用户名: 密码: 验证码:
介孔二氧化硅改性及其吸附CO_2研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化是人类迄今面临的最重大环境问题,也是21世纪人类面临的最复杂挑战之一。化石燃料燃烧排放的大量CO_2是造成全球气候变化的主要原因,对全球变暖的贡献率已超过了60%。采用新型的多孔固体吸附剂对烟气中CO_2进行分离和捕集有可能是一种高选择性,低能耗的方法,已引起人们的广泛关注。然而,目前所开发的针对该体系的吸附剂均对吸附脱附条件比较敏感,尚有许多不足之处,制约了该吸附法的实际应用。本文正是基于上述背景采用氨基修饰及多种有机胺浸渍等方法来研制新型吸附剂,对提高该类CO_2吸附剂的相关性能做了有益的探索。主要研究结论如下:
     对焙烧去除模板剂后的样品进行水化能使改性后的SBA-16的吸附容量和吸附速率增加。这是由于焙烧过程中SBA-16的一部分表面硅羟基发生缩合脱水,失去活性,而水化过程会使得Si-O-Si键重新生成硅羟基。SBA-16的颗粒粒径越小,经过表面修饰后的改性SBA-16的平衡吸附容量越大。分子筛的颗粒粒径越小,氨基活性基团更容易进入孔道内,因此嫁接量也较多。颗粒粒径在0.124-0.15mm之间的SBA-16(经过水化的样品)经过改性后具有最大的吸附容量,约为0.727 mmol g~(-1)(60℃),是SBA-16载体吸附量的18.1倍,说明材料经过改性后,表面修饰的氨基与CO_2产生了一定的化学作用,从而导致吸附容量大大增加。经过氨基改性后的SBA-16的吸附焓可以高达70 kJ mol~(-1)左右,而物理吸附焓仅为40 kJ mol~(-1)左右,这也表明氨基与CO_2分子之间存在化学反应。同时,研究发现改性后样品的吸附容量与嫁接氨基量几乎成线性关系,即Y=0.3855X-0.4397,Y代表吸附容量(mmol g~(-1)),而X代表氨基浓度(mmol-N g~(-1))。
     在传统的以沸石分子筛作为吸附剂的变温吸附中,烟气中水蒸气的存在与CO_2产生竞争吸附,因此需要对烟道气进行除湿,而除湿过程消耗的能量约占总耗能的30%。在变温吸附中,高温条件虽有利于脱附,但可能会使介孔分子筛表面嫁接的氨基基团分解。同时,高温和高湿度条件有可能会破坏介孔分子筛的结构。因此,本文首次研究了有机改性后介孔二氧化硅分子筛SBA-16的水热稳定性和热稳定性,以及硅烷化程度对于改性SBA-16疏水性能的影响。结果表明,氨基嫁接改性后的SBA-16比载体SBA-16表现出更强的疏水性能,而在烟道气中水分几乎是饱和的,所以这有利用于降低吸附剂再生时的能耗。在He或空气氛围中经过氨基改性的SBA-16的热稳定温度均能达到200℃,这有利用于吸附剂的快速再生。经多次循环吸附脱附试验后吸附剂的性能没发生明显劣化。根据~(29)Si MAS NMR和N_2物理吸附脱附分析结果,经过16 h水热处理后的改性SBA-16仍然表现出强的水热稳定性,改性后介孔SBA-16的水热稳定性取决于其硅烷化程度的大小。这些性质对于介孔吸附材料在高湿高温条件下吸附分离CO_2具有重要意义。
     本文也通过浸渍方法在MCM-41原粉上负载了三种不同有机胺(DETA、TETA、AMP)制备CO_2吸附材料。采用低角度XRD、TGA/DTG、N_2物理吸附法、FTIR来表征负载胺在载体内的分散及负载情况。表征结果表明各种胺已经成功负载到载体上,并且材料在100℃下再生能够保持稳定。本文中吸附材料的制备过程不仅可以节约去除模板剂所需要的能量或者萃取溶剂,而且由于其不需要采用甲苯溶剂,所以避免了甲苯对环境的污染。采用动态吸附柱法对改性材料的CO_2的吸附性能进行了研究。研究结果表明,采用TETA浸渍的吸附材料由于具有最大的N含量,其对CO_2具有最大的吸附容量(2.22 mmol g~(-1))。采用失活模型对吸附柱法CO_2的吸附穿透曲线进行数学模拟,发现失活模型能较好地模拟这一过程。对烟气中杂质的影响也做了初步的探索,实验表明浓度为550 mgm~(-3)的SO_2对CO_2吸附材料性能并无显著影响。但由于SO_2会与胺基材料产生不可逆吸附反应,在将来可能的工业应用中吸附CO_2的单元宜设在脱硫装置以后,以尽量减小SO_2对吸附材料的影响。
The global climate change is the most critical environmental problem and is alsoone of the most complicated challenges facing to the whole mankind. CO_2 emissionfrom fossil fuels combustion contributes to more than 60% of the global climatechange, which has been the main reason that results in the global climate change.Therefore, the novel porous solids to capture CO_2 from flue gas have attractedparticular interest due to its high selectivity and low energy penalty. However, thepresent adsorbents are sensitive to the adsorption/desorption conditions and there stillexit some disadvanges. In this paper, three methods such as grafting, coating andimpregnation were used to prepare the novel adsorbents and to promote the CO_2capture capacity, regeneration, hydrophobicity and thermo stability of the adsorbents.
     The samples of Hydrolyzed-N exhibited superior equilibrium adsorption capacityas well as adsorption rate to those of the samples of Calcined-N, mainly due to theincrease of silanol group concentration on the surface of the adsorbents by hydrolysis.The samples with finer particle size outperformed the samples with coarse particlesize in the equilibrium adsorption capacity. Fine particle size allowed goodaccessibility for the grafting agent. Hence more grafting agents were anchored.Measurements of the enthalpies of adsorption highlighted that the CO_2 adsorption onthe AEAPS functionalized SBA-16 was a strong interaction, indicating that theinteraction between the amine group and CO_2 isa chemisorption. The maximumamount of carbon dioxide adsorbed at 60℃was 0.727 mmol g~(-1) for the AEAPSfunctionalized SBA-16 (hydrolyzed SBA-16 as support) of the particle size range at0.124-0.15 mm., which is 18.1 times that of the SBA-16 support, suggesting thatadsorption of CO_2 on the AEAPS functionalized SBA-16 is mostly a chemisorption.The adsorption enthalpy is much higher than 40 kJ mol~(-1), about 70 kJ mol~(-1), whichalso suggests it is a chemisorption. The relationship between adsorption capacity andamine content is Y=0.3855X-0.4397 where Y is adsorption capacity (mmol g~(-1)) and Xis amine content (mmol-N g~(-1)).
     In the traditional temperature swing adsorption using zeolites as adsorbents, about 30 % of the total energy is consumed to dehumidify flue gas before adsorption,owing to the competitive adsorption between water vapor and CO_2. High regenerationtemperature may promote desorption of CO_2, however, it may decompose the graftingamino groups. At the same time, high temperature and high humidity of flue gas afterFGD may cause the destruction of the mesoporous silica. Therefore, for the first time,thermal stability, hydrothermal stability and hydrophobicity of the SBA-16 supportsand the modified SBA-16 by silylation were investigated.
     The amino-functionalized SBA-16 prepared by silylating various amine contentson the mesoporous silica SBA-16 exhibited super hydrophobicity to the SBA-16support. The amino-groups silylated on SBA-16 can be thermally stable up to 200℃whether in He or in air, which is advantageous to the regeneration of the adsorbents.The adsorption capacity remains stable during multiple adsorption/desorptions. Afterhydrothermal treatment for 16 h, the amino-functionalized SBA-16 still displaysstructure stability against boiling water. Hydrothermal stability of theamino-functionalized SBA-16 is related to the extent of silylation, namelyamino-groups contents, which are covalently bonded on the support.
