results of different spectrometers (or detectors) and detection modes indicated that classification correctness of models based on diffuse reflectance spectra were much better than that of models based on transmission spectra. According to the correctness of both calibration and validation, the best model was based on diffuse reflectance spectra acquired by InGaAs detector in the range of 800-2500 nm. Comparison results of models using DA, SIMCA, DPLS, and PNN methods indicated that the classification correctness of DA and SIMCA models were very close, and were much better than that of DPLS model. The calibration results of PNN model were close to those of DA and SIMCA models, but the prediction results were much worse. According to the correctness of both calibration and validation, the performance of DA model was the best. Comparison results of different spectra pretreatments and different wavebands showed that:DA model using diffuse reflectance spectra in 1100-2500 nm and after 25 points smoothing pretreatments turned out the best results, with classification correctness of 99.43%and 99%for calibration and validation, respectively.
     7. Quantitative analysis of pear firmness: Comparison results of different calibration methods of partial least square regression (PLSR), principal components regression (PCR), multi linear regression (MLR), and least square support vector machines (LS-SVM) showed that the performance of PLSR model was better than PCR model and MLR model. The performance of LS-SVM model using ten principal components was close to that of PLSR model. For Xizilv pears (2005), the correlation coefficients of calibration and validation were 0.870 and 0.849, respectively; standard error of calibration (SEC) and standard error of prediction (SEP) were 2.85 N and 2.78 N, respectively. For Cuiguan pears (2005), the correlation coefficients of calibration and validation were 0.943 and 0.731, respectively; SEC and SEP were 1.15 N and 1.98 N, respectively. For Xueqing pears (2005), the correlation coefficients of calibration and validation were 0.898 and 0.774, respectively; SEC and SEP were 1.78 N and 2.41 N, respectively.
     Comparison results of different spectra pretreatments and different wavebands showed that:For Xizilv pears (2005), the performance of PLSR model established in 800-1880 nm and 2190-2220 nm after 15 points smoothing pretreatments was much better, the correlation coefficients of calibration and validation were 0.916 and 0.746, respectively; SEC, SEP and standard error of cross validation (SECV) were 2.25 N, 3.26 N and 3.77 N, respectively. For Cuiguan pears (2005), the performance of PLSR model established in 1374-1565 nm,1814-1894 nm and 2017-2217 nm after standard normal variate (SNV) correction was much better, the correlation coefficients of calibration and validation were 0.922 and 0.731, respectively; SEC, SEP and SECV were 1.22 N,2.02 N and 2.18 N, respectively. For Xueqing pears (2005), the performance of PLSR model established in 800-2500 nm after 15 points smoothing pretreatments was much better, the correlation coefficients of calibration and validation were 0.893 and 0.808, respectively; SEC, SEP and SECV were 1.75 N,2.32 N and 2.31 N, respectively.
     8. Quantitative model modification for pear firmness prediction: The modification results of pear firmness models using slope/incept method indicated that the predictive performance of models after modification was improved obviously compared to that of models before modification, not only for spectra without pretreatments but also for spectra with smoothing, derivative, or scattering correction pretreatments. After modification, SEP decreased distinctively, and the difference distribution of actual and predicted firmness become closer to zero line.
     9. Quantitative analysis of kiwifruit vitamin C content: Comparison results of different calibration methods of PLSR, PCR, MLR and different spectra pretreatments and different wavebands showed that the performance of PLSR model using original spectra in 800-2500 nm was much better, the correlation coefficients of calibration and validation were 0.932 and 0.616, respectively; SEC, SEP and SECV were 7.95 mg/100g,15.8 mg/100g and 17.5 mg/100g, respectively. PCR model performed worse than PLSR model. The correlation coefficient of MLR calibration using eleven wavelengths was above 0.9, which is close to PLSR calibration performance, and the cross validation performance was better than PSLR model, however, the prediction performance was much worse. The performance of LS-SVM model based on principal component analysis (PCA) was improved with more principal components included, but it was also worse than PLSR model.
     Using PLS factor loadings instead of principal component scores, the performance of LS-SVM model can be improved and also increased with more factors included. When LS-SVM using the same factors as PLSR model, the correlation coefficients of calibration and validation were 0.926 and 0.907, respectively; SEC and SEP were 8.44 mg/100g and 8.78 mg/100g, respectively. Although, the calibration performance was a bit worse than PLSR model, the prediction performance was improved distinctively.
引文
1. 李锡香等编著.新鲜果蔬的品质及其分析法.北京:中国农业出版社,1994.
    2. 张吉国,胡继连,张兆新.我国果品产业的发展现状与对策.山东农业大学学报(社会科学版),2002,4(3):31-34.
    3. 中华人民共和国农业部农业信息网,历年全国农业统计提要,http://www.agri.gov.cn/sjzl/.
    4. 刘汉成,易法海.中国水果出口特征及国际竞争力分析.农业现代化研究,2007,28(4):450--453.
    5. Food and Agriculture Organization of the. United Nations, Imports and Exports of Selected Agricultural Commodities, Group II (2004),http://www.fao.org/statistics/yearbook/vol_1_1/xls/c17.xls.
    6. 何乃波.山东果业发展与结构优化研究:[博士学位论文].山东:山东农业大学,2005.
    7. 饶秀勤.基于机器视觉的水果品质实时检测与分级生产线的关键技术研究:[博士学位论文].浙江:浙江大学,2007.
    8. 中华人民共和国科学技术部,国民经济和社会发展第十个五年计划科技教育发展专项规划(科技发展规划),http://www.most.gov.cn/ztzl/gjzcqgy/zcqgylshg/t20050831_24434.htm.
    9. 中华人民共和国科学技术部,国家中长期科学与技术发展规划纲要(2006-2020年),http://www.most.gov.cn/kjgh/.
    10. 韩东海,刘新鑫,涂润林.果品无损检测技术在苹果生产和分级中的应用.世界农业,2003,(1):42-44.
    11. 莫润阳.无损检测技术在水果品质评价中的应用.物理学和高新技术,2004,33(11):848-851.
    12.应斌斌,韩东海.农产品无损检测技术.北京:化学工业出版社,2005.
    13. 叶齐政,姚宏霖,李黎等.根据水果阻抗的特征频率变化测定采后水果成熟度的方法.植物生理学通讯,1999,35(4):304-307.
    14. 胥芳,计时鸣,张立彬等.水果电特性的无损检测在水果分选中的应用.农业机械学报,2002,33(2):53-56.
    15. 张立彬,胥芳,周国君等.苹果的介电特性与新鲜度的关系研究.农业工程学报,1996,12(3):186~190.
    16. 初旭宏.浅谈农产品无损检测.现代化农业,2006,1:6-7.
    17. Abbott J.A., D.R. Massie, B.L. Upchurch, et al. Nondestructive sonic firmness measurement of apples. Transactions of the ASAE,1995,38(5):1461-1466.
    18. Mizrach A. Determination of avocado and mango fruit properties by ultrasonic technique. Ultrasonics,2000, (38): 717-722.
