用户名: 密码: 验证码:
现浇钢渣混凝土薄壁管桩材料试验与单桩承载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对现浇混凝土薄壁管桩(简称PCC桩)这种新桩型,在前人工作的基础上,通过室内试验对桩体材料的强度特性进行了研究;引入了荷兰开发的大型岩土工程有限元软件PLAXIS程序,对PCC单桩承载特性进行了研究,着重分析了桩长、桩径、桩土刚度比等因素对单桩承载特性的影响。主要完成了如下工作:
     1.通过试验研究了废钢渣作为原材料配制混凝土的方法,并将钢渣混凝土与普通混凝土在配制过程中的某些性质指标作了比较,分析了其原因,并在试验的基础上建立了强度与灰水比经验公式,为工程设计提供了依据。配制出的钢渣混凝土力学性能比普通混凝土力学性能要高,而且节省了水泥和石子,具有很好的经济效益。由于利用了废物,变废为宝,解决了环境污染问题,故又有很好的社会效益。
     2.引入了PLAXIS程序,对PLAXIS程序的特点、计算分析原理进行了概述,对土体的三轴试验和侧限固结试验进行了模拟,计算结果较好的反应了土体的基本特性,并与试验结果符合良好。同时列举工程实例,应用MC模型进行静载荷试验的模拟,计算结果和实测结果符合良好,验证了程序在实际工程应用中的可靠性。理论和实践都证明,PLAXIS程序完全可以应用于岩土工程的科研分析。
     3.应用PLAXIS程序模拟单桩静载荷试验的过程,并根据计算结果较为详细的分析了PCC单桩的基本承载特性,主要包括荷载—沉降曲线的特征、桩壁内外侧摩阻力的分布、桩端阻力的分布、桩的轴向荷载传递以及孔压消散规律等。然后从桩长、桩径以及桩土刚度比等角度分析了其对单桩承载力、内外侧摩阻力、桩端平面应力分布、轴向荷载传递、桩身截面位移等的影响。主要得出了如下一些结论:(1)对于长桩,承载力设计宜按变形控制;相同荷载下,外摩阻力随着桩长的增加而减小,内摩阻力发挥的相对长度随着桩长的增加也减小;在桩端平面上,桩壁处受到附加压应力,而两侧的土体中有附加拉应力,在离桩心较远处,附加应力的影响已经很小,几乎为零。(2)随着桩径的增大,桩的极限承载力有显著提高;在相同的荷载密度下,随着桩径的增加,外侧摩阻力几乎没有变化而内摩阻力却有显著提高,并且内摩阻力的发挥长度也随着桩径的增大而增长。(3)在桩土刚度比较小时,桩外侧摩阻力呈抛物线分布,沿着桩顶向下迅速增大,达到最大值后再沿着桩深有迅速减小的趋势;桩壁内摩阻力沿着桩身向下逐渐增大,达到最大值后持续减小至零,以下一段桩身继续减小至负值,在该段为负摩擦区,然后再逐渐增大至零或正值。
Based on the work of former researchers, the mechanical properties of the material of the pipe pile are studied in this thesis by indoor experiment; also the bearing mechanism is analysed combined with the famous geotechnical FEM software PLAXIS and the influences of length of pile, diameter and the ratio of the stiffness of pile to the stiffness of soil on the bearing mechanism are discussed. For details ,the main contents are as follow:
    1.The research is conducted on the confecting method of steel-slag concrete by indoor experiment. Through comparison of the physical and mechanical properties between steel-slag concrete and plain concrete, it can analyze the advantages of using steel-slag concrete. Based on the test results, empirical formulae is developed, which provides some bases for practical projects. The mechanical properties of steel-slag concrete prevails more advantages than the plain concrete, also the quantities of cement and gravel are reduced, consequently reducing the capital cost of the project materials, so this method is economically and safely to be used and it can solve the environmental problems of unused steel-slag.
    2.The FEM software PLAXIS is introduced and its theories and numerical methods are given. The standard drained triaxial test and the oedometer test are subjected to simulations of various laboratory tests in order to validate the reliability with measured test data. Also the load-settlement curves by field test and FEM on a practical engineering are compared. The reliability is validated further on.
    3.The static loading test is modeled by PLAXIS , based on this, the basic bearing mechanism is analysed which comprise the rule of the load-settlement curves, inner and outer friction resistance, end bearing , stress distribution along pile depth and the dissipation of excess pore pressures. Also the influences of the length, diameter, and the ratio of the stiffness of pipe to the stiffness of soil on the bearing mechanisms are discussed. Based on these, some useful conclusions are reached.
引文
[1] 刘汉龙,费康,马晓辉,高玉峰.振动沉模大直径现浇薄壁管桩技术及其应用(Ⅰ开发研制与设计理论)[J],岩土力学,2003,24(2).
    [2] 刘汉龙,郝小员,费康,陈永辉.振动沉模大直径现浇薄壁管桩技术及其应用(Ⅱ工程应用与现场试验)[J].岩土力学,2003,24(3).
