用户名: 密码: 验证码:
基于海面微波成像仿真M4S软件的SAR浅海地形遥感探测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于合成孔径雷达(Synthetic Aperture Radar,简称SAR)浅海地形遥感成像机理和海面微波成像仿真M4S软件,对SAR浅海地形遥感图像特征,SAR浅海地形遥感观测的统计分析和SAR浅海地形遥感探测技术进行了研究与探讨。
     作为论文研究的基础,首先对SAR浅海地形遥感研究进展与SAR海洋遥感的基本原理进行了综述,同时对海面微波成像仿真M4S软件进行了介绍。
     在前人SAR浅海地形遥感研究的基础上,本文基于SAR浅海地形遥感成像机理和海面微波成像仿真M4S软件,建立了基于M4S的SAR浅海地形遥感成像仿真模型,改进了传统浅海地形成像仿真模型只能仿真亮暗条纹相当的SAR遥感图像,无法仿真以亮条纹或暗条纹为主遥感图像特征的缺陷。通过遥感成像仿真研究,结合SAR浅海地形遥感图像的实例分析与SAR浅海地形遥感图像特征的统计分析,对SAR浅海地形遥感图像特征有了新的认识,纠正了浅海地形SAR遥感图像仅以亮暗条纹相当特征出现的传统观点。
     关于SAR浅海地形遥感观测与海面风场的关系,本文通过遥感成像仿真研究与SAR浅海地形遥感观测的统计分析,在前人的研究基础上进一步探讨了有利于SAR浅海地形遥感成像的海面风速范围,明确了SAR浅海地形遥感成像的有利风向。并首次对SAR浅海地形遥感观测的时间统计分布特征与海面风速、表层流速的时间统计分布特征的相关性进行了初步研究。
     此外在SAR浅海地形遥感图像特征与浅海水深特征变化的研究基础上,从SAR浅海地形遥感图像特征出发,首次通过SAR浅海地形遥感图像特征的统计分析,给出了台湾浅滩水下沙丘地形因子(如水下沙丘的空间分布、半波长长度、地形特征变化方向等)的统计分布。
     以SAR浅海地形遥感图像特征研究与SAR浅海地形遥感观测的统计分析为基础,同时基于SAR浅海地形遥感成像机理与海面微波成像仿真M4S软件,建立了基于M4S的SAR浅海地形海面风速反演模型,SAR浅海地形表层流梯度反演模型。
     在上述模型基础上,以目前较为流行的SAR浅海地形遥感探测技术为参考,采纳了国际上以荷兰的SAR水深估测系统技术为代表的迭代反演优势,克服了国内SAR直接反演技术中由于SAR斑点噪声所引入水深反演误差的缺陷,建立了基于M4S的SAR浅海地形遥感探测新模型。利用该遥感探测模型,对台湾浅滩海域的浅海地形进行了反演计算,并对计算的结果与实测水深进行了比较,探测误差小于10%,结果表明,SAR具有较准确的探测浅海水深的能力。同时作为SAR浅海地形遥感探测的补充方法,探讨了利用近岸浅水海域的海浪频散关系计算浅海水深的变化情况。
Based on synthetic aperture radar (SAR) shallow water bathymetry imaging mechanism and M4S for simulations of microwave imaging oceanic surface, the remote sensing study on shallow water bathymetry by SAR is presented. It mainly includes the study on the expression of shallow water bathymetry SAR images, statistical analysis of SAR shallow water bathymetry observations and SAR shallow water bathymetry surveys.
     Firstly, the progress on SAR shallow water bathymetry research and the basic principles of ocean remote sensing by SAR are reviewed, and the M4S for simulations of microwave imaging oceanic surface is also introduced.
     Simulation imaging model of SAR shallow water bathymetry has been developed based on SAR shallow water bathymetry imaging mechanism and M4S. The expression of shallow water bathymetry SAR images has been imprioved through the simulation study, shallow water bathymetry SAR images analysis and statistical analysis of SAR shallow water bathymetry observations.
     The favorable conditions of sea surface wind speeds and directions for SAR shallow water bathymetry imaging are also further illustrated based on both simulation study and statistical analysis. Meanwhile, the correlations betwween the SAR shallow water bathymetry temporal observations and the temporal surface wind speed and current speed are also explained.