     The CO_2 adsorbents were also prepared through impregnating on theas-synthesized MCM-41 by three types of amines. The synthesis way not only savesthe energy or extractor to remove the template but also is environmentally friendlydue to the absence of the potential pollutants such as toluene. The sample impregnatedby TETA showed the highest adsorption capacity, about 2.22 mmol g~(-1) at 60℃due toits highest amino-groups content among the three samples. The CO_2 adsorptionbehavior was also investigated with the deactivation model, which showed excellentprediction of the breakthrough curves. No obvious effect of SO_2 with theconcentration of 550 mg m~(-3) on the adsorbent was found. However, CO_2 capture unitshould be placed after FGD unit to minimize the effect of SO_2 in the potentialcommercial applications, due to the irreversible adsorption of SO_2 on the impregnatedadsorbents.
引文
[1] Halmann M. M., Stenberg M., Greenhouse Gas Carbon Dioxide Mitigation, CRC Press LLC, Florida, 1999.
    [2] Service R. F., The carbon conundrum, Science, 2004, 305, 962-963.
    [3] Stewart C., Hessami M. A., A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach, Energ. Convers. Manage., 2005, 46, 403-420.
    [4] Figueroa J. D., Fout T., Plasynski S., McIlvried H., Srivastava R. D., Advancesn in CO_2 capture technology - The US Department of Energy's Carbon Sequestration Program, Int. J. Greenh. Gas Cont, 2008, 2, 9-20.
    [5] Benson S. M., Surles T., Carbon dioxide capture and storage: An overview with emphasis on capture and storage in deep geological formations, Proc. IEEE., 2006, 94, 1795-1805.
    [6] Lee S., Park J. W., Song H. J., Maken S., Filbum T., Implication of CO_2 capture technologies options in electricity generation in Korea, Energ. Policy, 2008, 36, 326-334.
    [7] Meng K. C., Williams R. H., Celia M. A., Opportunities for low-cost CO_2 storage demonstration projects in China, Energ. Policy, 2007, 35, 2368-2378.
    [8] Idem R., Tontiwachwuthikul P., Preface for the special issue on the capture of carbon dioxide from industrial sources: Technological developments and future opportunities, Ind. Eng. Chem. Res., 2006, 45, 2413-2413.
    [9] Yang H. Q., Xu Z. H., Fan M. H., Gupta R., Slimane R. B., Bland A. E., Wright I., Progress in carbon dioxide separation and capture: A review, J. Environ. Sci., 2008, 20, 14-27.
    [10] Zhou Q., Chan C. W., Tontiwachiwuthikul P., Regression analysis study on the carbon dioxide capture process, Ind. Eng. Chem. Res., 2008, 47, 4937-4943.
    [11] Li J. L., Chen B. H., Review Of CO_2 absorption using chemical solvents in hollow fiber membrane contactors, Sep. Purif. Technol., 2005, 41, 109-122.
    [12] Granite E. J., O B. T., Review of novel methods for carbon dioxide separation from flue and fuel gases, Fuel Process. Technol., 2005, 86, 1423-1434.
    [13] Notz R., Asprion N., Clausen I., Hasse H., Selection and pilot plant tests of new absorbents for post-combustion carbon dioxide capture, Chem. Eng. Res. Des., 2007, 85, 510-515.
    [14] Ma S., Svendsen H. F., Hoff K. A., Juliussen O., Selection of new absorbents for carbon dioxide capture, Energ. Convers. Manage., 2007, 48, 251-258.
    [15] Aaron D., Tsouris C., Separation of CO_2 from flue gas: A review, Separ. Sci. Technol., 2005, 40, 321-348.
    [16] Lee J. S., Lee J. P., Review of advances in biological CO_2 mitigation technology, Biotechnol. Bioprocess Eng., 2003, 8, 354-359.
    [17] Kohl A. L., Richard N., Gas Purification, Gulf Professional Publishing, Houston, 1997.
    [18] Hiyoshi N., Yogo K., Yashima T., Adsorption characteristics of carbon dioxide on organically functionalized SBA-15, Micropor. Mesopor. Mater., 2005, 84, 357-365.
    [19] Knofel C., Descarpentries J., Benzaouia A., Zelenak V., Mornet S., Llewellyn P. L., Hornebecq V., Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide, Micropor. Mesopor. Mater., 2007, 99, 79-85.
    [20] Huang H. Y., Yang R. T., Chinn D., Munson C. L., Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 2003, 42, 2427-2433.
    [21] Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W., Preparation and characterization of novel CO_2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Micropor. Mesopor. Mater., 2003, 62, 29-45.
    [22] Xu X. C., Song C. S., Miller B. G., Scaroni A. W., Influence of moisture on CO_2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41, Ind. Eng. Chem. Res., 2005, 44, 8113-8119.
    [23] Son W. J., Choi J. S., Ahn W. S., Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Micropor. Mesopor. Mater., 2008, 113, 31-40.
    [1] 戴树桂,环境化学,1~(st)ed,高等教育出版社,北京,1997.
    [2] http://www.ieagreen.org.uk
    [3] http://www.pewclimate.org/global-warming-basics/climate_change_101
    [4] Brohan P., Kennedy J. J., Harris I., Tett S. F., Jones P. D., Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 2006, 111, D12106.
    [5] Monnin E., Indermuhle A., Dallenbach A., Fluckiger J., Stauffer B., Stocker T. F., Raynaud D., Barnola J. M., Atmospheric CO_2 concentrations over the last glacial termination, Science, 2001, 291, 112-114.
    [6] 金心,石广玉,IPCC确定的几种未来大气CO_2浓度水平对人为CO_2排放的限制,气候与环境研究,2001,6,125-131.
    [7] Editorials, Sequestration of greenhouse gases could play an important role in capping emissions, Nature, 2006, 442, 601-602.
    [8] Choi W., Kang H., Kim I., Kim J., Lee M., Pilot-scale experiment to investigate CO_2 migration characteristics for geological sequestration, Geochim. Cosmochim. Ac, 2008, 72, 161-161.
    [9] Keller K., Mclnerney D., Bradford D. F., Carbon dioxide sequestration: how much and when?, Climatic. Change., 2008, 88, 267-291.
    [10] Mazumder S., Wolf K. H., van H. P., Busch A., Laboratory experiments on environmental friendly means to improve coalbed methane production by carbon dioxide/flue gas injection, Transport Porous. Med, 2008, 75, 63-92.
    [11] Trivedi J., Babadagli T., Efficiency analysis of greenhouse gas sequestration during miscible CO_2 injection in fractured oil reservoirs, Environ. Sci. Technol., 2008, 42, 5473-5479.
    [12] Barford C. C., Wofsy S. C., Goulden M. L., Munger J. W., Pyle E. H., Urbanski S. P., Hutyra L., Saleska S. R., Fitzjarrald D., Moore K., Factors controlling long- and short-term sequestration of atmospheric CO_2 in a mid-latitude forest, Science, 2001, 294, 1688-1691.
    [13] Lackner K. S., A guide to CO2 sequestration, Science, 2003, 300, 1677-1678.
    [14] Damen K., Faaij A., van B. F., Gale J., Lysen E., Identification of early opportunities for CO_2 sequestration-worldwide screening for CO_2-EOR and CO_2-ECBM projects, Energy, 2005, 30, 1931-1952.
    [15] Hileman B., Shell and Statoil plan to use CO_2 for enhanced offshore oil recovery, Chem. Eng. News, 2006, 84, 9-9.
    [16] Nobakht M., Moghadarn S., Go Y., Effects of viscous and capillary forces on CO_2 enhanced oil recovery under reservoir conditions, Energy Fuels, 2007, 21, 3469-3476.
    [17] Suebsiri J., Wilson M., Tontiwachwuthikul P., Life-cycle analysis of CO_2 EOR on EOR and geological storage through economic optimization and sensitivity analysis using the Weyburn unit as a case study, Ind. Eng. Chem. Res., 2006, 45, 2483-2488.
    [18] Holloway S., Underground sequestration of carbon dioxide - a viable greenhouse gas mitigation option, Energy, 2005, 30, 2318-2333.
    [19] Li J., Zhou J. M., Duan Z. Q., Effects of elevated CO_2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios, J. Environ. Sci., 2007, 19, 1100-1107.
    [20] de Luser H., Gas for the greenhouse, Nature, 2006, 442, 449.
    [21] del V. J., Mena C., Budinich M., Extraction of garlic with supercritical CO_2 and conventional organic solvents, Braz. J. Chem. Eng., 2008, 25, 535-542.