    19. Galili N., I. Shmulevich, and N. Benichou. Acoustic testing of avocado for fruit ripeness evaluation. Transactions of the ASAE,1998,41(2):399-407.
    20. 饶秀勤,应义斌,吕飞玲等.水果声学特性测试系统的研制.农业机械学报,2004,35(2):69-71.
    21.周祖锷.农业物料学.北京:农业出版社.1994.
    22. Reay P.F., and J.E. Lancaster. Accumulation of anthocyanins and quercetin glycosides in'Gala'and'Royal Gala' apple fruit skin with UV-B-Visible irradiation: modifying effects of fruit maturity, fruit side, and temperature. Scientia Horticulturae,2001,90(1-2):57-68.
    23. 韩东海,安部武美.用紫外线自动检测柑橘损伤果的研究.农业机械学报,1999,30(1):54-57.
    24. Zude M. Comparison of indices and multivariate models to non-destructively predict the fruit chlorophyll by means of visible spectrometry in apple fruit. Analytica Chimica Acta,2003,481(1):119-126.
    25. Barcelon E.G., S. Tojok. and K. Watanabe. X-ray computed tomography for internal quality evaluation of peaches. Journal of Agricultural Engineering Research,1999, (49):85-98.
    26. Kim S., T.F. and Schatzki. Apple water-core sorting system using X-ray imagery:I. Algorithm development. Transactions of the ASAE,43(6):1695-1702.
    27. Kim S., and T.T. Schatzki. Detection of pinholes in almonds trough X-ray imaging. Transactions of the ASAE, 44(4):997-1003.
    28. Tao Y., P.H. Heinemann, and Z. Varghese. Machine vision for color inspection of potatoes and apples. Transactions of the ASAE,1995,38(5):1555-1561.
    29. Ying Y.B., H.S. Jing, Y. Tao, et al. Detecting stem and shape of pear with ANN and Fourier transformation. Transactions of the ASAE,2003,46(1):157-162.
    30. 应义斌,饶秀勤,赵匀等.机器视觉技术在农产品品质自动误别中的应用(Ⅰ).农业工程学报,2000,31(3):112~116.
    31.杜锋,雷鸣.电子鼻及其在仪器工业中的应用.食品科学,2003,24(5):161-163.
    32. 闫军.电子感受传感器技术发展动态.传感器世界,2001,7(7):16-18.
    33. 胡洁,李蓉,王平.人工味觉系统-电子舌的研究.传感技术学报,2001,(2):169~179.
    34. Zhou R., Y.F. Li. Texture analysis of MR image for predicting the firmness of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua) during storage using an artificial neural network. Magnetic Resonance Imaging,2007,25(5): 727-732.
    35. Chayaprasert W., R. Stroshine. Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor. Postharvest Biology and Technology,2005,36(3):291-301.
    36. Thybo A.K., S.N. Jespersen, P.E. Laerke, et al. Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Magnetic Resonance Imaging,2004,22(9):1311-1317.
    37. Sezginturk M.K., T. Goktug, and E. Dinckaya. A biosensor based on catalase for determination of highly toxic chemical azide in fruit juices. Biosensors and Bioelectronics,2005,21(4):684-688.
    38. Jawaheer S., S.F. White, S.D.D.V. Ruhgooputh, et al. Development of a common biosensor format for an enzyme based biosensor array to monitor fruit quality. Biosensors and Bioelectrics,2003,18(12):1429-1437.
    39. Smyth A.B., P.C. Talasila, and A.C. Cameron. An ethanol biosensor can detect low-oxygen injury in modified atmosphere packages of fresh-cut produce. Postharvest Biology and Technology,1999,15(2):127-134.
    40. 陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术.北京:中国石化出版社,2007(第二版).
    41.李民赞,韩东海,王秀.光谱分析技术及其应用.北京:科学出版社,2006.
    42.严衍禄,赵龙莲:韩东海,等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    43. 王艳斌,褚小立:陆婉珍.近红外光谱定量与定性分析规范介绍.见:陆婉珍,袁洪福,褚小立,王艳斌编.当代中国近红外光谱技术-全国第一届近红外光谱学术会议论文集.北京:中国石化出版社,2006,99-105.
    44. ASTM E1655 Standard Practices for Infrared Multivariate Quantitative Analysis
    45. ASTM E1790 Standard Practice for Near Infrared Qualitative Analysis
    46. Norris K.H. Reports on design and development of a new moisture meter. Agricultural Engineering,1964,45(7): 370-372.
    47. Clark C.J., V.A. McGlone, H.N. De Silva, M.A. Manning, J. Burdon, and A.D. Mowatt. Prediction of storage disorders of kiwifruit (Actinidia chinensis) based on visible-NIR spectral characteristics at harvest. Postharvest Biology and Technology,2004,32:147-158.
    48. Lammertyn J., B. Nicolai, B.K. Ooms, V. De Smedt, and J. De Baerdemaeker. Non-destructive measurement of acidity, soluble solids and firmness of Jonagold apples using NIR spectroscopy. Transactions of the ASAE,1998,41: 1089-1094.
    49. Ozanich R. M.2003, US Patent Specification 6512577 B1.
    50. Temma T., K. Hanamatsu, and F. Shinoki. Development of a portable near infrared sugar-measuring instrument. Journal of Near Infrared Spectroscopy,2002,10(1):77-83.
    51. Lu R., and D. Ariana. A near-infrared sensing technique for measuring internal quality of apple fruit. Applied Engineering in Agriculture,2002,18(5):585-590.
    52. Lu R., D.E. Guyer, and R.M. Beaudry. Determination of firmness and sugar content of apples using near-infrared diffuse reflectance. Journal of Texture Studies,2000,31:615-630.
    53. Lu R. Predicting firmness and sugar content of sweet cherries using near-infrared diffuse reflectance spectroscopy. Transactions of the ASAE,2001,44(5):1265-1271.
    54. Peiris K.H.S., G.G. Dull, R.G. Leffler, S.J. Kays. Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solid content in processing tomatoes. Journal of the American Society for Horticultural Science,1998,123(6):1089-1093.
    55. Peiris K.H.S., G.G. Dull, R.G. Leffler, and S.J. Kays. Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches. Journal of the American Society for Horticultural Science,1998, 123(5):898-905
    56. Rodriguez-Saona L.E., S.F. Fredrick, M.A. McLaughlin, and E.M. Calvey. Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydrate Research,2001,336:63-74.
    57. Park B., J.A. Abbott, K.J. Lee, C.H. Choi, and K.H. Choi. Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of Delicious and Gala apples. Transactions of the ASAE, 2003,46(6):1721-1731.
    58. Miller W.M., and M. Zude-Sasse. NIR-based sensing to measure soluble solids content of Florida citrus. Applied Engineering in Agriculture,2004,20(3):321-327.
    59. Singh P.C., S. Bhamidipati, R.K. Singh, R.S. Smith, and P.E. Nelson. Evaluation of in-line sensors for prediction of soluble and total solids/moisture in continuous processing of fruit juices. Food Control,1996,7(3):141-148.
