用户名: 密码: 验证码:
造球机故障诊断技术及对承载建筑物舒适度评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代机械设备大型化及自动化程度的不断提高,大型机械在现代工业生产中的作用越来越重要。而随着多层工业厂房的日趋增多,大型旋转机械高层安装已成为发展趋势。由此伴随着两大问题的产生:机械设备的故障诊断问题;大型旋转机械对承载建筑物振动舒适度的问题。因此对大型旋转机械进行故障诊断成为保障生产系统稳定性和可靠性的重要手段,对大型旋转机械引起的承载建筑物舒适度的研究更是为全面进行大型旋转机械对承载建筑物的舒适度评价的建立提供参考依据。本文结合机械学、建筑学、计算机科学。提出了大型旋转机械的故障诊断的智能方法,同时结合结构建筑的舒适度评价方法和标准对原来承载建筑物无定量标准进行定量化设计,为承载建筑物舒适度提供量化依据,同时为采取减振措施提供数据参考。
     本文以武钢矿业有限公司鄂州球团厂造球机及承载建筑物为研究对象开展研究
     要想准确模拟诸多复杂环境下大型旋转机械设备的故障诊断过程,需要大量的实验和数据分析。目前,国内外的研究技术多集中在实验、数学模型分析,以及用智能技术做故障诊断等方面。很显然,实验的方法需要花费很大的人力物力,数学模型方法主要是依据实验数据及经验建立相应的数学模型,误差是难以避免的。
     造球机由承载建筑物高层支撑,造球机运行时的振动直接影响到承载建筑物的振动,建筑物的振动又反作用于造球机。故此造球机-承载建筑物耦合振动造成了故障诊断分析的更复杂性。
     人工神经网络是一种智能处理技术,力图模拟人类处理问题的方式去理解和利用信息。神经网络控制可通过对网络结构及权值处理的自动调整而实现非生物神经网络系统的部分功能,能处理高维数、强干扰、难建模的工业过程,为大型旋转机械设备的检测和故障诊断提供了另一种可行的办法。但是,神经网络应用过程中存在的主要问题是学习中不具备全局搜索能力,易陷入局部极小,而粒子群算法是基于群体智能理论的优化算法,是一种种群的全局搜索策略,它是通过群体中粒子间的合作与竞争产生的群体智能指导优化搜索。因此,将神经网络与粒子群算法融合可有效克服神经网络学习中的可靠性低的问题,但传统的融合算法只训练网络权值和阈值,存在冗余度高、收敛速度慢的问题,因此,本文采用一种嵌入免疫因子的免疫粒子群与LM(BP神经网络优化算法的一种)融合算法,有效的解决这些问题。
     造球机运行时由于承载建筑物与造球机的耦合振动,造成楼板产生振动,其振动现象表明:楼板振动造成人对安全性的极大恐慌,通过权威部门的检测承载建筑物及楼板的安全性是没有问题的,这就涉及到舒适度问题,而对于建筑物舒适度的研究,少有涉及到大型旋转机械对承载建筑物的舒适度的问题,本论文已承载建筑物四楼楼板为研究对象,阐述了结构建筑舒适度评价方法及标准,论文采用计权加速度评价方法,根据建筑物舒适度评价指标,结合国际国内标准,对造球机的承载建筑物的楼板舒适度进行系统研究,提出了承载建筑物舒适度的量化标准,为进一步完善舒适度的评价体系提供素材。同时,更是为全面进行大型旋转机械对承载建筑物的舒适度评价方法的建立和量化标准提供参考依据。
     根据已建承载建筑物的实际情况,本论文对楼板隔振措施进行了系统研究,通过以支撑造球机的立柱的实测振动数据作为激励输入,建立有限元模型,采用浮置楼板作为减振措施进行了仿真分析,其减振效果非常有效,达到了所制定的楼板舒适度标准,符合工作人员的舒适度要求,为武钢二期工程的建设提供了科学依据。
With the improvement of the modern mechanical equipments which become more large and more automatic, the large-scale machinery is getting more and more important in modern industry production. As a result, the number of multi-layered industry workshops are increasing day-by-day; the high-level installment of large-scale rotating machinery has become the trend of development. There are two major issues emerge:Equipment fault diagnosis and the degree of large rotating machinery's vibration comfort evaluation of load building. Therefore, large-scale rotating machinery fault diagnosis is considered as a important means to guarantee the stability and reliability of an production system; Analysis on comfort of load buildings which caused by large-scale rotating machinery can provide a reference on its establishment of evaluation system. This article unifies mechanics, architecture, and computer science. It proposes a intelligent method of large-scale rotating machinery fault diagnosis, meanwhile combines with the comfort of structures and criteria for evaluation of the design of the original buildings in a quantitative way, as result provides reference data to evaluation of comfort of Load building and damping measures.