    [22] de A. A., Mazzafera P., Mohamed R. S., de M. S., Kieckbusch T. G., Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents, Braz. J. Chem. Eng., 2008, 25, 543-552.
    [23] Marzouki H., Piras A., Marongiu B., Rosa A., Dessi M. A., Extraction and separation of volatile and fixed oils from berries of Laurus nobilis L. by supercritical CO_2, Molecules, 2008, 13, 1702-1711.
    [24] Shi J. Q., Mazumder S., Wolf K. H., Durucan S., Competitive methane desorption by supercritical CO_2 injection in coal, Transport Porous. Med, 2008, 75, 35-54.
    [25] Grosso C., Ferraro V., Figueiredo A. C., Barroso J. G., Coelho J. A., Palavra A. M., Supercritical carbon dioxide extraction of volatile oil from Italian coriander seeds, Food Chem., 2008, 111, 197-203.
    [26] Kawahito Y., Kondo M., Machmudah S., Sibano K., Sasaki M., Goto M., Supercritical CO_2 extraction of biological active compounds from loquat seed, Sep. Purif. Technol., 2008, 61, 130-135.
    [27] Silva G. F., Gamarra F. M., Oliveira A. L., Cabral F. A., Extraction of bixin from annatto seeds using supercritical carbon dioxide, Braz. J. Chem. Eng., 2008, 25, 419-426.
    [28] Sarmento L. A., Machado R. A., Petrus J. C., Tamanini T. R., Bolzan A., Extraction of polyphenols from cocoa seeds and concentration through polymeric membranes, J. Supercrit. Fluid., 2008, 45, 64-69.
    [29] Figueroa J. D., Fout T., Plasynski S., Mcllvried H., Srivastava R. D., Advancesn in CO_2 capture technology - The US Department of Energy's Carbon Sequestration Program, Int. J. Greenh. Gas Cont, 2008, 2, 9-20.
    [30] Klara S. M., Srivastava R. D., US DOE integrated collaborative technology development program for CO_2 separation and capture, Environ. Prog., 2002, 21, 247-253.
    [31] Benson S. M., Surles T., Carbon dioxide capture and storage: An overview with emphasis on capture and storage in deep geological formations, Proc. IEEE., 2006, 94, 1795-1805.
    [32] 黄斌,刘练波,许世森,丰镇平,燃煤电站CO_2捕集与处理技术的现状与发展,电力设备,2008,9,3-6.
    [33] Yang H. Q., Xu Z. H., Fan M. H., Gupta R., Slimane R. B., Bland A. E., Wright I., Progress in carbon dioxide separation and capture: A review, J. Environ. Sci., 2008, 20, 14-27.
    [34] Granite E. J., O B. T., Review of novel methods for carbon dioxide separation from flue and fuel gases, Fuel Process. Technol., 2005, 86, 1423-1434.
    [35] Gough C., State of the art in carbon dioxide capture and storage in the UK: An experts' review, Int. J. Greenh. Gas Cont, 2008, 2, 155-168.
    [36] Aaron D., Tsouris C., Separation of CO_2 from flue gas: A review, Separ. Sci. Technol., 2005, 40, 321-348.
    [37] Yong Z., Mata V., Rodrigues A. E., Adsorption of carbon dioxide at high temperature--a review, Sep. Purif. Technol., 2002, 26, 195-205.
    [38] Idem R., Wilson M., Tontiwachwuthikul P., Chakma A., Veawab A., Aroonwilas A., Gelowitz D., Pilot plant studies of the CO_2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO_2 capture technology development plant and the Boundary Dam CO_2 capture demonstration, Ind Eng. Chem. Res., 2006, 45, 2414-2420.
    [39] Reynolds S. P., Mehrotra A., Ebner A. D., Ritter J. A., Heavy reflux PSA cycles for CO_2 recovery from flue gas: Part Ⅰ. Performance evaluation, Adsorption., 2008, 14, 399-413.
    [40] Dong F., Lou H. M., Kodama A., Goto M., The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO_2-CH_4-N_2, Sep. Purif. Technol., 1999, 16, 159-166.
    [41] Kumar P., Kim S., Ida J., Guliants V. V., Polyethyleneimine-modified MCM-48 membranes: Effect of water vapor and feed concentration on N_2/CO_2 selectivity, Ind. Eng. Chem. Res., 2008, 47, 201-208.
    [42] Li J. L., Chen B. H., Review Of CO_2 absorption using chemical solvents in hollow fiber membrane contactors, Sep. Purif. Technol., 2005, 41, 109-122.
    [43] Rao A. B., Rubin E. S., A technical, economic, and environmental assessment of amine-based CO_2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol., 2002, 36, 4467-4475.
    [44] Romeo L. M., Bolea I., Escosa J. M., Integration of power plant and amine scrubbing to reduce CO_2 capture costs, Appl. Therm. Eng., 2008, 28, 1039-1046.
    [1]Yong Z., Mata V., Rodrigues A. E., Adsorption of carbon dioxide at high temperature--a review, Sep. Purif. Technol., 2002, 26, 195-205.
    [2]Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 1985, 57, 603-619.
    [3]Soler-Illia G. J., Sanchez C., Lebeau B., Patarin J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
    [4]Lee J. S., Kim J. H., Kim J. T., Suh J. K., Lee J. M., Lee C. H., Adsorption equilibria of CO_2 on zeolite 13X and zeolite X/Activated carbon composite, J. Chem. Eng. Data., 2002, 47, 1237-1242.
    [5]Dreisbach F., Staudt R., Keller J. U., High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon, Adsorption., 1999, 5, 215-227.
    [6]Katoh M., Yoshikawa T., Tomonari T., Katayama K., Tomida T., Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO_2/N_2 mixtures, J. Colloid Interf. Sci., 2000, 226, 145-150.
    [7]Khelifa A., Benchehida L., Derriche Z., Adsorption of carbon dioxide by X zeolites exchanged with Ni~(2+) and Cr~(3+): isotherms and isosteric heat, J Colloid Interf. Sci., 2004, 278, 9-17.
    [8]Siriwardane R. V., Shen M. S., Fisher E. P., Adsorption of CO_2 on zeolites at moderate temperatures, Energy Fuels, 2005, 19, 1153-1159.
    [9]Li G., Xiao P., Webley P., Zhang J., Singh R., Marshall M., Capture of CO_2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption., 2008, 14, 415-422.
    [10]Wirawan S. K., Creaser D., Multicomponent H_2/CO/CO_2 adsorption on BaZSM-5 zeolite, Sep. Purif. Technol., 2006, 52, 224-231.
    [11]Merel J., Clausse M., Meunier F., Experimental investigation on CO_2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites, Ind. Eng. Chem. Res., 2008, 47, 209-215.
    [12]Jadhav P. D., Chatti R. V., Biniwale R. B., Labhsetwar N. K., Devotta S., Rayalu S. S., Monoethanol amine modified zeolite 13X for CO_2 adsorption at different temperatures, Energy Fuels, 2007, 21, 3555-3559.
    [13]Hiyoshi N., Yogo K., Yashima T., Adsorption characteristics of carbon dioxide on organically functionalized SBA-15, Micropor. Mesopor. Mater., 2005, 84, 357-365.
    [14]Ficicilar B., Dogu T., Breakthrough analysis for CO_2 removal by activated hydrotalcite and soda ash, Catal. Today, 2006, 115, 274-278.
    [15]Ding Y., Alpay E., Equilibria and kinetics of CO_2 adsorption on hydrotalcite adsorbent, Chem. Eng. Sci., 2000, 55, 3461-3474.
    [16]Ding Y., Alpay E., High temperature recovery of CO_2 from flue cases using hydrotalcite adsorbent, Process. Saf. Environ., 2001, 79, 45-51.
    [17]Wang X. P., Yu J. J., Cheng J., Hao Z. P., Xu Z. P., High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds, Environ. Sci. Technol., 2008, 42, 614-618.
    [18]Soares J. L., Moreira R. F., Jose H. J., Grande C. A., Rodrigues A. E., Hydrotalcite materials for carbon dioxide adsorption at high temperatures: Characterization and diffusivity measurements, Separ. Sci. Technol., 2004, 39, 1989-2010.