    60. Slaughter D.C., J.F. Thompson, and E.S. Tan. Nondestructive determination of total and soluble solids in fresh prune suing near infrared spectroscopy. Postharvest Biology and Technology,2003,28:437-444.
    61. Slaughter D.C., C.G. Cavaletto, L.D. Gautz, and R.E. Paull. Non-destructive determination of soluble solids in papayas using near infrared spectroscopy. Journal of Near Infrared Spectroscopy,1999,7(4):223-228.
    62. McGlone V.A., R.B. Jordan, R. Seelye, and P.J. Martinsen. Comparing density and NIR methods for measurement of kiwifruit dry matter and soluble solids content. Postharvest Biology and Technology,2002,26:191-198.
    63. McGlone V.A., J.C. Christopher, and R.B. Jordan. Comparing density and VNIR methods for predicting quality parameters of yellow-fleshed kiwifruit (Actinidia chinensis). Postharvest Biology and Technology,2007,46:1-9.
    64. McGlone V.A., R.B. Jordan, R. Seelye, and C.J. Clark. Dry-matter-a better predictor of the post storage soluble solids in apples? Postharvest Biology and Technology,2003,28:431-435.
    65. McGlone V.A., and S. Kawano. Firmness, dry-matter and soluble-solids assessment of postharvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology,1998,13:131-141.
    66. McGlone V.A., D. Fraser, R.B. Jordan, and R. Kunnemeyer. Internal quality assessment of mandarin fruit by vis/NIR spectroscopy. Journal of Near Infrared Spectroscopy,2003,11(5):323-332.
    67. McGlone V.A., and P.J. Martinsen. Transmission measurement on intact apples moving at high speed. Journal of Near Infrared Spectroscopy,2004,12:37-43.
    68. McGlone V.A., R.B. Jordan, and P.J. Martinsen. Vis/NIR estimation at harvest of pre- and post-storage quality yindices for "Royal Gala" apple. Postharvest Biology and Technology,2002,25:135-144.
    69. Clark C.J., V.A. McGlone, C. Requejo, A. White,and A.B. Woolf. Dry matter determination in "Hass" avocado by NIR spectroscopy. Postharvest Biology and Technology,2003,29:300-307.
    70. Martinsen P., and P. Schaare. Measuring soluble solids distribution in kiwifruit using near-infrared imaging spectroscopy. Postharvest Biology and Technology,1998,14:271-281.
    71. Schaare P.N., and D.G. Fraser. Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidai chinensis).Postharvest Biology and Technology,2000,20:175-184.
    72. Osborne S.D.. and R. Kunnemeyer. A low-cost system for the grading of kiwifruit. Journal of Near Infrared Spectroscopy,1999,7(1):9-15.
    73. Peirs A., A. Schenk, and B.M. Nicolai. Effect of national variability among apples on the accuracy of VIS-NIR calibration models for optimal harvest date predictions. Postharvest Biology and Technology,2005,35:1-13.
    74. Nicolai B.M., K.I. Theron, and J. Lammertyn. Kernal PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemometrics and Intelligent Laboratory Systems,2007,85:243-252.
    75. Peirs A., N. Scheerlinck, K. Touchant, and B.M. Nicolai. Comparison of Fourier Transform and dispersive near-infrared reflectance spectroscopy for apple quality measurements. Biosystems Engineering,2002,81(3): 305-311.
    76. Nicolai B.M., B.E. Verlinden, M. Desmet, S. Saevels, W. Saeys, K. Theron, R. Cubeddu, A. Pifferi, and A. Torricelli. Time-resolved and continusous wave NIR reflectance spectroscopy to predict souble solids content and firmness of pear. Postharvest Biology and Technology,2008,47:68-74.
    77. Peirs A., J. Tirry, B. Verlinden, P. Darius, and B.M. Nicolai. Effect of biology variability on the robustness of NIR models for soluble solids content of apples. Postharvest Biology and Technology,2003,28:269-280.
    78. Peirs A., N. Scheerlinck, and B.M. Nicolai. Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents. Postharvest Biology and Technology,2003,30:233-248.
    79. Lammertyn J., A. Peirs, J.De Baerdemaeker,and B.M. Nicolai. Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biology and Technology,2000,18:121-132.
    80. Cozzolino D., M.B. Esler, R.G. Dambergs, W.U. Cynkar, D.R. Boehm, I.L. Francis, and M. Gishen. Prediction of
    colour and pH in grapes using a diode array spectrophotometer (400-1100 nm). Journal of Near Infrared Spectroscopy,2004,12(2):105-111.
    81. Guthrie J.A., D.J. Reid, and K.B. Walsh. Assessment of internal quality attributes of mandarin fruit.2. NIR calibration model robutness. Austrian Journal of Agricultural Research,2005,56(4):417-426.
    82. Guthrie J.A., K.B. Walsh, D.J. Reid,and C.J. Liebenberg. Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development. Austrian Journal of Agricultural Research,2005,56(4):405-416.
    83. Guthrie J.A., and K.B. Walsh. Influence of environmental and instrumental variables on the non-invasive prediction of Brix in pineapple using near infrared spectroscopy. Austrian Journal of Experimental Agriculture,1999,39(1): 73-80.
    84. Guthrie J.A., C.J. Liebenberg, and K.B. Walsh. NIR model development and robustness in prediction of melon fruit total soluble solids. Austrian Journal of Agricultural Research,2006,57(4):411-418.
    85. Guthrie J.A., and K.B. Walsh. Non-destructive assessment of pineapple and mango fruit quality using near infra-red spectroscopy. Australian Journal of Experimental Agriculture,1997,37(2):253-263.
    86. Greensill C.V., and K.B. Walsh. A remote acceptance probe and illumination configuration for spectral assessment of internal intact fruit. Measurement Science and Technology,2000,11:1674-1684.
    87. Greensill C.V., and D.S. Newman. An investigation into the determination of the maturity of pawpaws (Carica papaya) from NIR transmission spectra. Journal of Near Infrared Spectroscopy,1999,7(2):109-116.
    88. Walsh K.B., J.A. Guthrie, and J.W. Burney. Application of commercially available, low-cost, miniaturise NIR spectrometers to the assessment if the sugar content of intact fruit. Australian Journal of Plant Physiology,2000, 27(12):1175-1186.
    89. Walsh K.B., M. Golic, and C.V. Greensill. Sorting of fruit using near infrared spectroscopy: application to a range of fruit and vegetables for soluble solids and dry matter content. Journal of Near Infrared Spectroscopy,2004,12(3): 141-148.
    90. Long R.L., and K.B. Walsh. Limitations to the measurement of intact melon total soluble solids using near infrared spectroscopy. Australian Journal of Agricultural Research,2006,57(4):403-410.
    91. Golic M., and K.B. Walsh. Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stone fruit for total soluble solids content. Analytica Chimica Acta,2006,555:286-291.
    92. Herrera J., A. Guesalaga, and E. Agosin. Shortwave-near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Meas. Sci. Techno.,2003,14:689-697.
    93. Tarkosova J., and J. Copikova. Determination of carbohydrate content in bananas during ripening and storage by near infrared spectroscopy. Journal of Near Infrared Spectroscopy,2000,8(1):21-26.