     This thesis also gives the the parameters of sand wave in Taiwan shoal based on the statistical analysis of SAR shallow water bathymetry observations, such as the longtitudal and latitutdal distribution, the length of sand waves and the direction of the sand waves’feature.
     Last, both models for retrieving SAR shallow water bathymetry wind speed and SAR shallow water bathymetry current grads have been developed based on SAR shallowa water bathymetry imaging mechanism and M4S.
     Model for SAR shallow water bathymetry surveys is also developed according to the developed models for SAR shallow water bathymetry surveys and basen on above both models. The depths of sandwaves in Taiwan shoal are calculated, the results show that SAR is able to measure the shallow water bathymetry accurately. Meanwhile, as an add method for SAR shallow water bathymetry surveys, the wave refraction in near-shore water is also explored.
引文
1.陈卫标,陆雨田,褚春霖,等.机载激光水深测量精度分析.中国激光, 2004, 31(1): 102 104.
    2.董庆,唐军武,冯林新.水下地形在雷达图像上的可视模型及数值模拟.海洋通报,1997,16(1): 29 34.
    3.范开国,黄韦艮,贺明霞,等.风速风向对SAR浅海水下地形成像影响的仿真研究.遥感学报, 2008, 12(5): 743 749.
    4.冯士筰,李凤歧,李少菁.海洋科学导论.北京:高等教育出版社,1999: 181 208.
    5.傅斌,黄韦艮,周长宝,等.星载SAR浅海水下地形和水深测量遥感模拟仿真.海洋学报, 2001, 23(1): 35 41.
    6.傅斌,黄韦艮.大坡度水下地形的SAR遥感模拟仿真.国土资源遥感, 2003, 1: 33 37.
    7.傅斌. SAR浅海水下地形探测: [博士学位论文].青岛:中国海洋大学, 2005.
    8.郭华东.雷达对地观测理论与应用.北京:中国科学技术出版社, 2000.
    9.何宜军.成像雷达海浪成像机制.中国科学(D), 2000, 30(5): 554 560.
    10.黄韦艮,傅斌,周长宝,等.星载SAR浅海水下地形和水深测量模拟仿真-水下地形高度、坡度和方向与可测水深分析.海洋学报, 2001, 23(1): 35 42.
    11.黄韦艮,傅斌,周长宝,等.星载SAR水下地形和水深遥感的最佳雷达系统参数模拟.遥感学报, 2000, 4(3): 172 177.
    12.黄韦艮,傅斌,周长宝,等.星载SAR遥感浅海水下地形的最佳海况模拟仿真.自然科学进展, 2000, 10(7): 642 649.
    13.黄韦艮,高曼娜,周长宝,等.蓬莱附近海区水下地形的星载合成孔径雷达遥感.东海海洋, 1996, 14(1): 52 57.
    14.黄韦艮,高曼娜,周长宝,等.我国近海海洋现象的星载SAR观测.遥感技术与应用, 1996, 11(2): 9 14.
    15.黄韦艮,沈毅楚.我国海洋遥感的现状与需求.遥感技术与应用, 1994, 9(2): 50 53.
    16.金梅兵,袁业立. SAR影像对海底地形变化可视度的仿真模拟与分析.海洋与湖沼, 1997, 28(增刊): 22 26.
    17.金梅兵,袁业立.利用SAR影象探测海底地形的数学物理反问题的提法与解法.海洋与湖沼, 1997, 28(增刊): 27 31.
    18.金翔龙.东海海洋地质.北京:海洋出版社, 1992.
    19.金亚秋.电磁散射和热辐射的遥感理论.北京:科学出版社, 1993.
    20.朗.陆地和海洋的雷达反射特性(中译本).北京:国防工业出版社, 1983.
    21.梁开龙.水下地形测量.北京:测绘出版社, 1995.
    22.林敏基.海洋与海岸带遥感应用.北京:海洋出版社, 1991.
    23.刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社, 1999.
    24.刘忠臣,刘保华,黄振宗,等.中国近海及临近海域地形地貌.北京:海洋出版社, 2005:24 33.
    25.罗滨逊.卫星海洋学(中译本).海洋出版社,北京, 1989.