    [19]Chiola V., Ritsko J. E., Vanderpool C. D. US Patent 3556725, 1971.
    [20]Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Ordered mesoporous moloecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
    [21]Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, 114, 10834-10843.
    [22]Huo Q., Margolese D. I., Ciesla U., Demuth D. G., Feng P., Gier T. E., Sieger P., Firouzi A., Chmelka B. F., Schuth F., Stucky G. D., Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays, Chem. Mater., 1994, 6, 1176-1191.
    [23]Zhao D. Y., Feng J. L., Huo Q. S., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279, 548-552.
    [24]Zhao D. Y., Huo Q. S., Feng J. L., Chmelka B. F., Stucky G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
    [25]Matos J. R., Mercuri L. P., Kruk M., Jaroniec M., Synthesis of Large-Pore Silica with Cage-Like Structure Using Sodium Silicate and Triblock Copolymer Template, Langmuir, 2002, 18, 884-890.
    [26]Kim J. M., Sakamoto Y., Hwang Y. K., Kwon Y., Terasaki O., Park S., Stucky G. D., Structural Design of Mesoporous Silica by Micelle-Packing Control Using Blends of Amphiphilic Block Copolymers, J. Phys. Chem. B, 2002, 106, 2552-2558.
    [27]Sakamoto Y., Kaneda M., Terasaki O., Zhao D. Y., Kim J. M., Stucky G., Shim H. J., Ryoo R., Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature, 2000, 408, 449-453.
    [28]Yu C., Tian B., Fan J., Stucky G. D., Zhao D., Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts, J. Am. Chem. Soc., 2002, 124, 4556-4557.
    [29]Sakamoto Y., Diaz I., Terasaki O., Zhao D., Perez-Pariente J., Kim J. M., Stucky G. D., Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography, J. Phys. Chem. B, 2002, 106, 3118-3123.
    [30]Matos J. R., Kruk M., Mercuri L. P., Jaroniec M., Zhao L., Kamiyama T., Terasaki O.,Pinnavaia T. J., Liu Y., Ordered Mesoporous Silica with Large Cage-Like Pores: Structural Identification and Pore Connectivity Design by Controlling the Synthesis Temperature and Time, J. Am. Chem. Soc., 2003, 125, 821-829.
    [31]Kramer E., Forster S., Goltner C, Antonietti M., Synthesis of Nanoporous Silica with New Pore Morphologies by Templating the Assemblies of Ionic Block Copolymers, Langmuir,1998,14,2027-2031.
    [32]Kleitz F., Liu D., Anilkumar G. M., Park I. -., Solovyov L. A., Shmakov A. N., Ryoo R.,Large Cage Face-Centered-Cubic Fm3m Mesoporous Silica: Synthesis and Structure, J. Phys.Chem. 5,2003, 107, 14296-14300.
    [33]Kipkemboi P., Fogden A., Alfredsson V., Flodstrom K., Triblock Copolymers as Templates in Mesoporous Silica Formation: Structural Dependence on Polymer Chain Length and Synthesis Temperature, Langmuir, 2001, 17, 5398-5402.
    [34]Alberius P. C, Frindell K. L., Hayward R. C, Kramer E. J., Stucky G. D., Chmelka B. F., General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films, Chem. Mater., 2002, 14, 3284-3294.
    [35]Kim Y., Kusakabe K., Yang S., Microporous Silica Membrane Synthesized on an Ordered Mesoporous Silica Sublayer, Chem. Mater., 2003, 15, 612-615.
    [36]Yu K., Hurd A. J., Eisenberg A., Brinker C. J., Syntheses of Silica/Polystyrene-bIock-Poly(ethylene oxide) Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales by Solvent Evaporation-Induced Self-Assembly, Langmuir, 2001, 17, 7961-7965.
    [37]Yang P., Zhao D., Chmelka B. F., Stucky G. D., Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers, Chem. Mater., 1998, 10,2033-2036.
    [38]Yang P., Deng T., Zhao D., Feng P., Pine D., Chmelka B. F., Whitesides G. M., Stucky G. D., Hierarchically Ordered Oxides, Science, 1998,282,2244-2246.
    [39]Yu C, Fan J., Tian B., Stucky G. D., Zhao D., Synthesis of Mesoporous Silica from Commercial Poly(ethylene oxide)/Poly(butylene oxide) Copolymers: Toward the Rational Design of Ordered Mesoporous Materials, J. Phys. Chem. B, 2003, 107, 13368-13375.
    [40]Van D. V., Benjelloun M., Vansant E. F., Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity, J. Phys. Chem. B, 2002, 106, 9027-9032.
    [41]Kruk M., Antochshuk V., Matos J. R., Mercuri L. P., Jaroniec M., Determination and Tailoring the Pore Entrance Size in Ordered Silicas with Cage-like Mesoporous Structures, J. Am. Chem. Soc., 2002, 124, 768-769.
    [42]Antochshuk V., Kruk M., Jaroniec M., Surface Modifications of Cage-like and Channel-like Mesopores and Their Implications for Evaluation of Sizes of Entrances to Cage-like Mesopores, J. Phys. Chem. B, 2003, 107, 11900- 11906.
    [43]Kruk M., Celer E. B., Jaroniec M., Exceptionally High Stability of Copolymer-Templated Ordered Silica with Large Cage-Like Mesopores, Chem. Mater., 2004, 16, 698-707.
    [44]Sakamoto Y., Nagata K., Yogo K., Yamada K., Preparation and CO_2 separation properties of amine-modified mesoporous silica membranes, Micropor. Mesopor. Mater., 2007, 101, 303-311.
    [45]Tanev P. T., Pinnavaia T. J., Biomimetic Templating of Porous Lamellar Silicas by Vesicular Surfactant Assemblies, Science, 1996, 271, 1267-1269.
    [46]Ryoo R., Jun S., Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process, J. Phys. Chem. B, 1997, 101, 317-320.
    [47]Taguchi A., Sch F., Ordered mesoporous materials in catalysis, Micropor. Mesopor. Mater., 2005, 77, 1-45.
    [48]Sayari A., Hamoudi S., Periodic mesoporous silica-based organic - Inorganic nanocomposite materials, Chem. Mater., 2001, 13, 3151-3168.
    [49]Anwander R., SOMC@PMS. Surface organometallic chemistry at periodic mesoporous silica, Chem. Mater., 2001, 13, 4419-4438.
    [50]Sutra P., Brunel D., Preparation of MCM-41 type silica-bound manganese(Ⅲ) Schiff-base complexes, Chem. Commun., 1996, 21, 2485-2486.
    [51]Moller K., Bein T., Internal modification of ordered mesoporous hosts, Stud. Surf. Sci. Catal., 1998, 117, 53-64.
    [52]Price P. M., Clark J. H., Macquarrie D. J., Modified silicas for clean technology, J. Chem. Soc. Dalton Trans., 2000, 2, 101-110.
    [53]Ishikawa T., Matsuda M., Yasukawa A., Kondori K., Inagaki S., Fukushima T., Kondo S., Surface silanol groups ofmesoporous silica FSM-16, J. Chem. Soc. Faraday Trans., 1996, 92, 1985-1990.
    [54]Jentys A., Kleestorfer K., Vinek H., Concentration of surface hydroxyl groups on MCM-41, Micropor. Mesopor. Mater., 1999, 27, 321-328.
    [55]Fryxell G. E., Liu J., Adsorption on silica surfaces. In Papierer E., Marcel Dekker, New York, 2000.
    [56]Zhao X. S., Lu G. Q., Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study, J. Phys. Chem. B, 1998, 102, 1556-1561.
    [57]Smith J. V., Topochemistry of zeolites and related materials. 1. Topology and geometry, Chem. Rev., 1988, 88, 149-182.
    [58]Anwander R., Palm C., Stelzer J., Groeger O., Engelhardt G., Silazane-silylation of mesoporous silicates: towards tailor-made support materials, Stud Surf. Sci. Catal., 1998, 117, 135-142.
    [59]Kimura T., Saeki S., Sugahara Y., Kuroda K., Organic modification of FSM-type mesoporous silicas derived from kanemite by silylation, Langmuir, 1999, 15, 2794-2798.
