用户名: 密码: 验证码:
水泥乳化沥青砂浆用干料组成与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥乳化沥青砂浆(简称CA砂浆)是板式无砟轨道结构中的关键材料之一,由水泥、乳化沥青、砂、添加剂和水等组成,经搅拌、灌注形成砂浆充填层。为提高施工效率,控制施工质量,通常先将水泥、砂和固态添加剂等材料经预混工艺制成水泥乳化沥青砂浆用干粉料(简称干料)。工程应用时,将干料、乳化沥青、水等材料搅拌成CA砂浆,即可灌注施工。干料的性能与质量对水泥乳化沥青砂浆充填层和板式无砟轨道结构的性能、质量与耐久性有重要影响。目前,国外内有关这种干料性能的研究报道较少,因此,对干料开展深入的研究是非常必要的。
     本文主要研究了砂的颗粒级配、细度模数和最大粒径对新拌CA砂浆性能的影响;通过研究膨胀组分(铝粉与U型膨胀剂)的掺量和不同养护条件下干料与CA砂浆的膨胀特性,揭示了干料与CA砂浆体积膨胀特性与发展规律;探索了干料生产的投料工艺、分散工艺和最佳搅拌时间的确定方法;总结了干料质量控制与检测方法;通过模拟试验,得出了干料储存过程中的失效机理。
     得到的主要结论如下:(1)砂的细度模数是影响干料与CA砂浆流动性能的主要因素;细度模数相同时,砂的颗粒级配对干料与CA砂浆流动性无明显影响;细度模数与最大粒径是影响CA砂浆匀质性的主要因素。(2)CA砂浆的早期膨胀率随铝粉掺量的增加而增大,随铝粉粒径的减小而增大;养护温度越高,CA砂浆的早期膨胀越迅速,膨胀率越大;CA砂浆后期膨胀率随U型膨胀剂掺量增加而增大;养护湿度对CA砂浆后期膨胀率的影响较小。(3)生产干料的最佳投料顺序为:水泥、膨胀剂、复合添加剂、砂;采用预分散技术能大大提高铝粉在干料中的分散均匀性。(4)随着干料储存龄期的增长,其配制的CA砂浆的膨胀特性与匀质性均会发生改变,干料储存过程中失效的机理是:干料中的水泥熟料矿物成分、铝粉与空气中的水分发生反应而部分失效,干料组成改变而影响其性能。
Cement and emulsified asphalt mortar (CA mortar), which consists of cement, emulsified asphalt, sand, water and other admixtures, is one of the key materials of the slab ballastless track structure. In order to improve the efficiency of construction and the quality of CA mortar, cement, sand and other solid admixtures are mixed to the mixtures for CA mortar. At the construction site, the mixtures are mixed with the emulsified asphalt and water, forming the fresh CA motar for the CA motar layer in the slab ballastless track structure. Thus, the performance and quality of the mixtures have a significant effect on the performance, quality and durability of CA mortar layer. Now, the studies on the mixtures are little.
     In this article, the effects of the size distribution, fineness modulus and maximum size of sand particle in the mixtures on the fresh CA mortar, and the expansive components (aluminium powder and U-shaped expansive agent) and curing conditions on the expansion properties of CA mortar were investigated. Also, the production process and its technological parameter of the mixtures were determined; the effective measure to control the quality of the mixtures was discussed. Finally, the deterioration mechanism of the mixtures during storage was analysed.
     The main conclusions are summarized as follows:
     (1) The fineness modulus of sand particles in the mixtures is the main factor influencing the flowability of the fresh CA mortars, but when sand fineness modulus is the same, the size distribution of sand particles has no obvious effect on the flowability of fresh C A mortars. The fineness modulus and maximum size of sand particles are the main reasons influencing the uniformity of CA mortar.
     (2) The early-age expansion ratio of CA mortar is increased with an increase in the content of aluminium power and a decrease in particle size of aluminium power. The higher curing temperature is, the rapider early-age expansion of CA mortar becomes, and the higher expansion ratio is. Later-age expansion ratio is increased with an increase in the content of U-shaped expansive agent. The later-age expansion ratio of CA motar is not susceptible to the curing humidity.
     (3) It is the best process for manufacturing the mixtures for CA motar that cement, expansion agent, other admixtures and sand are added in turn to be mixed in the mixer. The pre-dispersion technology used can significantly raise the dispersion of aluminium powder in the mixtures.
     (4) As the storage age of the mixtures is increased, the expansion ratio and uniformity of CA mortar will be changed due to the deterioration of the mixtures. The deterioration mechanism of the mixtures is that the reaction between mineral components of cement and aluminium powder and the moisture in the air can be occurred during storage.