    26.施英妮,张亭禄,周晓中,等.基于神经网络方法的高光谱遥感浅海水深反演.高技术通讯, 2008, 18(1): 71 76.
    27.司建文.海洋环境参数检测技术检测方法汇编.北京:海洋出版社,2005: 59 61.
    28.斯图尔特.空间海洋学(中译本).北京:海洋出版社, 1992.
    29.魏钟铨.合成孔径雷达卫星.北京:科学出版社, 2001.
    30.夏长水,袁业立.塘沽海区海底地形的SAR影像仿真与反演研究.海洋科学进展, 2003, 21(4): 437 445.
    31.杨劲松,黄韦艮,周长宝,等.合成孔径雷达图像的近岸海面风场反演.遥感学报, 2001, 5(1):
    13 16.
    32.杨劲松,周长宝,黄韦艮.星载合成孔径雷达海浪遥感测量.地球物理学报, 2001, 44(增刊):
    22 27.
    33.杨劲松.合成孔径雷达海面风场、海浪和内波遥感技术: [博士学位论文].青岛:青岛海洋大学, 2001.
    34.杨俊刚.多源多时相SAR资料反演水下地形的同化模型: [博士学位论文].青岛:中国科学院海洋研究所, 2007.
    35.杨士中.合成孔径雷达.北京:国防工业出版社, 1981.
    36.叶安乐,李凤歧.物理海洋学.青岛:青岛海洋大学出版社, 1992.
    37.袁业立.海波高频谱形式及SAR影像分析基础.海洋与湖沼, 1997, 28(增刊): 1 5.
    38.袁业立.论骑行波1.波动不稳定性和频率调制.中国科学(B), 1994, 24(3): 317 324.
    39.曾侃.从卫星合成孔径雷达海表图像研究海洋内波的三个问题: [博士学位论文].青岛:青岛海洋大学,2002.
    40.詹森.遥感数字影像处理导论(中译本).北京:科学出版社,2007.
    41.张杰.合成孔径雷达海洋信息处理与应用.北京:科学出版社, 2004.
    42.张骞.水深遥感研究.河海大学学报, 1998, 26(6): 68 72.
    43.张巍,金亚秋,沈一帆.用合成孔径雷达图像反演浅海水下地形的一种方法.海洋学报, 2000, 22(6): 40 46.
    44.郑铁民,张君元.台湾浅滩及其附近大陆架的地形和沉积特征的初步研究.见黄东海地质.北京:科学出版社, 1982: 52 66.
    45.钟炯阳,许明光,刘倬腾,等.利用SAR卫星影像侦测台湾浅海海底地形之研究.航测及遥感学刊, 1999, 4(4): 25 37.
    46.朱大勇,李立,李炎,等.台湾海峡西南部表层海流季节变化的地波雷达观测.科学通报.2008, 53(11): 1 339 1 344.
    47.朱大勇,邵浩,李炎,等. OSMAR高频地波雷达福建示范系统径向流数据质量分析.台湾海峡, 2007, 26(1): 7 16.
    48.朱大勇.高频地波雷达在近海区域的应用研究以台湾海峡为例: [博士学位论文].厦门:厦门大学,2008.
    49. Alparone L, Baronti S, Carla R et al. An adaptive order statistics filter for SAR images. International Journal of Remote Sensing, 1996, 17(7): 1 357 1 365.
    50. Alpers W and Hennings I. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research, 1984, 89: 10 529 10 546.
    51. Alpers W, Ross, D B and Rufenach C L. On the detectability of ocean surface waves by real and synthetic aperture radar. Journal of Geophysical Research, 1981, 86: 6 481 6 498.
    52. Alpers W. Monte Carlo simulation for studying the relationship between ocean wave and synthetic aperture radar image spectra. Journal of Geophysical Research, 1983, 88(C3): 1 745 1 759.
    53. Alpers W. Theory of radar imaging of internal waves. Nature, 1985, 314: 245 247.
    54. Apel J R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. Journal of Geophysical Research, 1994, 99(c8): 16 269 16 291.
    55. ARGOSS. Towards the Operational Use of ERS SAR for bathymetry mapping in Belgium using the advanced Bathymetry Assessment System: BABEL2. Prepared for: ESA, ESRIN, Sep., 2000.