    [3] 刘汉龙,一种新型的桩基技术——PCC技术,第九界全国土力学及岩土工程学术会议论文集[R],2003.10
    [4] 王绍文,梁富智,王纪曾,固体废弃物资源化技术与应用.冶金工业出版社[M],2003年6月.
    [5] 吴邦颖,张师德,陈绪禄.软土地基处理[M].北京:中国铁道出版社,1995,110-125.
    [6] 王小章,胡纯清,黄涛,郭家舫,王富家,水泥黄砂钢渣桩在填土地基中的应用[J],土工基础,2001.12
    [7] 黄涛等.水泥粉煤灰钢渣桩复合地基承载力与沉降特性试验研究及应用[J].建筑结构.1999.12
    [8] 周曙春,杜坤乾,水泥粉煤灰钢渣桩(CFS桩)处理地基试验研究[J],土工基础,2002.3
    [9] 刘玉卓.公路工程软基处理[M].北京:人民交通出版社.2002.3
    [10] 赵中林,发明专利申请公开说明书(88104528.4),1989.8
    [11] 黄强,桩基工程若干热点技术问题[M],北京:中国建材工业出版社,1996
    [12] 刘金砺,桩基研究与应用若干进展浅析[J],岩土工程界,2000
    [13] Bathe, K.J. (1982). Finite element analysis in engineering analysis[J]. Prentice-Hall, New Jersey. Sloan, S.W. and Randolph, M.F. (1982).
    [14] Bathe, K. J., and E. L.Wilson. (1976) Numerical Methods in Finite Element Analysis. Englewood
    [15] C.S.得赛,J.T.克里斯琴,岩土工程数值方法[M],北京:中国建筑工业出版社,1981.8
    [16] 沈珠江,理论土力学[M],中国水利水电出版社,2000.5
    [17] 牛光庭,李亚杰.建筑材料[M].北京:水利电力出版社.1993.
    [18] 姜陈钊,刘汉龙,温学钧,高玉峰,现浇钢渣混凝土薄壁管桩强度特性试验研究[J],岩土力学,已录用
    [19] 姜陈钊,丰土根,费康,钢渣混凝土薄壁管桩复合地基的开发利用[C],第一届全国土木工程研究生学术论坛,2003.8
    [20] 甄广常、兰立功,混凝土配合比设计中有关参数选择的探讨[J],混凝土,1995.4。
    [21] Van Langen, H, (1991). Numerical Analysis of Soil-Structure Interaction[D]. PhD thesis Delft University of Technology.
    [22] Verruijt, A., (1983), Grondmechanica (Geomechanics syllabus)[J]. Delft University of Technology.
    [23] Van Langen H. (1991), Numerical analysis of soil-structure interaction[J]. Dissertation. Delft University of Technology.
    [24] 卓家寿,弹性力学问题的有限单元法[M],河海大学,1996
    [25] 姜弘道 陈和群编著 有限单元法程序设计[M],水利电力出版社1989.10
    [26] Lekhnitskii, S. G. (1981) Theory of Elasticity of an Anisotropic Body[M]. Moscow: Mir Publishers.
    [27] Sonia Armaleh, etc. Load-deformation responses of axially loaded piles J.Geot. Engrg[J]. Voll. 113, No. 12, Dec. 1997
    
    
    [28] 钱家欢、殷宗泽,土工原理与计算[M],中国水利水电出版社,1996
    [29] Menerey, Ph., and K. J. Willam. Triaxial Failure Criterion for Concrete and its Generalization[J]. ACI Structural Journal, 1995,92:311-318.
    [30] Potyondy, J. G. Skin friction between various soils and construction materials[J]. Geotechnique, 1961, 11(4): 339-353.
    [31] Acer, Y. B., Durgunoglu, H. T., and Tumay, M. T. Interface properties of sands[J]. J.geotech. engrg, div., Asce, 1982, 108(4): 648-654.
    [32] 殷宗泽,朱泓,许国华,土与结构材料接触面的变形及数学模拟[J],岩土工程学报,1994,16(3):16~22.
    [33] 李宁,韩煊,单桩复合地基加固机理数值试验研究[J],岩土力学,1999.12
    [34] 李宁,Swoboda G.当前岩石力学数值方法的几点思考[J].岩石力学与工程学报,1997,16(5):502~505
    [35] 雷晓燕,Swoboda G.杜庆华,接触摩擦单元的理论及应用[J],岩土工程学报,1994,14(3):23~32
    [36] 殷宗泽,土与结构材料接触面的变形及数学模拟[J],岩土工程学报,1994。16(3):5~12
    [37] Bakker, K.J. and Brinkgreve, R.B.J. (1990). The use of hybrid beam elements to model sheet-pile behaviour in two dimensional deformation analysis. Proc. 2nd European Specialty Conference on Numerical Methods in Geotechnical Engineering. Santander, Spain, 559-572.
