用户名: 密码: 验证码:
非线性演化方程的奇异行波解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在物理学,力学、生物学与大气动力学等众多自然科学领域的研究中都发现反映众多因子之间相互制约和相互依存的关系方程都是非线性方程,也就是一般被称为得非线性演化方程,而其中恰有为数不少的一部分是具有某种奇异性质的可积的偏微分方程也就是说具有Hamilton结构。
     在1993年,Camassa与Holm利用Hamilton原理获得一类新的完全可积色散的浅水波方程(Camassa-Holm方程)并证明该方程在k=0时,具有一个在它的波峰处具有不连续的一阶导数的孤立波解(孤立尖波)。同年,Rosenau与Hyman为了理解非线性色散在液体滴落模式中的作用,引入并研究一类完全非线性的Korteweg-de Vries(KdV)方程K(m,n),得到了K(2,2)方程的一个特别的具有孤立子形状的解被他们命名为紧孤立子(紧孤立波)。自此之后,这些由光滑的初值条件经过传播后形成的非光滑解的出现的奇异现象就一直被广泛关注,近来也得到了一定的发展。
     我们关心的是偏微分方程的行波解,在行波变换下非线性偏微分方程就转化为一个以波速为参数的常微分方程,而具有Hamilton结构的偏微分方程往往就化为可积的常微分方程,从而我们可以借助动力系统分支理论,从微分动力系统理论的角度,以解析的方法来说明在该方程中这类奇异解的出现的真正原因,并求出方程的行波解。
     我们研究重点是研究这些奇异行波解并力图解释一些类型的非线性发展方程的行波解的某些动力学行为,研究方程的光滑的周期波、孤立子、扭波等以及非光滑的奇异行波解出现的参数条件,例如紧孤子解、周期尖波、尖孤立子、紧扭波等的存在性以及其在某些参数条件下的解析表达式。
     在本文中,我们研究了几类经典的非线性波方程,广义Camassa-Holm方程,Degasperis-Procesi方程,一类非常广泛的方程的具有非线性色散项的广义B(m,n)方程,广义非线性Schr(?)dinger方程,非线性色散的K(m,n,k)方程以及广义非线性Klein-Gordon模型方程的行波解的分支,特别是其奇异行波解,特别地,在广义非线性Klein-Gordon模型方程的研究中首次提出了两类不同于以前已知的奇异解,并给出了其积分表达式。由此可见,利用微分动力系统的动力学分支理论,通过形变的技巧,不仅可以清楚地解释了已知的奇异行波解产生的动力学原因,而且可以了解其他的一些奇异解。
The mathematical modeling of enormously important phenomena arising in physics, mechanics, biology and other research fields often leads to nonlinear equations which are usually named nonlinear evolution equations. It is remarkable that many of these nonlinear equations possess a regular behavior, typical of integrable partial differential equations, that is there possess Hamilton structures.
     In 1993, Camassa and Holm derived a completely integrable dispersive shallow water equation by using Hamiltonian methods and showed a soliton solution for this equation has a limiting form that has a discontinuity in the first derivative at its peak. In the same year, to understand the role of nonlinear dispersion in pattern formation, Rosenau and Hyman introuduce and study Korteweg-de Vries-like equation K(m,n) with nonlinear dispersion and presented their solitary wave solutions has compact support (which was named compacton), that is they vanish identically outside a finite core region. The appearences of these non-smooth travelling waves by propagation of the smooth initial conditions attracted many research attentions. Thse topics have seen significant advances and research is also very active.
     We consider the travelling wave solution of these partial differential equations which are reduced into ordernary differential equations with travelling wave speed c as a parameter and a PDE with Hamiltonian structures into a integrable ODE which can be studied by using of the bifurcation theores of the dynamical system and thus understand their dynamics for some classes of the classical nonlinear evolution equations.
     The aim of this dissertation is to study and understand the dynamics.of the traveling wave soltions of nonlinear wave equations, such as smooth periodic wave solutions, solitarys, kink waves and other non-smooth wave solutions such as compacton, cuspon and periodic cusp waves, et al and with a special emphasis on singular wave.
     In this dissertation, we emplied the bifurcation theory of the dynamical systems and the transformation techniques to study the traveling wave soltions of several classes of extensively used classical nonlinear wave equations including the generalized Camassa-Holm equation, Degasperis-Procesi equation, generalized B(m,n) equation with nonlinear dispersion, generalized Schrodinger eqution, generalized K(m,n,k) equation and generalized Klein -Gordon model equation and their bifurcations with an emphasis on singular waves. It is worthy to point out that we present two types of singular waves which are different to the common known ones. One will see from this dissertation that the bifurcation theory of the dynamical systems and the transformation techniques can be used not only to clarify the reason of the existences of these common known singular waves but also to find some other typies ones.