    94. Roger J.M., F. Chauchard. V. Bellon-Maurel. EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemometrics and Intelligent Laboratory Systems,2003,66:191-204.
    95. Chauchard F., R. Cogdill, S. Roussel, J.M. Roger, and V. Bellon-Maurel. Application of LS-SVM to non-linear phenomena in NIR spectroscopy:development of a robust and portable sensor for acidity prediction in grapes. Chemometrics and Intelligent Laboratory Systems,2004,71:141-150.
    96. Zude M., B. Herold. J.M. Roger. V. Bellon-Maurel. and S. Landahl. Nondestructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life. Journal of Food Engineering,2006,77: 254-260.
    97. Qing Z., B. Ji, and M. Zude. Wavelength selection for prediction physicochemical properties of apple fruit based on near-infrared spectroscopy. Journal of Food Quality,2007,30:511-526.
    98. Chen J.Y., H. Zhang, and R. Matsunaga. Rapid determination of the main organic acid composition of raw Japanese apricot fruit juices using near-infrared spectroscopy. Journal of Agricultural and Food Chemistry,2006,54(26); 9652-9657.
    99. Lee K., G. Kim, S. Kang, J. Son, D. Choi, and K. Choi. Measurement of sugar contents in citrus using near infrared transmittance. Advances in nondestructive evaluation, PT 1-3 Key Engineering Materials,2004,270-73; 1014-1019, part 1-3.
    100. Alamar M.C., E. Bobelyn, J. Lammertyn, B.M. Nicolai, and E. Molto. Calibration transfer between NIR diode array and FT-NIR spectrophotermeter for measuring the soluble solids contents of apple. Postharvest Biology and Technology,2007,45:38-45.
    101. Rambla F.J., S. Garrigues, and M. de la Guardia. PLS-NIR determination of total sugar, glucose, fructose and sucrose in aqueous solutions of fruit juices. Analytica Chemica Acta,1997,344:41-53.
    102. Carlini P., R. Massantini, and F. Menccarelli. Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. Journal of Agricultural and Food Chemistry,2000,48(11):5236-5242.
    103. Ventura M., A. De Jager, H. De Putter, and F.P.M.M. Roelofs. Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy (NIRS). Postharvest Biology and Technology,1998,14:21-27.
    104. Kavdir I., R. Lu, D. Ariana, and M. Ngouajio. Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers. Postharvest Biology and Technology,2007,44:165-174.
    105. Sirisomboon P., M. Tanaka, S. Fujita, and T. Kojima. Evaluation of pectin constituents of Japanese pear by near infrared spectroscopy. Journal of Food Engineering,2007,78:701-707.
    106. Saranwong S., J. Sornsriichai, S. Kawano. Performance of a portable near infrared instrument for Brix value determination of intact mango fruit. Journal of Near Infrared Spectroscopy,2003,11 (3):175-181.
    107. Saranwong S., J. Sornsriichai, and S. Kawano. Improvement of PLS calibration for Brix value and dry matter of mango using information from MLR calibration. Journal of Near Infrared Spectroscopy,2001,9(4):287-295.
    108. Saranwong S., J. Sornsriichai, and S. Kawano. Prediction of ripe-stage eating quality of mango fruit from its harvest quality measured nondestructively by near infrared spectroscopy. Postharvest Biology and Technology, 2004,31:137-145.
    109.金同铭,刘玲,唐晓伟.非破坏性评价黄瓜的营养成分.华北农学报,1996.11(1):103~108.
    110.金同铭,崔洪昌.检测草莓中多组分的新方法-近红外光谱法.华北农学报,1994,9(2):120~123.
    111.金同铭,崔洪昌,河野澄夫.近红外(N1R)光谱法测定完整苹果糖的含量.华北农学报,1995,10(2):87~90.
    112.金同铭,崔洪昌.苹果中蔗糖、葡萄糖、果糖、苹果酸的非破坏检测,华北农学报,1997,12(1):91~96.
    113. Zou X.B., J.W. Zhao, X.Y. Huang, and Y.X. Li. Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of "Fuji" apple based on different PLS models. Chemometrics and Intelligent Laboratory Systems,2007,87:43-51.
    114.邹小波,赵杰文.独立分量分析预处理法提高苹果糖度模型预测精度研究.分析化学研究简报,2006,34(9):1291-1294.
    115.张海东,赵杰文,刘木华.基于混合线性分析的苹果糖度近红外光谱检测.农业机械学报,2006,37(4):149-151,163.
    116.张海东,赵杰文,刘木华.基于正交信号校正和偏最小二乘(OSC/PLS)的的苹果糖度近红外光谱检测.食品科学,2005,26(6):189~192.
    117.李艳肖,邹小波,董英.用遗传区间偏最小二乘法建立苹果糖度近红外光谱模型.光谱学与光谱分析,2007,27(10):2001-2004.
    118.张文宏,陈世铭,郭立颖.洋香瓜糖度检测之研究—(二)近红外线分析法.农业机械学刊(台湾),1998,7(1):87-98.
    119. Chang W.H., S. Chen, and C.C. Tsai. Development of a universal algorithm for use of NIR in estimation of soluble solids in fruit juices. Transactions of the ASAE,1998,41(6):1739-1745.
    120.陈世铭,张文宏,谢广文.果汁糖度检测模式之研究.农业机械学刊(台湾),1998,7(3):41~60.
    121.陈致平,萧介宗.以手提式近红外线分光光度计侦测梨的糖度与酸度.农业机械学刊(台湾),1999,8(1):49~58.
    122. Liu YD., Y.B. Ying, H.Y Yu, and X.P. Fu. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. Journal of Agricultural and Food Chemistry,2006,54(8): 2810-2815.
    123. Liu YD., Y.B. Ying, X.P. Fu, and H.S. Lu. Experiments on predicting sugar content in apples by FT-NIR technique. Journal of Food Engineering,2007,80:986-989.
    124. Ying Y.B., Y.D.Liu, J.P. Wang, X.P. Fu, and Y.B. Li. Fourier transform near-infrared determination of total soluble solids and available acid in intact peaches. Transactions of the ASAE,2005,48(1):229-234.
    125. Ying Y.B., YD. Liu, and Y Tao. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy. Applied Optics,2005,44(25):5224-5229.
    126. Liu Y.D., and Y.B. Ying. Use of FT-NIR spectrometry in non-invasive measurements of internal quality of'Fuji' apples. Postharvest Biology and Technology,2005,37:65-71.
    127.马广,傅霞萍,周莹,应义斌,徐惠荣,谢丽娟,林涛.大白桃糖度的近红外漫反射光谱无损检测试验研究.光谱学与光谱分析,2007,27(5):907~910.
    128.刘燕德,应义斌.傅里叶近红外光谱的雪青梨酸度偏最小二乘法定量分析.光谱学与光谱分析,2006,26(8):1454-1456.
    129.李建平,傅霞萍,周莹,应义斌,谢丽娟,牛晓颖,闫战科,于海燕.近红外光谱定量分析技术在枇杷可溶性固形物无损顺检测中的应用.光谱学与光谱分析,2006,26(9):1605-1609.