    [60]Capel-Sanchez M. C., Barrio L., Campos-Martin J. M., Fierro J. L., Silylation and surface properties of chemically grafted hydrophobic silica, J. Colloid Interf. Sci., 2004, 277, 146-153.
    [61]Jaroniec C. P., Kruk M., Jaroniec M., Sayari A., Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes, J. Phys. Chem. B, 1998, 102, 5503-5510.
    [62]Kimura T., Suzuki M., Maeda M., Tomura S., Water adsorption behavior of ordered mesoporous silicas modified with an organosilane composed of hydrophobic alkyl chain and hydrophilic polyethylene oxide groups, Micropor. Mesopor. Mater., 2006, 95, 213-219.
    [63]Yang H. Q., Zhang G. Y., Hong X. L., Zhu Y. Y., Silylation of mesoporous silica MCM-41 with the mixture of Cl(CH_2)(3)SiCl_3 and CH_3SiCl_3: combination of adjustable grafting density and improved hydrothermal stability, Micropor. Mesopor. Mater., 2004, 68, 119-125.
    [64]Yamamoto K., Tatsumi T., Organic functionalization of mesoporous molecular sieves with Grignard reagents, Micropor. Mesopor. Mater., 2001, 44-45, 459-464.
    [65]Chiarakorn S., Areerob T., Grisdanurak N., Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk, Sci. Technol. Adv. Mater., 2007, 8, 110-115.
    [66]Tatsumi T., Koyano K. A., Tanaka Y., Nakata S., Stabilization of M41S materials by trimethylsilylation, Stud Surf. Sci. Catal., 1998, 117, 143-150.
    [67]Matsumoto A., Tsutsumi K., Schumacher K., Unger K. K., Surface functionalization and stabilization of mesoporous silica spheres by silanization and their adsorption characteristics, Langmuir, 2002, 18, 4014-4019.
    [68]Igarashi N., Hashimoto K., Tatsumi T., Studies on the structural stability of mesoporous molecular sieves organically functionalized by a direct method, J. Mater. Chem., 2002, 12, 3631-3636.
    [69]Guo W., Li X., Zhao X. S., Understanding the hydrothermal stability of large-pore periodic mesoporous organosilicas and pure silicas, Micropor. Mesopor. Mater., 2006, 93, 285-293.
    [70]Butterworth A. J., Clark J. H., Lambert A., Macquarrie D. J., Tavener S. J., Environmentally friendly catalysis of liquid phase organic reactions using chemically modified mesoporous materials, Heter. Cata. Fine Chem. IV, 1997, 108, 523-530.
    [71]Clark J. H., Macquarrie D. J., Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids, Chem. Commun., 1998, 8, 853-860.
    [72]Anwander R., Nagl I., Widenmeyer M., Engelhardt G., Groeger O., Palm C., Roser T., Surface characterization and functionalization of MCM-41 silicas via silazane silylation, J. Phys. Chem. B, 2000, 104, 3532-3544.
    [73]Lim M. H., Blanford C. F., Stein A., Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts, Chem. Mater., 1998, 10, 467-470.
    [74]Yoshitake H., Yokoi T., Tatsnmi T., Adsorption of Chromate and Arsenate by Amino-Functionalized MCM-41 and SBA-1, Chem. Mater., 2002, 14, 4603-4610.
    [75]Antochshuk V., Jaroniec M., Simultaneous modification of mesopores and extraction of template molecules from MCM-41 with trialkylchlorosilanes, Chem. Commun., 1999, 23, 2373-2374.
    [76]Hench L. L., West J. K., The sol-gel process, Chem. Rev., 1990, 90, 33-72.
    [77]Stein A., Melde B. J., Schroden R. C., Hybrid inorganic-organic mesoporous silicates-Nanoscopic reactors coming of age, Adv. Mater., 2000, 12, 1403-1419.
    [78]Huo Q., Margolese D. I., Stucky G. D., Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials, Chem. Mater., 1996, 8, 1147-1160.
    [79]Mercier L., Pinnavaia T. J., Direct Synthesis of Hybrid Organic-Inorganic Nanoporous Silica by a Neutral Amine Assembly Route: Structure-Function Control by Stoichiometric Incorporation of Organosiloxane Molecules, Chem. Mater., 2000, 12, 188-196.
    [80]Burleigh M. C., Markowitz M. A., Spector M. S., Gaber B. P., Amine-Functionalized Periodic Mesoporous Organosilicas, Chem. Mater., 2001, 13, 4760-4766.
    [81]Yang D. J., Li J. P., Xu Y., Wu D., Sun Y. H., Zhu H. Y., Deng F., Direct formation of hydrophobic silica-based micro/mesoporous hybrids from polymethylhydrosiloxane and tetraethoxysilane, Micropor. Mesopor. Mater., 2006, 95, 180-186.
    [82]Burkert S. L., Sims S. D., Mann S., Synthesis of hybrid inorganic organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors, 1996, 11, 1367-1368.
    [83]Harlick P. J. E., Sayari A., Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO_2 dynamic and equilibrium adsorption performance, Ind. Eng. Chem. Res., 2007, 46, 446-458.
    [84]Kim S., Ida J., Guliants V. V., Lin J. Y., Tailoring pore properties of MCM-48 silica for selective adsorption of CO_2, J. Phys. Chem. B, 2005, 109, 6287-6293.
    [85]Zheng F., Tran D. N., Busche B. J., Fryxell G. E., Addleman R. S., Zemanian T. S., Aardahl C. L., Ethylenediamine-modified SBA-15 as regenerable CO_2 sorbent, Ind. Eng. Chem. Res., 2005, 44, 3099-3105.
    [86]Franchi R., Harlick P. J., Sayari A., A high capacity, water tolerant adsorbent for CO_2: diethanolamine supported on pore-expanded MCM-41, Nanopor. Mater. IV, 2005, 156, 879-886.
    [87]Liu X. W., Li J. W., Zhou L., Huang D. S., Zhou Y. P., Adsorption of CO_2, CH_4 and N_2 on ordered mesoporous silica molecular sieve, Chem. Phys. Lett., 2005, 415, 198-201.
    [88]Liu X. W., Zhou L., Fu X., Sun Y., Su W., Zhou Y. P., Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO_2 and CH_4, Chem. Eng. Sci., 2007, 62, 1101-1110.
    [89]Plaza M. G., Pevida C., Arenillas A., Rubiera F., Pis J. J., CO_2 capture by adsorption with nitrogen enriched carbons, Fuel, 2007, 86, 2204-2212.
    [90]Son W. J., Choi J. S., Alan W. S., Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Micropor. Mesopor. Mater., 2008, 113, 31-40.
    [91]Xu X. C., Song C. S., Miller B. G., Scaroni A. W., Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous "molecular basket" adsorbent, Fuel Process. Technol., 2005, 86, 1457-1472.
    [92]Yue M. B., Chun Y., Cao Y., Dong X., Zhu J. H., CO_2 capture by As-prepared SBA-15 with an occluded organic template, Adv. Funct. Mater., 2006, 16, 1717-1722.
    [93]Scott B. J., Wirnsberger G., Stucky G. D., Mesoporous and Mesostructured Materials for Optical Applications, Chem. Mater., 2001, 13, 3140-3150.
    [94]Ravindra R., Zhao S., Gies H., Winter R., Protein Encapsulation in Mesoporous Silicate: The Effects of Confinement on Protein Stability, Hydration, and Volumetric Properties, J. Am. Chem. Soc., 2004, 126, 12224-12225.
    [95]Trewyn B. G., Whitman C. M., Lin V. S., Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents, Nano Lett., 2004, 4, 2139-2143.
    [96]高波,朱广山,傅学奇,辛明红,裘式纶,介孔分子筛SBA-15中a-胰凝乳蛋白酶组装及催化活性研究,高等学校化学学报,2003,24,1100-1102.
    [97]He J., Xu Y., Ma H., Zhang Q., Evans D. G., Duan X., Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase, J. Colloid Interf. Sci., 2006, 298, 780-786.