引文
[1]何华武.无砟轨道技术.北京:中国铁道出版社,2005.1-30
    [2]王其昌.高速铁路土木工程.成都:西南交通大学出版社,1999.1~15
    [3]王森荣,板式无砟轨道温度应力研究:[硕士学位论文].成都:西南交通大学,2007.1-2
    [4]李克勤.论高速铁路对我国经济发展的必要性.中国乡镇企业,2003(10):12~14
    [5]卢乃宽.世界高速铁路建设发展趋势.中国铁路,2000(3):19~24
    [6]唐明茹.高速铁路轨道板下树脂填充材料的研究:[硕士学位论文].西安:西北工业大学,2005.1-5
    [7]沈之介.兴建京沪高速铁路的战略意义[J].铁道知识,1997,12(5):4-5
    [8]万明坤.我国发展高速铁路的战略设想[J].北京交通大学学报,1991,02:1-9
    [9]王志杰,曹亚林.重视铁路建设的战略作用[J].铁道工程学报,1990,01:4-9
    [10]朱镕基.2000年政府工作报告.[R]第九届全国人民代表大会第三次会议.2000.3
    [11]薛战军.展望中国高速铁路发展的战略意义[J].科技创新导报,2008.21:55
    [12]王涛.高速铁路板式无砟轨道以砂浆的研究与应用[博士学位论文].武汉:武汉理工大学,2008
    [13]李世斌.世界高速铁路发展的动向[J].新技术应用,2007(1):35~37
    [14]何邦模.高速铁路的技术经济优势[J].世界轨道交通.2004,(8)
    [15]孙永福.高速铁路:成功与挑战-记第四届世界高速铁路大会[J].中国铁路,2003:11~14
    [16]SHIGERUM, HIDEYUKI T., MASAO U., et al. The mechanism of railway tracks [J]. Japan Railway and Transportation Review,1998,3:38~45
    [17]何华武.我国客运专线应大力发展无砟轨道[J].中国铁路,2005,1:11~15
    [18]Ramesh Pinjani. Ballastless track[J].Permanent Way Bulletin,2001,28(3):20~60
    [19]Coenraad Esveld.Recently developments in slab traek[J].European railway review,2003:81~85
    [20]Danzer R.Appraisal of Repair Concepts for Different Designs of Ballastless Track [J]. Rail way Technical Review, No.1,2004
    [21]Bastin R. The Development of non-Ballasted Track in Germany. Institution of Civil Engineers and Railway Civil Engineers meeting3th, June 2003:50-50
    [22]Konstantinos Giannakos. Requirement of tomorrow's railway transport infrasturcture.2nd Traffic & Transportation Conference.20 Sept.2004:130-150
    [23]赵国堂.高速铁路误差轨道结构.北京:中国铁道出版社,2006.1~10
    [24]COENRAAD ESVELD. Recent developments in slab track [J]. european railway review,1-5
    [25]金守华,陈秀方,杨军.板式无砟轨道用CA砂浆的关键技术[J].中国铁道科学,2006,27(2):21~25
    [26]孙翔编译.世界各国的高速铁路,成都:西南交通大学出版社,1992.1-30
    [27]陈秀方.轨道工程.北京:中国建筑工业出版社,2005.1~20
    [28]Helinutweber, Andreszachlehoer.Bogl型无砟轨道一首次以大结构长度铺设.铁路工程师,2004,10(1):15~23
    [29]铁道部工程管理中心.高速铁路无砟轨道系统的技术再创新[R].北京,2007
    [30]卿三惠,陈叔,胡建.高速铁路CRTS Ⅱ型板式无砟轨道施工关键设备及施工技术研究[J],铁道工程学报,2008,7:22~27
    [31]曾晓辉.水泥乳化沥青砂浆材料特性与充填层施工质量控制研究[博士学位论文].长沙:中南大学.2010
    [32]傅代正,黄金田,郑新国.桥上板式无砟轨道CA砂浆施工技术[J].铁道建筑技术,2002,6:28~31
    [33]岛取誠一,佐伯俊之,桜井秀昭,等.铁道轨道用急硬性注入材とその製造方法[P].特開平2000-119056
    [34]村田修,関根悦夫,木幡行宏.速硬性セメソト系の注入材とコソクリ一ト[P].特開平11-246252
    [35]VALENTINE C. KLOERRER. Beleasistg mechanism for automobile hahb brakes ajto the use [P]. BS1548136
    [36]OKIHIKO T., TSUTOMU M., IWAO M., et al. Cement asphalt ballast grout composition for track [P]. US3867161
    [37]HIGUCHI Y., HARADA Y, SATOT. Quick hardening cement-asphalt composition [P]. US4084981
    [38]HaradaY, Tottori S, Itai N. Development of cement asphalt mortar for slab track in cold climate..Quarterly Report of RTRI(Railway Technical Research Institute),1983,15(1):62~67