    130.陆辉山,傅霞萍,谢丽娟,应义斌.可见/近红外光估测完整柑橘水果可溶性固形物含量的研究.光谱学与光谱分析,2007,27(9):1727-1730.
    131.田海清,应义斌,陆辉山,徐惠荣:谢丽娟,傅霞萍,于海燕.可见/近红外光谱漫透射技术检测西瓜坚实度的研究,光谱学与光谱分析,2007.27(6):1113~1117.
    132. Hahn F., I. Lopez, and G Hernandez. Spectral detection and neural network discrimination of Rhizoupus Stolonifer spores on red tomatoes. Biosystems Engineering,2004,89(1):93-99.
    133. Carlomagno G., L. Capozzo, G. Attolico, and A. Distante. Non-destructive grading of peaches by near-infrared spectroscopy. Infrared Physics and Technology,2004,46:23-29.
    134. Teerachaichayut S., K.Y. Kil, A. Terdwongworakul, W. Thanapase, and Y. Nakanishi. Nondestructive prediction of translucent flesh disorder in intact mangosteen by short wavelength near infrared spectroscopy. Postharvest Biology and Technology,2007,43:202-206.
    135. Ayora-Canada M.J., B. Muik, Garcia-Mesa J.A., and D. Ortega-Calderon. Fourier-transform near-infrared spectroscopy as a tool for olive fruit classification and quantitative analysis. Spectroscopy Letters,2005:38(6): 769-785.
    136. McGlone V.A., P.J. Martinsen, C.J. Clark, and R.B. Jordan. On-line detection of brownheart in Braeburn apples using near infrared transmission measurements. Postharvest Biology and Technology,2005,37:142-151.
    137. Clark C.J., V.A. McGlone, and R.B. Jordan. Detection of bownheart in "Braeburn" apple by transmission NIR spectroscopy. Postharvest Biology and Technology,2003,28:87-96.
    138. Xing J., C. Bravo. D. Moshou, H. Ramon, and J. De Baerdemaeker. Bruise detection on "Golden Delicious" apples by vis/NIR spectroscopy. Computers and Electronics in Agriculture,2006,52:11-20.
    139. Xing J., S. Landahl. J. Lammertyn, E. Vrindts, and J. De Baerdemaeker. Effects of bruistype on discrimination of bruised and non-bruised "Golden Delicious" apples by VIS/NIR spectroscopy. Postharvest Biology and Technology, 2003,30:249-258.
    140. Xing J., and J. De Baerdemaeker. Fresh bruise detection by predicting softening index of apple tissue using VIS/NIR spectroscopy. Postharvest Biology and Technology,2007,45:176-183.
    141. Leon L., J.D. Kelly, and G. Downey. Detection of apple juice adulteration using near-infrared trasilectance spectroscopy. Applied Spectroscopy,2005,59(5):593-599.
    142.赵杰文,呼怀平,邹小波.支持向量机在苹果分类的近红外光谱模型中的应用.农业工程学报,2007,23(4):149-152.
    143. Cen H.Y., Y. He, and M. Huang. Combination and comparison of multivariate analysis for the identification of orange varieties using visible and near infrared reflectance spectroscopy. European Food Research and Technology, 2007,225(5-6):699-705.
    144. He Y., X.L. Li, and Y.N. Shao. Fast discrimination of apple varieties using Vis/NIR spectroscopy. International Journal of Food Properties,2007,10(1):9-18.
    145. Li X.L., Y. He. and H. Fang. Non-destructive discrimination of Chinese bayberry varieties using Vis/NIR spectroscopy. Journal of Food Engineering,2007,91:357-363.
    146. Xie L.J., Y.B. Ying. and T.J. Ying. Combination and comparison of chemometrics methods for identification of transgenic tomatoes using visible and near-infrared diffuse transmittance technique. Journal of Food Engineering, 2007.82:395-401.
    147. Xie L.J., Y.B. Ying, T.J. Ying, H.Y. Yu. and X.P. Fu. Discrimination of transgenic tomatoes based on visible/near-infrared spectra. Analytica Chimica Acta,2007,584:379-384.
    148. Han D.H., R.L. Tu, C. Lu, X.X. Liu, and Z.H. Wen. Nondestructive detection of brown core in the Chinese pear "Yali" by transmission visible-NIR spectroscopy. Food Control,2006,17(8):604-608.
    149.韩东海,刘心鑫,赵丽丽,王忠义,涂润林,乔伟.苹果水心病的光学无损检测.农业机械学报,2004,35(5):143-146.
    150.王加华,孙旭东,潘璐,孙谦,韩东海.苹果贮藏中水心消失速率的研究.农业工程技术:农产品加工,2007,(7):9-12.
    151.肖松山,范世福,李昀,赵友全.光谱成像技术进展.现代仪器,2003,5:5-8.
    152. Fairchild M., M.R. Rosen, and G.M. Johnson. Spectral and Metameric Color Imaging. http://www.cis.fit.edu/research/mcsl/research/PDFs.
    153. Bianeo Die A., G. Seramo, and G. Spoek. An Introduction to Spectral Imaging. http://www.err.at/hypspbvdoc.
    154. Nicolai B.M., K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, and J. Lammertyn. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Phostharvest Biology and Technology,2007,46:99-118.
    155. Lu R. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology,2004,31:147-157.
    156. Lu R. Prediction of apple fruit firmness by near-infrared multispectral scattering. Journal of Texture Studies,2004, 35:263-276.
    157. Peng Y., and R. Lu. Modeling multispectral scattering profiles for prediction of apple fruit firmness. Transactions of the ASABE,2005,49(8):235-242.
    158. Peng Y., and R. Lu. An LCTF-based multispectral imaging system for estimation of apple fruit firmness: part Ⅰ. Acquisition and characterization of scattering images. Transactions of the ASABE,2006,49(1):259-267.
    159. Peng Y., and R. Lu. An LCTF-based multispectral imaging system for estimation of apple fruit firmness: part Ⅱ. Selection of optimal wavelengths and development of prediction models. Transactions of the ASABE,2006,49(1): 269-275.
    160. Peng Y., and R. Lu. Improving apple fruit firmness predictions by effective correction of multispectral scattering images. Postharvest Biology and Technology,2006,41:266-274.
    161. Peng Y., and R. Lu. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology,2008,48(1):52-62.
    162. Qin J., and R. Lu. Detection of pits in tart cherries by hyperspectral transmission imaging. Transactions of the ASABE,2005,48(5):1963-1970.
    163. Noh H.K., and R. Lu. Hyperspectral laser-iduced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology,2007,43:193-201.
    164. Lu R., and Y. Peng. Hyperspectral Scattering for assessing peach fruit firmness. Biosystems Engineering,2006, 93(2):161-171.
    165. Sugiyama J. Visualization of sugar content in the flesh of a melon by near infrared image. Journal of Agricultural and Food Chemistry,1999,47:2715-2718.