引文
[1]张芷芬,丁同仁,等.微分方程定性理论.科学出版社1985
    [2]王明亮.非线性发展方程与孤立子.兰州大学出版社,1990
    [3]刘式达,刘式适.孤波与湍流.上海科技教育出版社.1994
    [4]李继彬,冯贝叶。稳定性分支与混沌,云南科技出版社1995
    [5]叶彦谦。多项式微分系统的定性理论,上海科学出版社1995
    [6]刘式适,刘式达.物理学中的非线性方程,北京大学出版社2000
    [7]盛昭瀚,马军海.非线性动力系统分析引论.科学出版社2001
    [8]罗定军,张祥,等.动力系统的定性与分支理论.科学出版社2001
    [9]谷超豪,胡和生,周子翔.孤子理论中的达步变换及其几何应用,上海科学出版社2001
    [10]范恩贵.可积系统与计算机代数,科学出版社2004
    [11]刘秉正,彭建华。非线性动力学。高等教育出版社2004
    [12]楼森岳,唐晓艳.非线性数学物理方法.北京,科学出版社.2006
    [13]陈立群,刘延柱,非线性动力学.高等教育出版,2008
    [14]Fermi,E.,Pasta,J.R.& Ulam,S.M.In:Segre,E.editor.Journal of Collected Papers of Enrico Fermi,1965(University of Chicago)
    [15]Hirota R.Direct Methods in Soltons Theory,Springer,Berlin,1980.
    [16]Ablowitz M.Segur H.Solitons and Inverse Scattering Transform,SIAM,Philadelphia,1981
    [17]SN.Chow,JK.Hale.Method of bifurcation theory.New York:Springer-Verlag;1981
    [18]J,Guckenheimer,PJ.Holmes.Nonlinear oscillations,dynamical systems and bifurcations of vector fields.New York:Springer-Verlag;1983.
    [19]S.Wiggins.Global Bifurcation and Chaos.New York:Springer-Velag.1988
    [20]L.Perko.Differential equations and dynamical systems.New York:Springer-Verlag;1991.
    [21]M.J.Ablowitz,P.A.Clarkson.Solitons,Nonlinear Evolution Equations and Inverse Scattering.London Mathematical Socienty Lecture Notes Series 149,Cambridge Univerity Press,1991
    [22]Martin Braun.Differential Equations and Their Applications,Fourth Edition.New York:Springer-Velag.1993
    [23]L.Debnath.Nonlinear Partial Differential Equations for Scientists and Engineers,Birkhauser,Boston,1997
    [24]L.A.peletier,W.C.Troy.Spatial Patterns Higher Order Models in Physics and Mechanics,Birkhauserb Boston.Basel.Berlin,2001
    [25]Jibin Li,Huihui Dai.On the Study of Singular Nonlinear Traveling Wave Equations:Dynamical System Approach,Beijing Science Press,2007
    [26]Doug Jacobs,et al.Travelling wave solutions of the modified KortewegdeVries-Burgers equation.Journal of Differential Equations.1995,116:448-467
    [27]Adrain Constantin,Luc Molinet.Orbital stability of solitary waves for a shallow water equation.Physica D.2001,157:75-89
    [28]J.Li,Chen,G.Bifurcations of traveling wave and breather solutions of a general class of nonlinear wave equations.Int.J.Bifurcation and Chaos,2005,15(9),2913-2926.
    [29]J.Li,Z.Liu.Travelling wave solution for a class of nonlinear dispersive equations.Chin.Ann.Math.Ser B 2002,23(2):397-418
    [30]J.Li,Z.Liu.Smooth and non-smooth traveling wave solutions in a nonlinearly dispersive equation,Appl.Math.Model,2000;25:41-56.
    [31]J.Li,Lijun Zhang.Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation.Chaos Solitons & Fractals,2002,14:581-593
    [32]J.Li.Exact explicit traveling wave solutions for(n+1)-dimensional Klein-Gordon-Zakharov equations.Chaos Solitons & Fractals 2007,34:867-871
    [33]J.Li,et al.Bifurcation of travelling wave solutions in generalization form of the modified KdV equation.Chaos Solitons & Fractals 2004,20(8):899-913
    [34]J.Li,et al.Travelling waves for an integrable high order KdV type wave equation.Int.J.Bifurcation and Chaos,2006,16(8):2235-2260.