    [39]Harada Y, Development of ultrarapid-hardening cement-asphalt mortar for grouted-ballast track structure. Quarterly Report of RTRI(Railway Technical Research Institute),1976,17(1):6-11
    [40]Harads Y, Development and utility of grout for a track structure with grout filled ballast.Quarterly Report of RTRI(Railway Technical Research Institute),1976, 15(1):25-27
    [41]Ono. Kazuyosi,Itoo.Yosio. Compressive strength of the CA mortar and its temperature-susceptibility. Memoirs of the Faculty of Technology,1976, 10(2):1-13
    [42]李俊.桥梁板式无砟轨道施工技术[J].铁道工程学报,2003,3:32~35
    [43]李俊.高速铁路桥梁板式无砟轨道施工技术[J].桥梁建设,2003,4:25~30
    [44]左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑,2005,9:96~98
    [45]左景奇,姜其斌,蔡彬芬.板式轨道CA砂浆专用沥青乳液的试验研究[J].铁道建筑技术,2005,2:68~71
    [46]赵东田.高速铁路CA砂浆的性能研究[J].实验室研究与探索,2007,26(11):291~294
    [47]钱振地,江成,肖俊恒,等.一种抗冻型水泥沥青砂浆及其配制方法[P].ZL200610020615.6
    [48]钱振地,江成,肖俊恒,等.板式无砟轨道[P].ZL200610005567.3
    [49]钱振地,江成,肖俊恒,等.一种水泥沥青砂浆及其配制方法[P].ZL200610020613.7
    [50]胡曙光,王涛,王发洲,等.一种高早强自膨胀CA砂浆材料[P].ZL200610018439.2
    [51]王发洲,胡曙光,王涛,等.一种具有高抗冻、吸振功能的CA砂浆材料[P].ZL 200610018438.8
    [52]丁庆军,王发洲,王涛,等.一种膨胀可控CA砂浆材料[P].ZL200610018437.3
    [53]胡曙光,,王涛,王发洲.膨胀剂对CA砂浆依时特性的影响[J].西南交通大学学报,2008.6:341~345
    [54]FAZHOU WANG, ZHICHAO LIU, SHUGUANG HU. Early age volume change of cement asphalt mortar in the presence of aluminum powder [J]. Materials and Structures,2010,43(4):493-498
    [55]OKIHIKO T., TSUTOMU M., IWAO M., et al. Cement asphalt ballast grout composition for track [P]. US3867161
    [56]王发洲,王涛,胡曙光,等.CA砂浆的流变特性[J].武汉大学学报(工学版),2008,41(4):69~72
    [57]王涛,胡曙光,王发洲,等.沥青乳液加料顺序影响CA砂浆早期强度的机理研究[J].铁道建筑技术,2008,1:1-3
    [58]孔祥明,刘永亮,阎培渝.加载速率对水泥沥青砂浆力学性能的影响[J].建筑材料学报,2009,13(2):187~192
    [59]王发洲,刘志超,胡曙光.加载速率对CA砂浆抗压强度的影响[J].北京工业大学学报,,2008,34(10):1059~1065
    [60]田冬梅,邓德华,黄波,廖乃凤.水泥乳化沥青砂浆毛细吸水性研究[J].中国铁道科学,2010,11:32~36
    [61]赵腾龙.严寒地区水泥乳化沥青砂浆的制备与性能[硕士学位论文].长沙:中南大学,2009
    [62]廖乃凤.改性乳化沥青对SL-1型砂浆低温抗裂性影响研究[硕士学位论文].长沙:中南大学,2010
    [63]李辉.无砟轨道CA砂浆研究及其施工工艺和工装[J].铁道工程学报,2007,12:211~215
    [64]莫健瑶.干混砂浆浅探[J].广东建材,2005,(2):15-17
    [65]朱爱珍,王辉.SG型预拌砂浆调凝稠化剂的研究[J].科学研究.23~24
    [66]罗庚望,张长帮.CA砂浆干粉料的研制及在京津城际轨道交通工程中的应用[C].2008第三届《中国)国际建筑干混砂浆生产应用技术研讨会论文集.2008,232-236
    [67]客运专线铁路CRTS I型板式无砟轨道水泥乳化沥青砂浆暂行技术条件[S].北京:中国铁道出版社,2008
    [68]戴镇潮.细度模数是几何平均粒径的对数式函数一粗细指标“比粒度”的商榷[J].商品混凝土,2010,12:24
    [69]Sternberg R.W., Berhane L, Ogston A.S.Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Marine Geology,1999 (154):43~53
    [70]张华桥,冯志华.散装干混砂浆在物流设备中的均匀性研究(二)[A]//《2009预拌砂浆发展论坛论文集》[C],2009
    [71]GBT5918-1997,配合饲料混合均匀度的测定[S].1997.04

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700