    [38] Duncan J.M and Chang c.Y "Non-linaer analysis of stress and strain in soils "ASCE.96.no. SM5.1983
    [39] 任青文,非线性有限单元法[M],河海大学出版社,1999
    [40] Rono ld K O. &Bjerager P. ModelU ncertainty Representation in Geo technical Reliability A nalysis[J]. Geotech. Engrg. A SCE, 1992,Vol. 118, No. 3, 363~376
    [41] Isaacson, E., and H. B. Keller. (1963) Analysis of Numerical Methods, pp. 135-136. New York: John Wiley & Sons, Inc.
    [42] Duncan J.M and Chang c.Y "Non-linaer analysis of stress and strain in soils "ASCE.96.no.SM5.1983
    [43] Bathe, K. J., and E. L.Wilson. (1976) Numerical Methods in Finite Element Analysis. Englewood[J].
    [44] Adachi, T., Oka, F., (1982), Constitutive equation for normally consolidated clays based on elastoviscoplasticity[J]. Soils and Foundations 22: 57-70.
    [45] Mindlin HD. Force at a point in the interior of a semi infinite solid. J Appl Phys 1936;7:195-202.
    [46] Ottaviani M. Three-dimensional finite element analysis of vertically loaded pile groups[J]. Geotechnique 1975;25(2): 159-74.
    [47] 《桩基工程手册》编写委员会主编.桩基工程手册[M],北京:中国建筑工业出版社,1995年9月第一版.
    [48] 林天健,熊厚金,王利群,桩基础设计指南[M],北京:中国建筑出版社,1999.
    [49] G.歌德赫,有限元法在岩土力学中的应用[m],北京:中国铁道出版社,1983.3
    [50] 史佩栋 主编,实用桩基工程手册[M],北京:中国建筑工业出版社,2000.4
    [51] Numerical prediction of collapse loads using finite element methods[J]. Int. J. Num. Analyt. Meth. in Geomech. 6, 47-76.
    
    
    [52] Van Langen, H. and Vermeer, P.A. (1991). Interface elements for singular lasticity points[J]. Int. J. Num. Analyt. Meth. in Geomech. 15, 301-315.
    [53] 江苏省建筑工程质量检测中心,盐通高速公路管桩工程基桩静载荷试验报告[R],2003.9
    [54] Zienkiewicz O.C. (1967), The finite element method in structural and continuum mechanics[J]. McGrawHill, London, UK.
    [55] Davis, E.H. and Booker J.R., (1973), The effect of increasing strength with depth on the bearing capacity of clays. Geotechnique[J], Vol. 23, No. 4, 551-563.
    [56] 钱家欢,土力学[M],河海大学出版社,1995
    [57] 左名麒,桩基础工程[M],中国铁道出版社,1996
    [58] 刘金励,桩基工程技术[M],中国建材工业出版社,1996
    [59] 黄文熙主编,土的工程性质[M],水利电力出版社
    [60] 龚晓南,复合地基[M],杭州浙江大学出版社,1992
    [61] Isaacson, E., and H. B. Keller. (1963) Analysis of Numerical Methods[J], pp. 135-136. New York: John Wiley & Sons, Inc.
    [62] Wood, D. M. (1990) Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press.
    [63] 冶金工业部建筑研究总院,地基处理技术[M],北京:冶金工业出版社,1992
    [64] 阎明礼,张东刚.CFG桩复合地基技术及工程实践[M].北京:中国水利水电出版社.2001.
    [65] 杨克己,韩理安,桩基工程[M],人民交通出版社,1999.12
    [66] Reference manual[R]. Delft University of Technology
    [67] 冯国栋、刘祖德、黄绍铿,铅直荷载下桩-土共同作用的计算模式探讨[R],第四届全国土力学及基础工程学术会议文集,北京:中国建筑工业出版社,1986,275~280
    [68] 段继伟、龚晓南、曾国熙,水泥搅拌桩的荷载传递规律[J],岩土工程学报,1994
    [69] 刘毓氚,朱长歧,刘祖德,单桩承载性能的三维有限元无限元耦合分析[J],岩土力学,2000,21 (3):275~277
    [70] 陈雨孙,周洪,纯摩擦桩荷载—沉降曲线的数值计算方法,岩土工程学报,1987,9(2):49~61
    [71] 倪新华,筏基—桩基—土体共同作用的数值分析[D],同济大学,1990
    [72] 王广德,李颖,张凤珍,孙百顺,沉入粘土中的大圆筒筒内外土压力分布规律及计算方法[J],水道港口,2002.3(1):16~17
    [73] 王元战,迟丽华,沉入式圆筒结构与土相互作用的模式及位移计算方法[J].土木工程学报,1997,30(2):68~73
    [74] 吴维军,加筋堤防的稳定性和变形研究[D],河海大学硕士论文,2003.3
    [75] Material model manual [R]. Delft University of Technology.
    [76] 曾友金,超长单桩荷载传递机理及其桩筏基础共同作用研究,2002.6
    [77] 费康,刘汉龙,高玉峰,路堤下现浇薄壁管桩复合地基工作特性分析[J],岩土力学,待刊

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700