    56. Barrick D E. First order theory and analysis of MF/HF/UHF scatter from the sea, IEEE Transactions on Antennas and Propagation, 1972, AP 20: 2 10.
    57. Barrick D E. Rough surface scattering based on the specular point theory. IEEE Transactions on Antennas and Propagation. 1968, AP 16: 449–454.
    58. Bell P, Shallow water bathymetry derived from an analysis of X band marine radar images of waves. Coastal Engineering, 1999, 13: 513 527.
    59. Brandt P, Romeiser R and Rubino A. On the determination of characteristic of the interior ocean dynamics from radar signatures of internal solitary waves. Journal of Geophysical Research, 1999, 104(C12): 30 039 30 045.
    60. Bretherton F P. Linearized theory of wave propagation. Lecture Applied Mathematics, 1970, 13: 61 102.
    61. Cai A, Zhu Y and Li Y. Sedimentary environment in Taiwan shoal. Chinese Journal of Oceanology and Limnology, 1992, 10(4): 331 339.
    62. Calkoen C J, Hesselmans G, Wensink G, et al. The bathymetry assessment system: efficient depth mapping in shallow seas using radar images. International Journal of Remote Sensing, 2001, 22: 2 973 2 998.
    63. Cooper A L and Chubb S R. Radar surface signature for the two dimensional tidal circulation over Phelps Bank, Nantucket shoals: A comparison between theory and experiment. Journal of Geophysical Research, 1994, 99: 7 865 7 883.
    64. Cox C and Munk W. Statistics of the sea surface derived from sun glitter. Journal Marine Research, 1954, 13: 198 225.
    65. Da Silva J C B, Ermakov S A, Robinson I S, et al. Role of surface films in ERS SAR signatures of internal waves on the shelf 1. Short period internal waves. Journal of Geophysical Research, 1998, 103(C4): 8 009 8 031.
    66. Da Silva J C B, Ermakov S A, Robinson I S, et al. Role of surface films in ERS SAR signatures of internal waves on the shelf 2. Internal tide waves. Journal of Geophysical Research, 1998, 103(C4): 8 033 8 043.
    67. David Y L. Extraction of Surface Currents of Solitary Internal Waves from Synthetic Aperture Radar Data. IEEE Sixth Working Conference on Current Measurement, San Diego, 1999, 25 27.
    68. De Loor G. The observation of tidal patterns, currents, and bathymetry with SLAR imagery of the sea. IEEE Journal of Ocean Engineering, 1981, 6(4): 124– 129.
    69. Donelan M A and Pierson W J. Radar scattering and equilibrium ranges in wind generated waves with application to scatterometry. Journal of Geophysical Research,1987,92(C5):4 971 5 029.
    70. Durden S L and Vesecky J F. On the ability of rough surface scattering approximations to predict hydrodynamics modulation of the ocean radar cross section: a numerical study. Journal of Geophysical Research, 1989: 94: 12 703 12 708.
    71. Elfouhaily T,Chapron B,Katsaros K et al,A unified directional spectrum for long and short wind driven waves. Journal of Geophysical Research,1997,Vol.102(C7): 15 781 15 796.
    72. ESA. ASAR Product Handbook, Issue 1.1, 1 Dec. 2002.
    73. Fan K G, Huang W G, He M X, et al. Wind direction analysis over the ocean using SAR imagery. Journal of Computational Information Systems, 2008, 5(1): 223 231.
    74. Fan K G, Huang W G, He M X, et al. A review about SAR technique for shallow water bathymetry surveys. China Ocean Engineering, 2007, 21(4): 723 731.
    75. Fu B, Yang J S and Huang W G. Application of multi band and full polarization SAR in shallow sea bottom topography measurement, IEEE International Geoscience & Remote Sensing Symposium, 2004.
    76. Fu L and Holt B. Seasat views oceans and sea ice with synthetic aperture radar. JPL publications, 1982.
    77. Greidanus H, Calkoen C, Hennings I, et al. Intercomparison and validation of bathymetry radar imaging models,IEEE International Geoscience & Remote Sensing Symposium, 1997: 1 326 1 329.