    [35]Dahe Feng,Jibin Li.Exact explicit traveling wave solutions for the(n+1)-dimensional φ~6 field model.Physics Letter A.2007,369:255-261
    [36]M.A.Aguero,M.J.Paulin.Solitonic structures in a nonlinear model with interparticle anharmonic interaction.Phys.Rev.E,2001,4:63-73
    [37]Y.A.Li,& P.J.Olver,Convergence of solitary wave solutions in a perturbed bi-Hamiltonian dynamical system Ⅰ:Compactons and peakons,Discrete and continuous dynamical systems,1997,3:418-432
    [38]Y.A.Li.Weak solutions of a generalized Boussinesq system.J.Dyn. Differential equations 1999,11:625-669
    [39]Y.A.Li,& P.J.Olver,Convergence of solitary wave solutions in a perturbed bi-Hamiltonian dynamical system Ⅱ:Complex analytic behaviour and convergence to non-analytic solutions.Discrete and continuous dynamical systems,1998,4,158-191.
    [40]Y.A.Li,& P.J.Olver,Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation.Journal of Differential Equations.2000,162:27-63
    [41]Z.Liu,& Li,J."Bifurcations of solitary waves and domain wall waves for KdV-like equation with higher order nonlinearity," Int.J.Bifurcation and Chaos.2002,12,397-407
    [42]Z.Liu,T.Qian.Peakons of the Camassa-Holm equation.Appl Math Model.2002,26:473-480
    [43]Z.Liu,T.Qian.Peakons and their bifurcation in a generalized Camassa-Holm equation.Int.J.Bifurcation and Chaos.2001,11(3):781-792
    [44]Z.Liu,et al.Integral approach to compacton solutions of Boussinesq-like equation with fully nonlinear dispersion,Chaos Solitons & Fractals 2004,19,1071-81.
    [45]Z.Liu,et al.Periodic Waves and their limits for the Camassa-Holm equation.International Journal of Bifurcation and Chaos,2006,16(8):2261-2274
    [46]Z.Liu.Extension on the peakons of Camassa-Holm equation.J Yunnan University for Nationalities.2004,13(1):3-9
    [47]Z.Liu,et al.New bounded traveling waves of Camassa-Holm equation.International Journal of Bifurcation and Chaos,2004,14:3541-3556
    [48]DD.Holm.Notes on CH-γ equation:local and nonlocal,dimensional and nondimensional.
    [49]W.Wang,J.Sun,& G Chen.Bifurcation,exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schrodinger equation.Int.J.Bifurcation and Chaos.2005,15(10),3295-3305.
    [50]Z.Yan.New families of solitons with compact support for Boussinesq-like B(m,n) equations with fully nonlinear dispersion,Chaos Solitons & Fractals 2002,14:1151-1158.
    [51]L.Zhang,L.Chen,& X.Huo.Peakons and periodic cusp wave solutions in a generalized Camassa-Holm equation,Chaos Solitons & Fractals,2006,30, 1238-1249.
    [52]Y.Zhu,Exact special solutions with solitary patterns Boussinesq-like B(m,n)equations with fully nonlinear dispersion,Chaos Solitons & Fractals,2004,22,213-220.
    [53]Y.Zhu,Construction of exact solitary solutions for Boussinesq-like equations with fully nonlinear dispersion by the decomposition method,Chaos Solitons &Fractals,2005,26,897-903.
    [54]Y.Zhu,C.Lu New solitary solutions with compact support for Boussinesq-like B(2n,2n) equations with fully nonlinear dispersion," Chaos Solitons & Fractals,2007,32:768-772
    [55]O.Bang,et al,White noise in the two-dimensional nonlinear Schrodinger equation,Appl.Anal.1995;57:3-15.
    [56]T.F.Qian,M.Y.Tang.Peakons and periodic cusp waves in a generalized Camassa-Holm equation.Chaos Solitons & Fractals,2001,12:1347-1360
    [57]M.Y.Tang,C.X.Yang,Extesion on peaked wave solutions of CH-γ equation.Chaos Solitons & Fractals,2004,20:815-825
    [58]J.Lenells.The scattering approach for the Camassa-Holm equation.J.Nonlin.Math.Phys.2002,9:389-393
    [59]J.Lenells.Conservation laws of the Camassa-Holm equation.J.Phys.A:Math.Gren.2005,38:869-880
    [60]R.S.Johnson.On solutions of the Camassa-Holm equation.Proc.R.Soc.Lond.A.2003,459:1687-1708
    [61]W.L.Zhang.General expressions of peaked traveling wave solutions of CH-γand CH equations.Sci.China(Series A).2004,47:862-873
    [62]H.Kalisch.Stablity of solitary waves for a nonlinearly dispersive equation.Disc.Cont.Dyn.Syst.2004,10:709-717
    [63]A.Hasegawa,et al,Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.Ⅱ.Normal dispersion,Appl.Phys.Lett.1973;23:171-172.