    [98]Aburto J., Ayala M., Bustos-Jaimes I., Montiel C., Terres E., Dominguez J. M., Torres E., Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials, Micropor. Mesopor. Mater., 2005, 83, 193-200.
    [99]Leal O., Bolivar C., Ovalles C., Garcia J. J., Espidel Y., Reversible adsorption of carbon dioxide on amine surface-bonded silica gel, Inorg. Chim. Acta, 1995, 240, 183-189.
    [100]Zhao X. S., Lu G. Q., Whittaker A. K., Millar G. J., Zhu H. Y., Comprehensive study of surface chemistry of MCM-41 using Si-29 CP/MAS NMR, FTIR, pyridine-TPD, and TGA, J. Phys. Chem. B, 1997, 101, 6525-6531.
    [101]Huang H. Y., Yang R. T., Chinn D., Munson C. L., Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 2003, 42, 2427-2433.
    [102]Feng X., Fryxell G. E., Wang L., Kim A. Y., Liu J., Kemner K. M., Functionalized monolayers on oredered mesoporous supports, Science, 1997, 276, 923-926.
    [103]Knowles G. P., Graham J. V., Delaney S. W., Chaffee A. L., Aminopropyl-functionalized mesoporous silicas as CO_2 adsorbents, Fuel Process. Technol., 2005, 86, 1435-1448.
    [104]Wang L. F., Ma L., Wang A. Q., Liu Q., Mang T., CO_2 adsorption on SBA-15 modified by aminosilane, Chin. J. Catal., 2007, 28, 805-810.
    [105]Zhao H. L., Hu J., Wang J. J., Zhou L. H., Liu H. L., CO_2 capture by the amine-modified mesoporous materials, Acta Phys-chim. Sin., 2007, 23, 801-806.
    [106]Knowles G. P., Delaney S. W., Chaffee A. L., Amine-functionalised inesoporous silicas as CO_2 adsorbents, Nanopor. Mater. IV, 2005, 156, 887-896.
    [107]Harlick P. J. E., Sayari A., Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO_2 adsorption, Ind Eng. Chem. Res., 2006, 45, 3248-3255.
    [108]Gray M. L., Soong Y., Champagne K. J., Pennline H., Baltrus J. P., Stevens R. W., Khatri R., Chuang S. S., Filburn T., Improved immobilized carbon dioxide capture sorbents, Fuel Process. Technol., 2005, 86, 1449-1455.
    [109]Knofel C., Descarpentries J., Benzaouia A., Zelenak V., Mornet S., Llewellyn P. L., Hornebecq V., Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide, Micropor. Mesopor. Mater., 2007, 99, 79-85.
    [110]Hiyoshi N., Yogo K., Yashima T., Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor, Chem. Lett., 2004, 33, 510-511.
    [111]Yue M. B., Sun L. B., Cao Y., Wang Z. J., Wang Y., Yu Q., Zhu J. H., Promoting the CO_2 adsorption in the amine-containing SBA-15 by hydroxyl group, Micropor. Mesopor. Mater., 2008, 114, 74-81.
    [112]Franchi R. S., Harlick P. J., Sayari A., Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO_2, Ind Eng. Chem. Res., 2005, 44, 8007-8013.
    [113]Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W., Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO_2 capture, Energy Fuels, 2002, 16, 1463-1469.
    [114]Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W., Preparation and characterization of novel CO_2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Micropor. Mesopor. Mater., 2003, 62, 29-45.
    [115]Xu X. C., Song C. S., Miller B. G., Scaroni A. W., Influence of moisture on CO_2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41, Ind Eng. Chem. Res., 2005, 44, 8113-8119.
    [1]Takamura Y., Narita S., Aoki J., Hironaka S., Uchida S., Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas, Sep. Purif. Technol., 2001, 24, 519-528.
    [2]Ishibashi M., Ota H., Akutsu N., Umeda S., Tajika M., Izumi J., Yasutake A., Kabata T., Kageyama Y., Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energ. Convers. Manage., 1996, 37, 929-933.
    [3]Katoh M., Yoshikawa T., Tomonari T., Katayama K., Tomida T., Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO2/N2 mixtures, J. Colloid Interf. Sci., 2000, 226, 145-150.
    [4]Dreisbach F., Staudt R., Keller J. U., High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon, Adsorption., 1999, 5, 215-227.
    [5]Yong Z., Mata V. G., Rodrigues A. E., Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature, Adsorption., 2001, 7, 41-50.
    [6]Dong F., Lou H. M., Kodama A., Goto M., The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO2-CH4-N2, Sep. Purif. Technol., 1999, 16, 159-166.
    [7]Kim S., Ida J., Guliants V. V., Lin J. Y., Tailoring pore properties of MCM-48 silica for selective adsorption of CO2, J. Phys. Chem. B, 2005, 109, 6287-6293.
    [8]Khelifa A., Benchehida L., Derriche Z., Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: isotherms and isosteric heat, J. Colloid Interf. Sci., 2004, 278, 9-17.
    [9]Li G., Xiao P., Webley P., Zhang J., Singh R., Marshall M., Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption., 2008, 14, 415-422.
    [10]Merel J., Clausse M., Meunier F., Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites, Ind. Eng. Chem. Res., 2008,47,209-215.
    [11]Xu X. C., Song C. S., Miller B. G., Scaroni A. W., Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41, Ind. Eng. Chem. Res., 2005,44, 8113-8119.
    [12]Xu X. C., Song C. S., Miller B. G., Scaroni A. W., Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous "molecular basket" adsorbent, Fuel Process. Technol., 2005, 86, 1457-1472.
    [13]Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W., Novel polyethylenimine-modified mesoporous molecular s(?)eve of MCM-41 type as high-capacity adsorbent for CO2 capture, Energy Fuels, 2002, 16,1463-1469.
    [14]Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W., Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Micropor. Mesopor. Mater., 2003, 62,29-45.
    [15]Liu X. W., Zhou L., Fu X., Sun Y., Su W., Zhou Y. P., Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4, Chem. Eng. Sci., 2007, 62, 1101-1110.
    [16]Huang H. Y., Yang R. T., Chinn D., Munson C. L., Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 2003, 42, 2427-2433.
    [17]Chang A. C. C., Chuang S. S., Gray M., Soong Y., In-situ infrared study of CO2 adsorption on SBA-15 grafted with gamma-(aminopropyl)triethoxysilane, Energy Fuels, 2003, 17,468-473.
    [18]Zhao X. S., Lu G Q., Whittaker A. K., Millar G J., Zhu H. Y., Comprehensive study of surface chemistry of MCM-41 using Si-29 CP/MAS NMR, FTIR, pyridine-TPD, and TGA, J. Phys. Chem. B, 1997, 101, 6525-6531.
    [19]Jentys A., Kleestorfer K., Vinek H., Concentration of surface hydroxyl groups on MCM-41,Micropor. Mesopor. Mater., 1999, 27, 321-328.
    [20]Ishikawa T., Matsuda M.., Yasukawa A., Kondori K., Inagaki S., Fukushima T., Kondo S., Surface silanol groups ofmesoporous silica FSM-16, J. Chem. Soc. Faraday Trans., 1996, 92, 1985-1990.
    [21]Harlick P. J. E., Sayari A., Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption, Ind. Eng. Chem. Res., 2006, 45, 3248-3255.
    [22]Feng X., Fryxell G. E., Wang L., Kim A. Y., Liu J., Kemner K. M., Functionalized monolayers on oredered mesoporous supports, Science, 1997, 276, 923-926.
    [23]Hiyoshi N., Yogo K., Yashima T., Adsorption characteristics of carbon dioxide on organically functionalized SBA-15, Micropor. Mesopor. Mater., 2005, 84, 357-365.
    [24]Knofel C., Descarpentries J., Benzaouia A., Zelenak V., Mornet S., Llewellyn P. L., Hornebecq V., Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide, Micropor. Mesopor. Mater., 2007, 99, 79-85.
    [25]Knowles G. P., Graham J. V., Delaney S. W., Chaffee A. L., Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents, Fuel Process. Technol., 2005, 86, 1435-1448.
    [26]Kim T. W., Ryoo R., Kruk M., Gierszal K. P., Jaroniec M., Kamiya S., Terasaki O., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time, J. Phys. Chem. B, 2004, 108, 11480-11489.