    78. Greidanus H. The use of radar for bathymetry in shallow seas. Journal of Hydrographic Society, 1997, 83: 13 18.
    79. Harris P T, Ashley G M and Collins M B. Topograpphic features of the Bristol Channel sea bed: A comparison of SEASAT (SAR) and side scan sonar images. International Journal of Remote Sensing, 1986, 7: 119 136.
    80. Hasselmann D E, Dunckel M and Ewing J A. Directional wave spectra observed duringJONSWAP 1973. Journal of Physical Oceanography, 1980, 10: 1 264 1 280.
    81. Hasselmann K, Raney R K, Plant W J, et al. Theory of synthetic aperture radar ocean imaging: a MARSEN view. Journal of Geophysical Research, 1985, 90(C3): 4 659 4 686.
    82. Hennings I and herbers D. Radar imaging mechanism of marine sand waves at very low grazing angle illumination caused by unique hydrodymanic interactions. Journal of Geophysical Research, 2006, 111, C10008, doi: 10. 1029/2005JC003302.
    83. Hennings I, Lurin B and Didden N. Radar imaging mechanism of the sea bed: results of C STAR experiment in 1996 with special emphasis on the relaxation time of short waves due to current variations. Journal of Physical Oceanography, 2001, 31: 1 807 1 827.
    84. Hennings I, Metzener M and Clakon C J. Island connected seabed signatures observed by muti frequency synthetic aperture radar. International Journal of Remote Sensing, 1998, 19(10): 1 933 1 951.
    85. Hennings I. A historical overview of radar imaging mechanism of sea bottom topography. International Journal of Remote Sensing, 1998, 19(7): 1 447 1 454.
    86. Hennings I. Radar imaging of submarine sand waves in tidal channels. Journal of Geophysical Research, 1990, 95: 9 713 9 721.
    87. Hesselmans G H F M, Wensink G J and Van Koppen C G. Bathymetry Assessment Demonstration off the Belgian coast– BABEL. The Hydro. Journal, 2000, 96: 412 431.
    88. Holliday D G, St Cyr and Wodds N E. A radar ocean imaging model for small to moderate incidence angles. International Journal of Remote Sensing, 1986, 7: 1 809 1 834.
    89. Holliday D G, St Cyr and Wodds N E. Comparison of a new ocean imaging model with SARSEX internal wave image data. International Journal of Remote Sensing, 1987, 8: 1 423 1 430.
    90. Hong Sern Tan. Denoising of noise speckle in radar image: [硕士学位论文]. University of Queensland, 2001.
    91. Huang W G and Fu B. A spaceborne SAR technique for shallow water bathymetry surveys. Journal Coastal Research, 2004, 43: 223 228.
    92. Huang W G and Fu B. Remote Sensing for Coastal Area Management in China. Coastal Management, 2002, 30: 271 276.
    93. Huang W G, Fu B, Zhou C B, et al. Simulation study on optimal currents and winds for spaceborne SAR mapping of underwater bottom topography. Progress in natural science, 2000, 10(11): 859 866.
    94. Huang W G, Fu B, Zhou C B, et al. Shallow water bathymetric surveys by spaceborne synthetic aperture radar. IEEE International Geoscience & Remote Sensing Symposium, 2001.
    95. Huang W G, Gan X L, Li X F, et al. Coastally trapped atmospheric gravity waves on SAR, AVHRR and MODIS images. International Journal of Remote Sensing, 2008, 29(6): 1621 1634.
    96. Hughes B A. The effect of internal waves on surface wind waves 2. Theoretical analysis. Journal of Geophysical Research, 1978, 102: 1 163 1 181.
    97. Jackson C R and Apel J R. Synthetic aperture radar marine user's manual. Natl. Environ. Satell. Data, and Inf. Serv., Nalt. Oceanic and atmos. admin., Silver Spring, 2004.
    98. Jin M B, Zhang J and Yuan Y L, Analysis of bathymetry features using SAR image example from the Southern North Sea. Chinese Journal of Oceanology and Limnology 1998, 16(2): 128 136
    99. Johannessen J A and Schuchman R A. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar. Journal of Geophysical Research, 1996, 101: 6 651 6 667.
    100. Jordan A K and Lang R H. Electromagnetic scattering patterns from sinusoidal surfaces. Radio Science, 1979, 14(6): 1 077 1 088.