    166. Long R.L., K.B. Walsh, and C.V. Greensill. Sugar "image"of fruit using a low cost CCD camera. Journal of Near
    Infrared Spectroscopy,1998,13:177-186.
    167. Nicolai B.M., E. Lotze. A. Peirs. N. Scheerlinck, and K.I. Theron. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology,2006,40:1-6.
    168. Cheng X., Y. Tao. C.Y. Wang, M.S. Kim, and A.M. Lefcourt. A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Transactions of the ASAE,2004, 47:1313-1320.
    169. Geladi P., and K. Esbensen. The start and early history of chemometrics: selected interviews, Part 1. J. Chemometr., 1990,4:337-354.
    170. Esbensen K., and P. Geladi. The start and early history of chemometrics: selected interviews, Part 2. J. Chemometr., 1990,4:389-412.
    171. Geladi P. The chemometrics in spectroscopy. Part 1.Classical chemometrics. Spectrochimica Acta Part B,2003,58: 767-782.
    172. Defernez M., and E.K. Kemsley. The use and misuse of chemometrics for treating classification problems. Trends in analytical chemistry,1997,16:216-221.
    173. Massart D.L., B.G.M. Vandeginste, L.M.C. Buydens, S.De Jong, P.J. Lewi, and J. Smeyers-Verbeke. Handbook of Chemometrics and Qualimetrics, part A. Amsterdam: Elsevier Science,1997.
    174. Kowalski B.R. Chemometrics: views and propositions. J. Chem. Inf. Comp. Sci.,1975,15:201-203.
    175. Hopke P.K. Review: the evolution of chemometrics. Analytica Chimica Acta,2003,500:365-377.
    176. Blanco M., and I. Villarroya. NIR spectroscopy: a rapid-response analytical tool. Trends in analytical chemistry, 2002,21:240-250.
    177. Greensill C.V., and K.B. Walsh. Optimization of instrument precision and wavelength resolution for the performance of NIR calibration of sucrose in a water-cellulose matrix. Applied spectroscopy,2000b,54:426-430.
    178.许禄,邵学广.化学计量学.北京:科学出版社,2004,第二版.
    179. Nicolet Antaris傅立叶近红外分析仪用户培训手册.060604:62-63.
    180. Ramadan Z., P.K. Hopke, M.J. Johnson, and K.M. Scow. Application of PLS and back-propagation neural networks for the estimation of soil properties. Chemometrics and Intelligent Laboratory Systems,2005,75:23-30.
    181. Wold S., m. Sjostrom, and L. Eriksson. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems,2001,58:109-130.
    182.侯晋,陈国松,王镇浦.人工神经网络的发展及在多元校正中的应用.分析化学学报,2001,17(1):68-74.
    183.闻新,周露,李翔,张宝伟.MATLAB神经网络仿真与应用,科学出版社,北京,2003.
    184.严衍禄.张录达,景茂等.傅里叶变换近红外漫反射光谱分析应用基础的研究.北京农业大学学报,1990,16:5-16.
    185. Dou Y., Y. Sun. Y. Ren, and Y. Ren. Artificial neural network for simultaneous determination of two components of compound paracetamol and diphenhydramine hydrochloride powder on NIR spectroscopy. Analytica Chimica Acta, 2005,528:55-61.
    186. Dou Y., H. Mi, L. Zhao, Y. Ren. and Y. Ren. Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry,2006,351:
    174-180.
    187. Dou Y., Y. Sun, Y. Ren, P.Ju, and Y. Ren. Simultaneous non-destructive determination of two components of combined paracetamol and amantadine hydrochloride in tablets and powder by NIR spectroscopy and artificial neural networks. Journal of Pharmaceutical and Biomedical Analysis,2005,37:543-549.
    188. Zhao L., Y. Dou, H. Mi, M. Ren, and Y Ren. Non-destructive determination of metronidazole powder by using artificial neural networks on short-wavelength NIR spectroscopy. Spectrochimica Acta Part A, 2007, 66: 1327-1332.
    189. Dou Y, H. Mi, L. Zhao, Y. Ren, and Y. Ren. Radial basis function neural networks in non-destructive determination of compound aspirin tablets on NIR spectroscopy. Spectrochimica Acta Part A,2006,65:79-83.
    190. Coen T., W. Saeys, H. Ramon, and J. De Baerdemaeker. Optimizing the tuning parameters of least square support vector machines regression of NIR spectra. Journal of Chemometrics,2006,20:184-192.
    191. Borin A., M.F. Ferrao, C. Mello, D.A. Maretto, and R.J. Poppi Least square support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytic Chimica Acta,2006, 579:25-32.
    192. Pasquini C., and A. F. Bueno. Characterization of petroleum using near-infrared spectroscopy:Quantitative modeling for the true boiling point curve and specific gravity. Fuel,2007,86(12-13):1927-1934.
    193. Inon F.A., S. Garrigues, and M. Guardia. Combination of mid- and near-infrared spectroscopy for the determination of the quality properties of beers Analytica Chimica Acta,2006,571:167-174.
    194. Chalus P., S.Walter, and M. Ulmschneider. Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy. Analytica Chimica Acta,2007,591(2):219-224.
    195. Marengo E., M. Bobba, E. Robotti, and M. Lenti. Hydroxyl and acid number prediction in polyester resins by near infrared spectroscopy and artificial neural networks. Analytica Chimica Acta,2004,511:313-322.
    196. Blanco M. J. Coello, H. Iturriaga, S. Maspoch, and J. Pages. NIR calibration in non-linear systems: different PLS approaches and artificial neural networks. Chemometrics and Intelligent Laboratory Systems,2000,50:75-82.
    197. Kovalenko I.V., G.R. Rippke, and C.R. Hurburgh. Determination of amino acid composition of soybeans (Glycine Max) by near infrared spectroscopy. Journal of Agricultural and Food Chemistry,2006,20:184-192.
    198. Zhao J., Q. Chen, X. Huang, and C.H. Fang. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. Journal of Pharmaceutical and Biomedical Analysis,2006,41: 1198-1204.
    199. Cozzolino D., H.E. Smyth, and M. Gishen. Feasibility study on the use of visible and near infrared spectroscopy together with chemometrics to discriminate between white wines of different varietal origins. Journal of Agricultural and Food Chemistry,2003,51:7703-7708.
    200. Woo Y.A., H.J. Kim, K.R. Ze, and H. Chung. Near-infrared (NIR) spectroscopy for the non-destructive and fast determination of geographical origin of Angelicae gigantis Radix. Journal of Pharmaceutical and Biomedical Analysis,2005,36:955-959.
    201. Downey G., J. McElhinney, and T. Fearn. Specis identification in selection raw homogenized meats by reflectance spectroscopy in the mid-infrared, near-infrared, and visible range. Applied Spectroscopy,2000,54(6):894-899.
    202. Feudal R.N., N.A. Woody, H.W. Tan, A.J. Myles, S.D. Brown, and J. Ferre. Transfer of multivariate calibration models:a review. Chemometrics and Intelligent Laboratory System,2002,64:181-192.
    203. Xie Y. and P.K. Hopke. Calibration transfer as a data reconstruction problem. Analytica Chimica Acta,1999,384: 193-205.