     This paper researches on pelletizer and the pelletizer's load buildings of Ezhou Pelletizing Plant of Wuhan Iron and Steel Mining Co. Ltd.
     It needs an analysis with large number of experiments and data to accurately simulate the complex environment of many large-scale rotating machinery fault diagnosis process. At present, research on this field no matter at home and abroad, is concentrating on experiment, analysis of mathematical model, as well as intelligent fault diagnosis technology and so on. It is clear that the methods of the experiment will take a lot of human and material resources, while the way of mathematical models is based mainly on experimental data and experience, so errors are difficult to avoid.
     Pelletizer is built on load building by carrying high-level support. When the pelletizer is running, there is a direct impact on the vibration of the load building; meanwhile the vibration of the load building has counteraction on the pelletizer. As a result the coupled vibration of pelletizer and load building makes the analysis of fault diagnosis more complex.
     Artificial Neural Network (ANN) is considered as a kind of intelligent technology, which manages to deal with problem by way of human beings to understand and use information. ANN can achieve part of functions of non-living neural network system through automatically adjust of the network structure and right value, and it make a good deal on industrial process which is high dimensionality, strong interference and hard to model. So it provides a possible solution on testing and fault diagnosis for large-scale rotating machinery equipment. However, the main issues in the application of ANN have not global search capabilities, and are easy to fall into local minima, but the PSO (Particle Swarm Optimization) is an optimization algorithm based on the theory of swarm intelligence, it's a search strategy of population global. And it can optimize the search by guidance arising from the of swarm intelligence which are inter-group cooperation and competition. Therefore, the combination of ANN and PSO can effectively overcome the problem of low reliability in the study process of ANN. But the traditional way of integration only focus on weights and thresholds, which cause problems of high redundancy and slow convergence. Therefore, this article uses particle swarm optimization which is immune, to give an effective solution to these problems.
     The vibration caused by the coupled vibration of pelletizer is serious harmful for people's health when the equipment is running, even causes extreme discomfort and gives people the feeling of panic. Detection of the authority department proves the safety of the load buildings are no problem. So it involves the issue of comfort, but there rarely are issues about comfort of the large-scale rotating machinery running on the load building. This paper studys on the fourth floor of load building has described the structure of the building comfort evaluation methods and standards. It uses method of weighted acceleration thesis, in accordance with building comfort evaluation index and combined with international and domestic standards to comprehensively investigate the comfort of load buildings of pelletizer, propose quantitative criteria of load building, and provide some elements for further improvement of the comfort evaluation system. At the same time, it established methods of evaluation of large-scale rotating machinery on the comfort of load building and provided a reference basis for quantitative criteria.
     According to the actual situation of the load building, a systematic study is made on the measures of the floor's vibration isolation. Through taking the vibration of the columns which support the pelletizer as excitory input, building finite element model, and using a floating floor as damping measures to simulate, this paper present an effective method of vibration reduction. This method has reached the standards for comfort of the load building's floor, satisfied the comfort requirements of staff and provided scientific basis for the second phase of the construction of Wuhan Iron and Steel Mining Co., Ltd.
引文
[1]张一敏.球团矿生产知识问答.北京:冶金工业出版社,2005.7.1
    [2]王悦祥.烧结矿与球团矿生产.冶金工业出版社,2005.6.1
    [3]徐劲力、李政天、韩少军.基于Fourier Analysis对造球机开式齿轮异常情况的诊断.烧结球团,2008.33(5):41-45
    [4]陆伟东等.基于振动舒适度的建筑物楼板设计方法.南京工业大学学报(自然科学版),2008.30(1):16—18
    [5]楼梦麟、李守继、丁洁民、陆秀丽.基于多点输入的地铁引起房屋振动评价研究.振动与冲击,2007.26(12):84-87
    [6]曹龙汉.柴油机智能化故障诊断技术[M].北京:国防工业出版社,2005
    [7]Phillip Burrel,Dave Inman. An expert system for the analysis of faults in an electricity supply network:problems and achievements. Computers in Industry 37(1998)113-123.)
    [8]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2002::
    [9]Davis L. Handbook of genetic algorithms[M]. Van Nostrand Reinhold, New York, 1991.
    [10]Bergh F, Engelbrecht A. A new locally convergent particle swarm optimiser [C]. Conference on Systems, Man and Cybernetics,2002:96-101.
    [11]Robison J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics [J]. Transactions on Antennas and Propagation,2004,52(2):397-407.1995
    [12]Eberhart R C, Shi Y. Particle swarm optimization:Developments, applications and resources[C]. Proc 2001 Congress Evolutionary Computation. Piscataway, NJ:IEEE Press,2001:81-86.
    [13]Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems hrough particle swarm optimization [J]. Natural Computing,2002,1(2-3):235-306.