    [27]Zhao D. Y., Huo Q. S., Feng J. L., Chmelka B. F., Stucky G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
    [28]Feng P. Y., Bu X. H., Stucky G. D., Pine D. J., Monolithic mesoporous silica templated by microemulsion liquid crystals, J. Am. Chem. Sot., 2000, 122, 994-995.
    [29]Gregg S. J., Sing K. S., Adsorption, surface area and porosity, Academic press, London, 1982.
    [30]Barrett E. P., Joyner L. G., Halenda P. P., The determination of pore volume and area distributions in porous substances. I. Computations form nitrogen isotherms, J. Am. Chem. Soc., 1951, 73, 373-380.
    [31]Stevens W. J. J., Mertens M., Mullens S., Thijs N., Van T. G., Cool P., Vansant E. F., Formation mechanism of SBA-16 spheres and control of their dimensions, Micropor. Mesopor. Mater., 2006, 93, 119-124.
    [32]Matsumoto A., Sasaki T., Nishimiya N., Tsutsumi K., Evaluation of the hydrophobic properties of mesoporous FSM-16 by means of adsorption calorimetry, Langmuir, 2001, 17,47-51.
    [33]Matsumoto A., Sasaki T., Nishimiya N., Tsutsumi K., Thermal stability and hydrophobicity of mesoporous silica FSM-16, Colloids Surf. A, 2002,203, 185-193.
    [34]Dibenedetto A., Aresta M., Fragale C., Narracci M., Reaction of silylalkylmono- and silylalkyldi-amines with carbon dioxide: evidence of formation of inter- and intra-molecular ammonium carbamates and their conversion into organic carbamates of industrial interest under carbon dioxide catalysis, Green Chem., 2002,4,439-443.
    [35]Zheng F., Tran D. N., Busche B. J., Fryxell G. E., Addleman R. S., Zemanian T. S., Aardahl C.L., Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent, Iid. Eng. Chem. Res.,2005,44,3099-3105.
    [36]Leal O., Bolivar C., Ovalles C., Garcia J. J., Espidel Y., Reversible adsorption of carbon dioxide on amine surface-bonded silica gel, Inorg. Chim. Acta, 1995, 240, 183-189.
    [37]Eckstein Y., Drey fuss P., Role of Amines in Adhesion of Polybutadiene to Glass Substrates. Ⅱ. Reactions of Amines with Trimethoxysilanol and/or Fumed Silica, J. Adhes. Sci. Technol., 1983, 15, 163-178.
    [38]Battjes K. P., Barolo A. M., Dreyfuss P., New evidence related to reactions of aminated silane coupling agents with carbon dioxide, J. Adhesion., 1991, 5, 785-799.
    [1]Hiyoshi N., Yogo K., Yashima T., Adsorption characteristics of carbon dioxide on organically functionalized SBA-15, Micropor. Mesopor. Mater., 2005, 84, 357-365.
    [2]Hicks J. C., Drese J. H., Fauth D. J., Gray M. L., Qi G. G., Jones C. W., Designing adsorbents for CO_2 capture from flue gas-hyperbranched aminosilicas capable,of capturing CO_2 reversibly, J. Am. Chem. Soc., 2008, 130, 2902-2903.
    [3]Knofel C., Descarpentries J., Benzaouia A., Zelenak V., Momet S., Llewellyn P. L., Hornebecq V., Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide, Micropor. Mesopor. Mater., 2007, 99, 79-85.
    [4]Liu X. W., Zhou L., Fu X., Sun Y., Su W., Zhou Y. P., Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO_2 and CH_4, Chem. Eng. Sci., 2007, 62, 1101-1110.
    [5]Chang A. C., Chuang S. S., Gray M., Soong Y., In-situ infrared study of CO_2 adsorption on SBA-15 grafted with gamma-(aminopropyl)triethoxysilane, Energy Fuels, 2003, 17, 468-473.
    [6]Huang H. Y., Yang R. T., Chinn D., Munson C. L., Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 2003, 42, 2427-2433.
    [7]Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W., Preparation and characterization of novel CO_2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Micropor. Mesopor. Mater., 2003, 62, 29-45.
    [8]Knowles G. P., Graham J. V., Delaney S. W., Chaffee A. L., Aminopropyl-functionalized mesoporous silicas as CO_2 adsorbents, Fuel Process. Technol., 2005, 86, 1435-1448.
    [9]Harlick P. J. E., Sayari A., Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO_2 adsorption, Ind Eng. Chem. Res., 2006, 45, 3248-3255.
    [10]Zhao X. S., Lu G. Q., Whittaker A. K., Millar G. J., Zhu H. Y., Comprehensive study of surface chemistry of MCM-41 using Si-29 CP/MAS NMR, FTIR, pyridine-TPD, and TGA, J. Phys. Chem. B, 1997, 101, 6525-6531.
    [11]Matsumoto A., Sasaki T., Nishimiya N., Tsutsumi K., Evaluation of the hydrophobic properties of mesoporous FSM-16 by means of adsorption calorimetry, Langmuir, 2001, 17, 47-51.
    [12]Matsumoto A., Sasaki T., Nishimiya N., Tsutsumi K., Thermal stability and hydrophobicity of mesoporous silica FSM-16, Colloids Surf. A, 2002, 203, 185-193.
    [13]Tatsumi T., Koyano K. A., Tanaka Y., Nakata S., Mechanochemical collapse of M41S mesoporous molecular sieves through hydrolysis of siloxane bonds, Chem. Lett., 1997,, 469-470.
    [14]Kimura T., Saeki S., Sugahara Y., Kuroda K., Organic modification of FSM-type mesoporous silicas derived from kanemite by silylation, Langmuir, 1999, 15, 2794-2798.
    [15]Matsumoto A., Tsutsumi K., Schumacher K., Unger K. K., Surface functionalization and stabilization of mesoporous silica spheres by silanization and their adsorption characteristics, Langmuir, 2002, 18, 4014-4019.
    [16]Wei J., Shi J., Pan H., Zhao W., Ye Q., Shi Y., Adsorption of carbon dioxide on organically functionalized SBA-16, Micropor. Mesopor. Mater., 2008, 116, 394-399.
    [17]施耀,魏建文,史晶金,潘华,烟道气中CO_2的氨基修饰SBA-16吸附研究,第十届中国科协年会第18分会--二氧化碳减排和绿色利用与发展研讨会,郑州,2008,69-76.
    [18]Zhao D. Y., Huo Q. S., Feng J. L., Chmelka B. F., Stucky G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
    [19]Feng P. Y., Bu X. H., Stucky G. D., Pine D. J., Monolithic mesoporous silica templated by microemulsion liquid crystals, J. Am. Chem. Soc., 2000, 122, 994-995.
    [20]Gray M. L., Soong Y., Champagne K. J., Pennline H., Baltrus J. P., Stevens R. W., Khatri R., Chuang S. S., Filburn T., Improved immobilized carbon dioxide capture sorbents, Fuel Process. Technol., 2005. 86. 1449-1455.
    [21]沈钟,王果庭,胶体与表面化学,第二版,化学工业出版社,北京,1997.
    [22]Marsh K. N., Recommended reference materials for the realization of physicochemical properties, Blackwell Scientific Publications, Boston, 1987.
    [23]Wexler A. S., Seinfeld J. H., Second-generation inorganic aerosol model, Atmos. Environ., 1991, 25A, 2731-2748.
    [24]Stevens W. J. J., Mertens M., Mullens S., Thijs N., Van T. G., Cool P., Vansant E. F., Formation mechanism of SBA-16 spheres and control of their dimensions, Micropor. Mesopor. Mater., 2006, 93, 119-124.
    [25]Cheng C. F., Lin Y. C., Cheng H. H., Chen Y. C., The effect and model of silica concentrations on physical properties and particle sizes of three-dimensional SBA-16 nanoporous materials, Chem. Phys. Lett., 2003, 382, 496-501.
    [26]Huh S., Wiench J. W., Yoo J. C., Pruski M., Lin V. S., Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method, Chem. Mater., 2003, 15, 4247-4256.