    [64]W.Malfliet.Solitary wave solutions of nonlinear wave equations,Amer.J.Phys.1992;60(7):650-654.
    [65]L.F.Mollenauer et al,Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,Phys.Rev.Lett.1980;45:1095-1098.
    [66]P.Rosenau.& J.M.Hyman,Compactons:solitons with finite wavelength,Phys. Rev.Lett.1993;70(5):564-567.
    [67]P.Rosenau.Nonlinear dispersive and compact structures,Phys.Rev.Lett.1994;73:1737-1741
    [68]P.Rosenau.On nonanalytic solitary waves formed by a nonlinearly dispersion,Phys.Lett.A,1997,230:305-318
    [69]P.Rosenau.Compact and noncompact dispersive patterns,Phys.Lett.A,2000,275:193-203
    [70]P.Rosenau.On a model equation of traveling and stationary compactons,Phys.Lett.A,2006,356:44-50
    [71]A.M.Wazwaz.Exact solutions for the forth order nonlinear Schrodinger equations with cubic and power law nonlinearities,Math.Comput.Modelling,2006;43:802-808.
    [72]A.M.Wazwaz.New solitary-wave special solutions with compact support for the nonlinear dispersive K(m,n) equations.Chaos Solitons & Fractals,2002,13,321-330.
    [73]A.M.Wazwaz.General compactons solutions and solitary patterns solutions for modified nonlinear dispersive equations mK(n,n) in higher dimensional spaces,Math.Comput.Simulation,2002,59:519-531
    [74]A.M.Wazwaz,A study on nonlinear dispersive partial differential equations of compact and noncompact solutions.Applied Mathematics and Computation 2003,135:339-409
    [75]A.M.Wazwaz.The tanh methods for compact and noncompact solutions for variants of the KdV-Burger and the K(n,n)-Burger equations,Physica D,2006,213:147-151
    [76]A.M.Wazwaz.Two reliable methods for solving variants of the KdV equation with compact and noncompact structures.Chaos Solitons & Fractals,2006,28(2):454-462
    [77]H.Wu,T.Fan.Nonlinear dispersive ZK(n,n) equations:New compacton solutions and solitary pattern solutions.Applied Mathematics and Computation.2007,187:1308-1314
    [78]Yan Z.Envelope compact and solitary pattern structures for the GNLS(m,n,p,q)equations,Phys.Lett.A.2006,357:196-203.
    [79]Z.Yah,An improved algebra method and its application in nonlinear wave equations,Chaos Solitons & Fractals,2004 21(4):1013-1021
    [80]Z.Yan.Modified nonlinearly dispersive mK(m,n,k) equations:I.New compacton solutions and solitary pattern solutions,Comput.Phys.Commun.2003,152:25-33.
    [81]Zheng C.Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrodinger equations,J.Comput.Phys.2006;215:552-565.
    [82]BL Guo,ZR Liu.Periodic cusp wave solutions and single-solutions for the b-equation.Chaos Solitons & Fractals.2005;23:1451-1463
    [83]BL Guo,ZR Liu.Cusp wave solutions in CH-γ equation.Sci China(Ser A).2003,33(4):325-337
    [84]John P.Boyd.Peakons and Coshodial waves:traveling wave solutions of the Camassa-Holm equation.Appl Math Comput.1997,81:173-187
    [85]V.O.Vakhnenko,E.J.Parkes.Periodic and solitary-wave solutions of the Degasperis-Procesi equation.Chaos Solitons & Fractals 2004;20:1058-1073
    [86]R.Camassa,DD.Holm.An integrable shallow water equation with peaked solitons[J].Phys Rev Lett.1993;71(11):1661-1664.
    [87]Jonatan Lenells.Traveling wave solutions of the Degasperis-Procesi equation.J.Math.Anal.Appl.2005;306:72-82
    [88]Cooper F,Shepard H.Solitons in the Camassa-Holm shallow water equation.Phys Lett A 1994;194(4):246-250.