    101. Kasilingam D P and Shemdin O H. The validity of the composite surface model and its applications to the modulation of radar. International Journal of Remote Sensing, 1992, 13: 2 079 2 104.
    102. Knut Frode D, Johnny A. Johannessen, Ming Xia He, et al, Momitoring of the south and east China seas with ENVISAT ASAR. 2008, ESA SP 655, Proc. Dragon 1 Programme Final Results 2004–2007, Beijing, P.R. China.
    103. Kudryavtsev V, Akimov D, Johannessen, et al. On radar imaging of current features 1. Model and comparison with observations. Journal of Geophysical Research, 2005, Vol. 110, C07016, doi: 10.1029/2004JC002505.
    104. Kudryavtsev V, Akimov D, Johannessen, et al. On radar imaging of current features 2. Mesoscale eddy and current front detection. Journal of Geophysical Research, 2005, Vol. 110, C07017, doi: 10.1029/2004JC002802.
    105. Kudryavtsev V,Hauser D,Caudal G, et al. Semi empirical model of the normalized radar cross section of the sea surface. 1: backscattering model. Journal of Geophysical Research,2003a,108(C3), 8054, doi:10.1029/2001JC001003.
    106. Kudryavtsev V,Hauser D,Caudal G, et al. Semi empirical model of the normalized radar cross section of the sea surface. 2: radar modulation transfer function,Journal of Geophysical Research, 2003b,108(C3), 8055, doi:10.1029/2001JC001004.
    107. Leu L G, Kuo YY, and Liu C T. Coastal bathymetry from the wave spectrum of spot images. Coastal Engineering, 1999, 41: 21 41.
    108. Li X F, Li C Y, Picher W G, et al. Synthetic aperture radar imaging of axial convergence fronts in Cook Inlet, Alaska. IEEE Journal of oceanic engineering, 2005, 30(3): 543 551.
    109. Li Y, Ma L M, Yang J S. Study on stability of sand waves by satellite sensing. Asian and Pacific coastal engineering, 2001, 2: 850 856.
    110. Liu Z Y, Yang H J, Liu Q Y. Regional dynamics of seasonal variability in the South China Sea. Journal of Physical Oceanography, 2001, 31: 272~284.
    111. Longuet Higgins M S and Bennett J R. Radiation stresses in water waves, a physical discussion with application. Deep Sea Research, 1964, 11: 529 562.
    112. Lyzenga D R. Interaction of short surface and electromagnetic waves with ocean fronts. Journalof Geophysical Research, 1991, 96(C6): 10 765 10 772.
    113. Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom feature. Applied Optics, 1978, 17(3): 379 383.
    114. Lyzenga D R. Status of forward models for SAR observation of current features. The Coastal and Marine Applications of SAR Symposium, Svalbard, Norway, 2003.
    115. Mastenbroek C, and Valk C F de. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research, 2000, 105 (C2): 3 497 3 516.
    116. Narasimha V P, Vidyadhar R, Rao M et al. An adaptive filter for speckle suppression in synthetic aperture radar images. International Journal of Remote Sensing, 1995, 16(5): 977 889.
    117. Philopt W D. Bathymetric mapping with passive multispectral imagery. Applied Optics, 1989, 28(8): 1569 1578.
    118. Pierson W J and Moskowitz L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research, 1964, 69(24): 5 181 5 190.
    119. Plant W J and Wright J W. Growth and equilibrium of short gravity waves in a wind wave tank. Journal of Fluid Mechanics, 1977, 82(4): 767 793.
    120. Plant W J. A two scale model of short wind generated waves and scatterometry. Journal of Geophysical Research, 1986, 91(C9): 10 735 10 749.
    121. Portabella M and Stoffelen A. Toward an optimal inversion method for synthetic aperture radar wind retrieval. Journal of Geophysical Research, 2002, 107(C8): 10.1029/2001JC000925.
    122. Romeiser R and Alpers W, An Improved Composite Surface Model for the Radar Backscattering Cross Section of the Ocean Surface 1. Theory of the Model and Optimization / Validation by Scatterometer Data, Journal of Geophysical Research, 1997, 102: 25 238 25 250.