    [14]Ioan Cristian Trelea. The particle swarm optimization algorithm:Convergence analysis and parameter selection [J]. Information Processing Letters,2003,85(1):317-325.
    [15]Muszynska A. Vibrational Diagnositics of Rotating Machinery Malfunctions. Vki. Vibration and Rotor Dynamics. CI1992. pp.40
    [16]John Reason. Expert systems promise to cut critical machine owntime. Power.1987.131(3).17-24
    [17]刘峻华,黄树红,陆继东.汽轮机故障诊断技术的发展与展望.动力工程.2001.Vo121.4.1105-1110
    [18]宋天相,王义.恩泰克预测维修系统在船舶诊断分析中的应用[C].95全国设备故障诊 断技术学术论文集,武汉,1995,1014-1018.
    [19]彭强.复杂系统远程智能故障诊断技术研究[学位论文].南京理工大学.2004.9-27.5-25
    [20]И.B.孔德拉竞柯,王正旭,邵先荣.克拉斯诺雅尔斯克水电站设备的诊断[J].水利水电快报,2003.24(19):5-8.
    [21]Benati, Frigeri C, Seloestri G C. Vibration monitoring and mechanical diagnosis on large rotating achinery in ENEL power plants. Symposium on Diagnostics Rotating Machines in Power Plants, IFToMM/CISM, Udine,1993(10):27-29.
    [22]Zhou Jiemin, Lin Gang, Gong Shuli, et al. Application of multi-sensor data fusion based on fuzzy neural network in rotating mechanical failure diagnosis[J]. Transactions of Nanjing University of Aeronautics&Astronautic, 2001,18(1):91-83.
    [23]符向前,蒋劲,孙慕群,等.水电机组故障诊断系统中的模糊诊断技术研究[J].华中科技大
    [24]曾诚,李玲新,熊国良.回转机械振动模糊故障诊断系统的研制[J].华东交通大学学报,1999,16(4):39-43.
    [25]韩西京,陈培林,史铁林.300MW汽轮发电机组状态监测与故障诊断专家系统[J].汽轮机技术,1997,39(1):8-13.
    [26]韦彩新,曾凡师,刘利娜,等.水电机组监测与诊断系统数据库的设计[J].华中科技大学学报,2003,31(9):1-3.
    [27]刘晓波,黄其柏.水轮发电机组故障诊断模糊专家系统研究[J].华中科技大学学报,2006,34(1):71-73.
    [28]栗青,陈长征.集成神经网络在旋转机械故障诊断中的应用[J].沈阳工业大学学报,2001,23(4):339-341.
    [29]万书亭,李和明,李永刚.自适应神经网络在发电机组故障诊断中的应用[J].华北电力大学学报,2002,29(2):339-341.
    [30]刘光临,程宏举.大型水轮机组故障诊断的神经网络方法研究[J].水力发电学报,2001,20(2):86-92.
    [31]符向前,刘光临,蒋劲.BP神经网络在水轮发电机组状态监测与诊断系统中的应用[J].武汉大学学报(工学版),2002,35(1):24-28.
    [32]王志鹏,马孝江.基于RBF网络的旋转机械故障诊断方法[J].大连理工大学学报,2001,41(6):696-700.
    [33]陈长征,徐玉秀,杨璐.遗传算法的改进及其在故障诊断中的应用[J].机械科学与技术,2000,19(3):392-394
    [34]陈长征,刘强.概率因果网络在汽轮机故障诊断中的应用[J].中国电机工程学报,2001,21(2):78-81.
    [35]张彼得,陈光禹.汽轮发电机组振动多故障诊断的遗传算法研究[J].汽轮机技术,2006,48(4):278-280.
    [36]冯志鹏,宋希庚,薛冬新.基于广义粗糙集理论的旋转机械故障诊断[J].振动与冲击,2004,23(1):47-52.
    [37]黄文涛,赵学增,王伟杰,等.汽轮发电机组振动故障诊断的粗糙集模型[J].电力系统自动化,2004,28(51):80-85.
    [38]张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002,36(12):1303-0-1306.
    [39]段江涛,李凌均,张周锁等.基于支持向量机的机械系统多故障分类方法[J].农业机械学报,2004,35(4):144-147.
    [40]翟永杰,王东风,韩璞.基于多类支持向量机的汽轮发电机组故障诊断[J].动力工程,2003,23(5):2694-2698.
    [41]梁武科,罗兴锜,张彦宁,等.水力发电机组振动故障诊断系统中的信号预处理[J].水力发电学报,2003,23(3):114-120.
    [42]赵道利,马薇,梁武科,等.水电机组振动故障的信息融合诊断与仿真研究[J].中国电机工程学报,2005,25(20):137-141.
    [43]何永勇,任继顺,陈伟,等.水电机组远程状态监测、跟踪分析与故障诊断系统[J].清华大学学报,2006,46(5):629-632.