    204. Bergman E., H. Brage, M. Josefson, O. Svensson, and A. Sparen. Transfer of NIR calibrations for pharmaceutical formulations between different instruments. Journal of Pharmaceutical and Biomedical Analysis,2006,41:89-98.
    205. Sohn M., E. Franklin, H. Barton, and H.S. David. Transfer of near infrared calibration model for determining fiber content in flax: effects of transfer samples and standardization prodedure. Applied Spectroscopy, 2007, 61(4): 414-418.
    206. Ulmschneider M., and E. Penigault. Assessing the transfer of quantitative NIR calibrations form a spectrometer to another one. Analusis,2000,28:83-87.
    207. Lin J., S.C. Lo, and C.W. Brown. Caibration transfer from a scanning near-IR spectrophotometer to a FT-near-IR spectrophotometer. Analytica Chemica Acta,1997,349:263-269.
    208. Chu X., H. Yuan, and W. Lu. Model transfer in multivariate calibration. Spectroscopy and Spectral Analysis,2001, 21(6):881-885.
    209. Sjoblom J., O. Svensson, M. Josefson, H. Kullberg, and S. Wold.1998. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics and Intelligent Laboratory Systems 44:229-244.
    210. Wang W., C. Jiang, K. Xu, and B. Wang. Artificial neural network and application in calibration transfer of AOTF-based NIR spectrometer. Proceedings of SPIE,2002,4927:64-70.
    211. Tan C., and M. Li. Calibration transfer between two near infrared spectrometers based on a wavelet packet transform. Analytical sciences,2007,23:201-206.
    212. Dreassi E., G. C eramelli. P.L. Perruccio and P. Corti. Transfer of calibration in near infrared reflectance spectrometry. Analyst,1998,123:1259-1264.
    213. Yoon J., B. Lee, and C. Han. Calibration transfer of near infrared spectra based on compression of wavelet coefficients. Chemometrics and Intelligent Laboratory System,2002,64:1-14.
    214. Chu X., H. Yuan, and W. Lu. Calibration transfer of spectra from near infrared spectrometers by Procrustes analysis. Chinese Journal of Analytical Chemistry,2002,30(1):114-119.
    215. Swierenga H., P.J. Groot, A.P. Weijer, and M.W.J. Derksen. Improvement of PLS model transferability by robu st wavelength selection. Chemometrics ans Intelligent Laboratory System,1998,41:237-248.
    216. Wu Z., X. Xu, R. Yang, G. Yu, and C. Zhang. Application of cross-correlation analysis to model transfer of near infrared spectrum. Spectroscoy and Spectral Analysis,2005,25(12):1975-1977.
    217. Wang Y, H. Yuan, and W. Lu. A new calibration transfer method based on target factor analysis. Spectroscopy and Spectral Analysis,2005,25(3):398-401.
    218. Zhang L., L. Zhang. Y. Li, B. Liu, L. Hu, and J. Wang. Orthogonal signal correction used for calibration transfer of Fourier Transform infrared spectra. Chinese Journal of Analytical Chemistry,2005,33(12):1709-1712.
    219. Chen B., and H. Wang. Calibration transfer between near infrared spectrometric instrument for the determination of
    wine alcoholicity using Shenk's algorithm. Infrared technology,2006,28(4):245-248.
    220. Tian G., X. Chu, H. Yuan, and W. Lu. Application of wavelet transform-piecewise direct standardization on the near infrared analysis model transfer. Chinese Journal of Analytical Chemistry,2006,34(7):927-932.
    221. Tan H, and S.D. Brown. Multivariate calibration of spectral data using dual-domain regression analysis. Analytica Chimica Acta,2003,490:291-301.
    222. Woody N.A., and S.D. Brown. Partial least-squares modeling of continuous nodes in Bayesian networks. Analytica Chimica Acta,2003,490:355-36.
    223. Sum S.T., and S.D. Brown. Standardization of NIR Instruments with Differing Fiber Optic Probes. Applied Spectroscopy,1998,52:869-877.
    224. Gemperline P., and J. Rugged. Spectroscopic calibration for process control. Chemometrics and Intelligent Laboratory Systems,1997,39:29-40.
    225. Smith B.M., and P.J. Gemperline. Bootstrap methods for assessing the performance of Near-infrared pattern classification techniques. Journal of Chemoetrics,2002,16:241-246.
    226. Smith B.M., and P. J. Gemperline. Wavelength Selection and Optimization of Pattern Recognition Methods Using the Genetic Algorithm. Analytica Chimica Acta,2000,423:167-177.
    227. Thissen U., M. Pepers, B. Ustiin, W. J. Melssen, and L. M. C. Buydens. Comparing support vector machines to PLS for spectral regression applications. Chemometrics and Intelligent Laboratory Systems,2004,73:169-179.
    228. Groot de P.J., G. J. Postma, W. J. Melssen, and L. M. C. Buydens. Validation of remote, on-line, near-infrared measurements for the classification of demolition waste. Analytica Chimica Acta,2002,453:117-124.
    229. Swierenga H., F. Wulfert, O. E. de Noord, A. P. de Weijer, A. K. Smilde, and L. M. C. Buydens. Development of robust calibration models in near infra-red spectrometric applications. Analytica Chimica Acta,2000,411, 121-135.
    230. Swierenga H., A. P. de Weijer, R. J. van Wijk, and L. M. C. Buydens. Strategy for constructing robust multivariate calibration models. Chemometrics and Intelligent Laboratory Systems,1999,49:1-17.
    231. Groot de P. J., G. J. Postma, W. J. Melssen, and L. M. C. Buydens. Selecting a representative training set for the classification of demolition waste using remote NIR sensing. Analytica Chimica Acta,1999,392:67-75.
    232. Peinado A.C., F. van den Berg, M. Blanco, and R. Bro. Temperature-induced variation for NIR tensor-based calibration. Chemometrics and Intelligent Laboratory Systems,2006,83:75-82.
    233. Munck L., J. Pram Nielsen, B. Moller, S. Jacobsen, I. S(?)ndergaard, S. B. Engelsen, L. N(?)rgaard, and R. Bro. Exploring the phenotypic expression of a regulatory proteome-altering gene by spectroscopy and chemometrics. Analytica Chimica Acta,2001,446:169-184.
    234. Munck L., L. N(?)rgaard, S. B. Engelsen. R. Bro, and C. A. Andersson. Chemometrics in food science-a demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemometrics and Intelligent Laboratory Systems,1998,44:31-60.
    235. Puxty G., M. Maeder, and K. Hungerbuhler. Tutorial on the fitting of kinetics models to multivariate spectroscopic measurements with non-linear least-squares regression. Chemometrics and Intelligent Laboratory Systems,2006, 81:149-164.
    236. Molloy K.J., M. Maeder. and M.M. Schumacher. Hard modelling of spectroscopic measurements. Applications in non-ideal industrial reaction systems. Chemometrics and Intelligent Laboratory Systems,1999,46:221-230.