    123. Romeiser R and Alpers W. An Improved Composite Surface Model for the Radar Backscattering Cross Section of the Ocean Surface 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research, 1997, 102(C11): 25 251 25 267.
    124. Romeiser R and Alpers W. An improved theory for the radar imaging of underwater bottom topography based on a three scale model. IEEE International Geoscience & Remote Sensing Symposium, 1993: 361 363.
    125. Romeiser R, Schmidt A and Alpers W. A three scale composite surface model for the ocean wave radar modulation transfer function, Journal of Geophysical Research, 1994, 99(C5): 9 785 9 801.
    126. Romeiser R, Susanne U, Alexei A, et al. On the remote sensing of ocenic and atmospheric convections in the Greeland Sea by stnthetic aperture radar. Journal of Geophysical Research, 2004, 109, C03004, doi: 10.1029/2003JC001975.
    127. Romeiser R, Ufermann S and Stolte S. Status report of the remote sensing og current features by spaceborne Synthetic Aperture Radar. 2003, ESA SP565.
    128. Romeiser R, Ufermann S, Stolte S. Energy transfer between hydrodynamically modulated long and short ocean waves by interaction with the wind field. IEEE International Geoscience & Remote Sensing Symposium, 1999: 965 967.
    129. Romeiser R, Ufermann S, and S Kern, Status report on the remote sensing of current features by spaceborne synthetic aperture radar, Proc. Second Workshop on Coastal and Marine Applications of SAR, 105 124, ESA Special Publication. SP 565, ESA, Noordwijk, Netherlands, 2004.
    130. Romeiser R. USER'S of M4S Manual. July 2005, 1:31.
    131. RSI. RADARSAT data products specifications. 2000, RSI GS 026(3).
    132. Shuchman R A, Lyzinga D R and Meadows G A. SAR imaging of ocean bottom topography via tidal current interactions: Theory and observations. International Journal of Remote Sensing, 1985, 6: 1 179 1 200.
    133. Stewart R H and Joy J W.HF radio measurements of surface currents.Deep Sea Research,1974, 21: 1 039 1 049.
    134. Stockdon H F and Holman R A. Estimation of wave phase speed and near shore bathymetry from video images. Journal of Geophysical Research, 2000, 105(C9): 22 015 22 033.
    135. Stoffelen A and Anderson D L T. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4, Journal of Geophysical Research, 1997, 102: 5 767 5 780.
    136. Susanne U and Romeiser R. Numerical study on signature of atmospheric convective cells in radar images of the ocean. Journal of Geophysical Research, 1999, 104(C11): 25 707 28 719.
    137. Thompson D R and Gasparovic R F. Intensity modulation in SAR images of internal waves. Nature, 1986, 320: 345 348.
    138. Timothy D, Askali, et al. Radar imaging of sand waves on continental shelf east of Cape Hatteras. Continental Shelf Res, 1997, 7(9): 989 1004.
    139. Trevor Macklin, Judith Wolf, Sarah Wakelin, et al, Modelling of SAR signatures of features in bathymetry the Britol channel using coupled wave current model, Proceedings of SEASAR 2006, Frascati, Italy, 2005, ESA SP 572.
    140. Ulaby F T, Moore R K and Fung A K. Microwave remote sensing, Active and Passive, Vol I: Microwave remote sensing fundamentals and radiometry. Addison Wesley, Reading, MA, 1982: 1 456.
    141. Valenzuela G R, Chen D T, Garret W D, et al. Shallow water bottom topography from radar imagery. Nature, 1983, 303(23): 687 689.
    142. Valenzuela G R, Plant W J and Schuler D L. Microwave probing of shallow water bottom topography in the Nantuchet Shoals. Journal of Geophysical Research, 1985, 90: 4 931 4 942.
    143. Valenzuela G R. Theories for the interaction of electromagnetic and ocean waves a review. Boundary Layer Meteorology, 1978, 13: 61 85.
    144. Valk C E. Comparison of data and model predictions of current, wave and radar cross section modulation by seabed sand waves. SeaSAR2008, 2008.
    145. Van Der Kooij M W A, Vogelzang J and Calkoen C J. A simple analytical model for brightnessmodulation caused by submarine sand waves in radar imagery. Journal of Geophysical Research, 1995, 100: 7 069 7 082.