    [89]Lijun Zhang,Jibin Li.Bifurcations of traveling wave solutions in a coupled non-linear wave equation.Chaos Solitons & Fractals 2003,17(5):941-950
    [90]Jianwei Shen,W.Xu.Bifurcations of smooth and non-smooth traveling wave solutions in the generalized Camassa-Holm equation.Chaos Solitons &Fractals,2005,26:1149-1162
    [91]Jianwei Shen,et al.Bifurcation analysis of traveling wave solutions in the nonlinear Klein-Gordon model with anharmonic coupling.Applied Mathematics and Computation,2007,188:1975-1783
    [92]Jianwei Shen,et al.Bifurcations of traveling wave solutions in a new integrable equation with peakon and compactons.Chaos Solitons & Fractals,2006,27:413-425
    [93]Jianwei Shen.Shock wave solutions of the compound Burgers-Korteweg-de Vries equation.Applied Mathematics and Computation.2007,prepeint
    [94]M.Francius,et al.Wave dynamics in nonlinear media with two dispersionless limits for long and short waves.Physics Letters A.2001,280:53-57
    [95]A.S.T.Nguetcho,J.R.Bogning,et al.Kink compactons in models with parametrized periodic double-well and asymmetric substrate potential.Chaos Solitons & Fractals,2004,21:165-176
    [96]H-H,Dai.Exact traveling-wave solutions of an integrable equation arising in hyperelastic rods,Wave motion,1998,28:367-381
    [97]H-H,Dai,et al.Singular dynamics with application to singular waves in physical problems.J.of Phys.Soc.Japan,2004,73(5):1151-1155.
    [98]H-H,Dai,Y.Huo.Solitary shock wave and other traveling waves in a general compressible hyperelastic rod.Proc R.Soc.Lond.A.2000,456:331-363
    [99]Z.Feng.A note on Explict exact solutions to the compound KdV equation.Physical Letter A,2003,312:65-71
    [100]A.Ludu,J.P.Draayer.Patterns on liquid surfaces:Cnoidal waves,Compactons and scaling,Physica D,123(1998),82-91.
    [101]W.Xu.et al.A series of explicit and exact traveling wave solutions of the B(m,n) equations.Applied Mathematics & Computation.2007,185:748-754
    [102]Emmanuel Yomba.The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm and generalized nonlinear Schrodinger equations.Physics Letters A.2007,Preprint
    [103]陈德芳,楼森岳.KdV方程与高阶KdV方程行波解之间的形变理论.物理学报1991,40(4):513-520
    [104]朱佐农.含外力项的广义KdV方程的类孤子解.物理学报 1992,41(10):1561-1566
    [105]朱佐农.推广的KdV方程的孤波解.物理学报1992,41(7)1057-1062
    [106]J-H He.Variational iteration method—a kind of non-linear analytical technique:some examples.Int J Non-linear Mech.1999,34(4):699-708
    [107]J-H He,X-H Wu.Construcytion of solitary solution and compacton-like solution by variational iteration method.Chaos Solitons & Fractals,2006,29:108-113
    [108]J-H He.Application of homotopy perturbation method to nonlinear wave equations.Chaos Solitons & Fractals,2005,26(3):695-700
    [109]S.Dusuel.From kinks to compactonlike kinks.Physical Review E,1998,57(2);2320-2326.
    [110]E J Parkes and B R Duffy.An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations.Computer Phys Commun,1996,98: 288-300
    [111]Degasperis A,Procesi M.in:Degasperis A,Gaeta G,editors.Asymptotic integrability symmetry and perturbation theory.Singapore:World Scientific;1999.P.23-37.
    [112]R.Danchin.A note on well-posedness for Camassa-Holm equation.J.Diff.Eqs.2003,192:429-444
    [113]H.R.Dullin,et al.An integrable shallow water equation with linear and nonlinear dispersion.Phys.Rev.Lett.2001,87:4501-4504.
    [114]H.R.Dullin,et al.On asymptotically equaivalent shallow water wave equations.Physica D.2004,190:1-14
    [115]A.Constaintin,J.lenells.On the inverse scattering approach to the Camassa-Holm equation.J.Nonlin.Math.Phys.2003,10:252-255
    [116]A.Constaintin.Finite propagation speed for Camassa-Holm equation,J.Math.Phys.2005,46:
    [117]P.F.Byrd,M.D.Friedman.Handbook of Elliptic Integrals for Engineers and Scientists,New York:Springer-Velag.1971
    [118]E.Fang,Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics,Chaos Solitons & Fractals,2003,16(5):819-839
    [119]E.Fang.Using symbolic computation to exactly solve a new coupled MKdV system.Physics Letters A.2002,300:243-249
    [120]S.K.Liu,et al.Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations,Acta Phys.Sin.2001,50(11):2068-2073

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700