    [27]Zheng F., Tran D. N., Busche B. J., Fryxell G. E., Addleman R. S., Zemanian T. S., Aardahl C. L., Ethylenediamine-modified SBA-15 as regenerable CO_2 sorbent, Ind. Eng. Chem. Res., 2005, 44, 3099-3105.
    [28]Khatri R. A., Chuang S. S., Soong Y., Gray M., Thermal and chemical stability of regenerable solid amine sorbent for CO_2 capture, Energy Fuels, 2006, 20, 1514-1520.
    [29]Inagaki S., Fukushima Y., Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16, Micropor. Mesopor. Mater., 1998, 21, 667-672.
    [30]Yamamoto K., Tatsumi T., Organic functionalization of mesoporous molecular sieves with Grignard reagents, Micropor. Mesopor. Mater., 2001, 44-45, 459-464.
    [31]Yang H. Q., Zhang G. Y., Hong X. L., Zhu Y. Y., Silylation of mesoporous silica MCM-41 with the mixture of Cl(CH_2)(3)SiCl_3 and CH_3SiCl_3: combination of adjustable grafting density and improved hydrothermal stability, Micropor. Mesopor. Mater., 2004, 68, 119-125.
    [32]Vradman L., Landau M. V., Kantorovich D., Koltypin Y., Gedanken A., Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica, Micropor. Mesopor. Mater., 2005, 79, 307-318.
    [33]Kruk M., Jaroniec M., Ko C. H., Ryoo R., Characterization of the porous structure of SBA-15, Chem. Mater., 2000, 12, 1961-1968.
    [34]Miyazawa K., Inagaki S., Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15, Chem. Commun., 2000, 21, 2121-2122.
    [35]Ravikovitch P. I., Neimark A. V., Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures, Langmuir, 2002, 18, 1550-1560.
    [36]Knowles G. P., Delaney S. W., Chaffee A. L., Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO_2 adsorbents, Ind Eng. Chem. Res., 2006, 45, 2626-2633.
    [37]Mokaya R., Hydrothermally stable restructured mesoporous silica, Chem. Commun., 2001, 10, 933-934.
    [1] Schiermeier Q., Putting the carbon back: The hundred billion tonne challenge, Nature, 2006, 442, 620-623.
    [2] Takamura Y., Narita S., Aoki J., Hironaka S., Uchida S., Evaluation of dual-bed pressure swing adsorption for CO_2 recovery from boiler exhaust gas, Sep. Purif. Technol., 2001, 24, 519-528.
    [3] Hiyoshi N., Yogo K., Yashima T., Adsorption characteristics of carbon dioxide on organically functionalized SBA-15, Micropor. Mesopor. Mater., 2005, 84, 357-365.
    [4] Kim S., Ida J., Guliants V. V., Lin J. Y., Tailoring pore properties of MCM-48 silica for selective adsorption of CO_2, J. Phys. Chem. B, 2005, 109, 6287-6293.
    [5] Knowles G. P., Graham J. V., Delaney S. W., Chaffee A. L., Aminopropyl-functionalized mesoporous silicas as CO_2 adsorbents, Fuel Process. Technol., 2005, 86, 1435-1448.
    [6] Liu X. W., Zhou L., Fu X., Sun Y., Su W., Zhou Y. P., Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO_2 and CH_4, Chem. Eng. Sci., 2007, 62, 1101-1110.
    [7] Wei J., Shi J., Pan H., Zhao W., Ye Q., Shi Y., Adsorption of carbon dioxide on organically functionalized SBA-16, Micropor. Mesopor. Mater., 2008, 116, 394-399.
    [8] 施耀,魏建文,史晶金,潘华,烟道气中CO_2的氨基修饰SBA-16吸附研究,第十届中国科协年会第18分会--二氧化碳减排和绿色利用与发展研讨会,郑州,2008,69-76.
    [9] Chang A. C. C., Chuang S. S., Gray M., Soong Y., In-situ infrared study of CO_2 adsorption on SBA-15 grafted with gamma-(aminopropyl)triethoxysilane, Energy Fuels, 2003, 17, 468-473.
    [10] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Ordered mesoporous moloecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
    [11] Vartuli J. C., Malek A., Roth W. J., Kresge C. T., McCullen S. B., The sorption properties of as-synthesized and calcined MCM-41 and MCM-48, Micropor. Mesopor. Mater., 2001, 44, 691-695.
    [12] Goworek J., Kierys A., Iwan M., Stefaniak W., Sorption on as-synthesized MCM-41, J. Therm. Anal. Calorim, 2007, 87, 165-169.
    [13] Yue M. B., Chun Y., Cao Y., Dong X., Zhu J. H., CO_2 capture by As-prepared SBA-15 with an occluded organic template, Adv. Funct. Mater., 2006, 16, 1717-1722.
    [14] Satyapal S., Filbum T., Trela J., Strange J., Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications, Energy Fuels, 2001, 15, 250-255.
    [15] Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W., Preparation and characterization of novel CO_2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Micropor. Mesopor. Mater., 2003, 62, 29-45.
    [16] Ding Y., Alpay E., Equilibria and kinetics of CO_2 adsorption on hydrotalcite adsorbent, Chem. Eng. Sci., 2000, 55, 3461-3474.
    [17] Yasyerli S., Dogu G., Ar I., Dogu T., Activities of copper oxide and Cu-V and Cu-Mo mixed oxides for H_2S removal in the presence and absence of hydrogen and predictions of a deactivation model, Ind. Eng. Chem. Res., 2001, 40, 5206-5214.
    [18] Ficicilar B., Dogu T., Breakthrough analysis for CO_2 removal by activated hydrotalcite and soda ash, Catal. Today, 2006, 115, 274-278.
    [19] Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates, Nature, 1992, 114, 10834-10843.
    [20] http://webbook.nist.gov/chemistry
    [21] Plaza M. G., Pevida C., Arenillas A., Rubiera F., Pis J. J., CO_2 capture by adsorption with nitrogen enriched carbons, Fuel, 2007, 86, 2204-2212.
    [22] Son W. J., Choi J. S., Ahn W. S., Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Micropor. Mesopor. Mater., 2008, 113, 31-40.
    [23] Jadhav P. D., Chatti R. V., Biniwale R. B., Labhsetwar N. K., Devotta S., Rayalu S. S., Monoethanol amine modified zeolite 13X for CO_2 adsorption at different temperatures, Energy Fuels, 2007, 21, 3555-3559.
    [24] Geankoplis C. J., Transport processes and unit operations, 3rd edition, Prentice Hall, New Jersey, 1993.
    [25] Harlick P. J. E., Sayari A., Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO_2 adsorption, Ind. Eng. Chem. Res., 2006, 45, 3248-3255.
    [26] Knofel C., Descarpentries J., Benzaouia A., Zelenak V., Mornet S., Llewellyn P. L., Hornebecq V., Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide, Micropor. Mesopor. Mater., 2007, 99, 79-85.
    [27] Huang H. Y., Yang R. T., Chirm D., Munson C. L., Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 2003, 42, 2427-2433.
    [28] Levenspiel O., Chemical reaction engineering, 3~(rd) edition, John Wiley & Sons, New York, 1999.
    [29] Orbey N., Dogu G., Dogu T., Breakthrough analysis of noncatalytic solid-gas reactions: reaction of SO_2 with calcined limestone, J. Chem. Eng., 1982, 60, 314-318.
    [30] Ding Y., Alpay E., Adsorption-enhanced steam-methane reforming, Chem. Eng. Sci., 2000, 55, 3929-3940.
    [31] Yasyerli S., Ar I., Dogu G., Dogu T., Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber, Chem. Eng. Process., 2002, 41, 785-792.
    [32] Bird R. B., Stewart W. E., Lightfoot E. N., Transport phenomena, John Wiley & Sons, New York, 2003.
    [33] Yasyerli N., Dogu T., Dogu G., Ar I., Deactivation model for textural effects of kinetics of gas-solid noncatalytic reactions "char gasification with CO_2", Chem. Eng. Sci., 1996, 51, 2523-2528.
    [34] Khatri R. A., Chuang S. S., Soong Y., Gray M., Thermal and chemical stability of regenerable solid amine sorbent for CO_2 capture, Energy Fuels, 2006, 20, 1514-1520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700