    146. Van Gastel K. Imaging by X band radar of subsurface features: a nonlinear phenomenon. Journal of Geophysical Research, 1987, 92C: 11 857 11 865.
    147. Vogelzang J, Wensink G J and De Loor G P. Sea bottom topography with X band SLAR: the relation between radar imagery and bathymetry. International Journal of Remote Sensing, 1992, 13: 1 943 1 958.
    148. Vogelzang J, Wensink G J, van de Kooij, et al. Sea Bottom Topography with Polarimetric P , L and C band SAR. BCRS Rep., Netherlands Remote Sensing Board, Delft, The Netherlands, 1992, 91 40.
    149. Vogelzang J. A model comparison study to the imaging of submarine reefs with synthetic aperture radar. International Journal of Remote Sensing, 2001, 22(3): 2 509 2 536.
    150. Vogelzang J. Mapping submarine sand waves with multiband imaging radar 1: Model development and sensitivity analysis. Journal of Geophysical Research, 1997, 102(C1): 1 163– 1 181.
    151. Vogelzang J. Mapping submarine sand waves with multiband imaging radar 2: Experimental result and model comparison. Journal of Geophysical Research, 1997, 102(C1): 1183– 1192.
    152. Vogelzang J. Radar imaging of sea bottom topography under various azimuth angles. IEEE International Geoscience & Remote Sensing Symposium, 1999, 1 964 1 967.
    153. Vogelzang J. The Mapping of Bottom Topography with Imaging Radar– A Comparison of the Hydrodynamic Modulation in Some Exiting Models. International Journal of Remote Sensing, 1989, 10: 1 503 1 518.
    154. Wacherman C, Lyzenga D, Ericson E, et al. Estimating near shore bathymetry using SAR. IEEE International Geoscience & Remote Sensing Symposium, 1998: 1 668 1 670.
    155. Wensink G J, et al. Coastal sediment transport assessment using SAR imagery, C STAR, final Per. MAS3 CT95 0035, Commission of the European Communities, Brussels, Belgium, 1999.
    156. Wensink G J, Hesselmans G H F M, Calkoen C J. The commercial use of satellite observation for bathymetry surveys. Proceedings of Inter. Symp. On Opera. Of R.S. for Coas. And Mari. Appli. Enschede, Netherlands, 1993. 29 36.
    157. Whitham G B. Non linear dispersive waves. Proc. Royal Soc. London A, 1965, 139: 283 2915.
    158. Wright J W. A new model for sea clutter. IEEE Transactions on Antennas and Propagation,1968,AP 16(2):217 223.
    159. Wright J W. Backscattering from capillary waves with application to sea clutter. IEEE Transactions on Antennas and Propagation, 1966, AP 14(3):749 754.
    160. Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology, 1984, 56: 93 118.
    161. Wu X B, Yang S L, Cheng F, et al. Ocean surface currents detection at the eastern China sea by HF surface wave radar. Chinese Journal of Geophysics, 2003, 46(3): 340 346.
    162. Yang J G, Zhang J and Meng J M. Underwater topography detection of Shuangzi Reefs with SAR images acquired in different time. Acta Oceanologica Sinica, 2007, 26(1): 48 54.
    163. Yang J S, Huang W G, Zhou C B et al. Wave Height Estimation from SAR Imagery. Chinese Journal of Oceanology and Limnology, 2004, 22(2): 157 161.
    164. Zheng Q A, Li li, X G Guo, et al. SAR imaging and hydrodynamic analysis ocean bottom topographic waves, Journal of Geophysical Research, 2006, 111: C09028, doi: 10.1029/ 2006JC003586.
    165. Zhou C B, Creswell G, Tildesely, et al. Satellite SAR observation of shallow water bottom topography of the east Austrlia Sea. Acta Oceanologica Sinica, 1999, 18(2): 215 223.
    166. Zhou H, Wen B Y. Mapping ocean surface vector currents by dual HF ground wave radar. Oceanology and Limnology. 2002, 33(1): 1 7.
    167. Zhu D Y, Li L, Li Y, et al. Seasonal variation of surface currents in the southwestern Taiwan Strait observed with HF radar. Chinese Science Bulletin, 2008, 53(15): 2 385 2 391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700