    237. Flaten G.R., B. Grung. and O.M. Kvalheim. A method for validation of reference sets in SIMCA modeling. Chemometrics and Intelligent Laboratory Systems,2004,72(1):101-109.
    238. Stordrange L., O.M. Kvalheim, P.A. Hassel, D. Malthe-S(?)renssen, and F.O. Libnau. A comparison of techniques for modelling data with non-linear structure. Journal of Near Infrared Spectroscopy,2003,11:55-70.
    239.侯瑞锋,黄岚,王忠义,徐志龙.农产品组织中光输运规律的初步研究.农业工程学报,2005,21(9):12-15.
    240.薛玲玲,王新宇,张春平,朱明尧,张连顺等.生物组织中的光分布研究.光子学报,2000,29(10):885-889.
    241.王建岗,杨莉松,王桂英,徐至展.光在散射介质中的传输和成像.激光与光电子学进展,2000,(1):14-21.
    242.薛玲玲,张春平,张建东,李加,张光寅.生物组织光学及其进展.激光与光电子学进展,1999,(1):36~42.
    243.丁海曙,王峰,苏畅,林方.近红外光子在生物组织中迁移的仿真及应用.清华大学学报(自然科学版),1999,39(9):5-8.
    244. Birth G.S., C.E.Davis, and W.E.Townsend. The scatter coefficient as a measure of pork quality. Journal of Animal Science,1978,46(3):639-645.
    245. Birth G.S. The light scattering properties of foods. Journal of Food Science,1978,43:916-924.
    246. Birth GS. Diffuse thicknes as a measure of light scattering. Applied Spectroscopy,1982,36(6):675-682.
    247. Yao G, and J. Xia. Optical characterization of beef muscle. Proceeding of SPIE,2005,5996:599613.
    248. Qin J., and R. Lu. Hyperspectral diffuse reflectance for determination of the optical properties of milk and fruit and vegetable juice. Proceeding of SPIE,2005,5996:59960Q.
    249. Lu R. Near-infrared multispectral scattering for assessing internal quality of apple fruit. Proceeding of SPIE,2004, 5271:313-320.
    250. Peng Y., and R. Lu. A liquid crystal tunable filter based multispectral imaging system for prediction of apple fruit firmness. Proceeding of SPIE,2004,5587:91-100.
    251. Lu R., and Y. Peng. A laser-based multispectral imaging system for real-time detection of apple fruit firmness. Proceeding of SPIE,2005,5996:59960F.
    252. Chen P., and V.R. Nattuvetty. Light transmittance trough a region of an intact fruit. Transactions of the ASAE,1980, 23(2):519-522.
    253.苏畅,丁海曙,白净.生物组织光谱学技术.国外医学生物医学工程分册, 1995,18(6):316-323.
    254. Zerbini P.E., M. Grassi, R. Cubeddu, A. Pifferi, and A.Torricelli. Nondestructive detection of brown heart in pears by time-resolved reflectance spectroscopy. Postharvest Biology and Technology,2002,25:87-97.
    255.刘木华,李细荣,黎静,段武茂.水果组织中光子传输的蒙特卡罗模拟研究.中国农业工程学会,2005学术年会论文集:90~94.
    256. Fraser D.G, R.B. Jordan, R. Kunnemeyer, and V.A. McGlone. Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy. Postharvest Biology and Technology,2003,27:185-196.
    257. Qin, J., and R. Lu. Monte Carlo simulation of light propagation in apples.2007 ASABE Annual International Meeting, Paper number:073058.
    258. Wang L., and S.L. Jacques. Use of a laser bean with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium. Applied Optics,1995,34(13):2362-2366.
    259. Savchenko E.P., and V.V. Tuchin. Monte-Carlo simulation of light propagation in a multi-layered biological tissue with optical clearing. Proceeding of SPIE,2000,4162:212-218.
    260. Wang L., S.L. Jacques, and L. Zheng. CONV-convolution for responses to finite diameter photon beam incident on multi-layered tissues. Computer Methods and Programs in Biomedicine,1997,54(3):141-150.
    261.水果市场正经历新的组合.中国水果网,http://www.efruit.com.cn/scdt/dt5.htm
    262.冯双庆等编著.果蔬保鲜技术及常规测试方法.北京:化学工业出版社,1994.
    263.余善鸣等编著.果蔬保鲜与冷冻干燥技术.哈尔滨:黑龙江科学技术出版社,1999.
    264.韩东海,涂润林,刘新鑫,温朝晖.鸭梨黑心病与其果皮颜色、硬度和糖度的方差分析.农业机械学报,2005,36(3):71-74.
    265.郝得平,寇晓虹.梨果实采后果心褐变与细胞膜结构变化的关系.植物生理学通讯,1998,34(6):471-474.
    266.徐惠荣,应义斌.近红外图像和光谱分析技术在农产品品质无损检测中的应用与展望.浙江大学学报(农业与生命科学版),2002,28(4):460~464.
    267. Larrigaudiere C., I. Lentheric, J. Puy, and E. Pinto. Biochemical characterisation of core browning and brown heart disorders in pear by multivariate analysis. Postharvest Biology and Technology,2004,31:29-39.
    268. Bower J.H., W.V. Biasi, and E.J. Mitcham. Effect of ethylene in the storage environment on quality of'Bartlett pears'. Postharvest Biology and Technology,2003,28:371-379.
    269. Ma S.S., and P. M. Chen. Storage disorder and ripening behavior of'Doyenne du Cornice'pears in relation to storage conditions. Postharvest Biology and Technology,2003,28:281-294.
    270.刘燕德.水果糖度和酸度的近红外光谱无损检测研究:[博士学位论文].杭州,浙江大学,2006.
    271.于海燕.黄酒品质和酒龄的近红外光谱分析研究:[博士学位论文].杭州,浙江大学,2007.
    272.苏高利,秦钟,于强.基于最小二乘支持向量机的农田水汽通量建模.生物数学学报,2007,22(1):171-177.
    273.章万锋.基于PCA与LDA的说话人识别研究:[硕士学位论文].杭州,浙江大学,2004.
    274. Specht D.F. Probabilistic neural networks. Neural Networks,1990,3:109-118.
    275.孙晓刚,张建华,侯国莲.基于概率神经网络的凝汽器故障诊断研究.现代电力,2005,22(3):58~61.
    276.国家标准局.GB 6195-86.中华人民共和国国家标准:水果、蔬菜维生素C含量测定法(2,6-二氯靛酚滴定法).北京:中国标准出版社,1986-01-18.
    277. Khan A.A., and J.F.V. Vincent. Anisotropy in the fracture properties of apple flesh as investigated by crack-opening test. Journal of Materials Science,1993,28(1):45-51.
    278. Wang J. Mechanical properties of pear as a function of location and orientation. International Journal of Food Properties,2004,7(2):155-164.
    279. Dijk C.V., C. Boeriu, T. Stolle-Smits, and L.M.M.Tijskens. The firmness of stored tomatoes (cv.Tradiro) 2.kinetic and near infrared models to describe pectin degrading enzymes and firmness loss. Journal of Food Engineering, 2006,77(3):585-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700