    [44]宋志刚.基于烦恼率模型的工程结构振动舒适度设计新理论.浙江大学,博士学位论文,2003.
    [45]Reiher H. and Meister F.J. The sensitiveness of humanbody to humanbody to vibration[J]. Forchung(VDI-BERLIN),1931:381-386.
    [46]Parsons K. C. and. Griffin M. J. Whole-body vibration perception thresholds, Journal of Sound and Vibration,1988,121 (2):237-258.
    [47]Griffin M. J. Handbook of Human Vibration. Academic Press, New York,1990.
    [48]Ahn S. J. and Griffin M. J. Effects of frequency, magnitude, damping, and direction on the discomfort of vertical whole-body mechanical shocks. Journal of Sound and Vibration,2008,311 (1-2):485-497.
    [49]Morioka M. and Griffin M. J. Absolute thresholds for the perception of fore-and-aft, lateral, and vertical vibration at the hand, the seat, and the foot. Journal of Sound and Vibration,2008,314 (1-2):357-370.
    [50]宋志刚,金伟良.人对振动主观反应的模糊随机评价模型.应用基础与工程科学学报,2002,10(3):287-294.
    [51]宋志刚,金伟良.工程结构振动舒适度的抗力模型.浙江大学学报(工学版),2004,38(8):966-970.
    [52]宋志刚,金伟良.行走作用下梁板结构振动舒适度的烦恼率分析.振动工程学报,2005,18(3):288-292.
    [53]丁洁民,尹志刚.地铁引起建筑物振动舒适度分析.振动与冲击,2008,27(9):96-100.
    [54]唐传茵,张天侠,宋桂秋.基于烦恼率模型的振动舒适度评价方法.东北大学学报(自然科学版),2006,27(7):802-805.
    [55]黄健,王庆阳,娄宇.基于国内外不同标准的人行天桥舒适度设计研究.建筑结构,2008,38(8):106-110.
    [56]何浩祥,闫维明,张爱林,王卓.竖向环境振动下人与结构相互作用及舒适度研究.振动工程学报,2005,21(5):446-450.
    [57]何浩祥,闫维明,张爱林.人行激励下梁板结构与人体耦合作用研究.振动与冲击,2008,27(10):130-135.
    [58]赵伟.地铁引起的环境振动评价与沉降研究.武汉理工大学硕士学位论文,2007.
    [59]邓亚虹,夏唐代,陈敬虞.车辆动荷载作用下隔振沟响应增强区数值分析.岩土工程学报,2006,28(12):2121-2127.
    [60]Tsai P. H. and Chang T. S. Effects of open trench siding on vibration-screening effectiveness using the two-dimensional boundary element method. Soil Dynamics and Earthquake Engineering,2009,29 (5):863-875.
    [61]陈锋,黄茂松.公路高架桥交通引起环境振动的填充沟隔振分析.振动工程学报,2008,21(3):241-247.
    [62]Wang J. G., Sun W. and Anand S. Numerical investigation on active isolation of ground shock by soft porous layers. Journal of Sound and Vibration,2009, 321 (3-5):492-509.
    [63]郭文华,路萍.TMD对高速列车通过简支箱梁桥时的振动控制研究.振动与冲击,2008,27(11):42-47.
    [64]Emiliano M, Stefano D. and Alessandro. Robust design of mass-uncertain rolling-pendulum TMDs for the seismic protection of buildings. Mechanical Systems and Signal Processing,2009,23 (1):127-147.
    [65]陈招平,董平,黄丽婷.高层建筑地震反应的TLD振动控制.建筑科学与工程学报,2008,25(1):122-126.
    [66]Tait, M. J. Modeling and preliminary design of a structure-TLD system. Engineering Structures,2008,30 (10):2644-2655.
    [67]韩西,李磊,钟厉.利用MTMD和MTLD控制拱桥振动试验研究.地震工程与工程振动,2008,28(5):157-182.
    [68]Fujino Y. and Sun L. M. Vibration control by multiple tuned liquid dampers (MTLDs). Journal of Structural Engineering New York,1993,119(12):3482-3502.
    [69]Yau, J. D. and Yang, Y. B. A wideband MTMD system for reducing the dynamic response of continuous truss bridges to moving train loads. Engineering Structures,2004,26 (12):1795-1807.
    [70]Kim H. S., Kim B. K., Cha S. I. and Kim Y. S. Floor impact noise reduction in ship cabins by means of a floating floor. Noise Control Engineering Journal, 2006,54 (6):406-413.
    [71]Hui C. K. and Nq C. F. Attenuation of flexural vibration for floating floor and floating box induced by ground vibration. Applied Acoustics,2009,70 (6): 799-812.
    [72]李守继.地铁引起环境振动及房屋浮置楼板隔振研究.同济大学博士学位论文,2008.
    [73]冯耘霞.基于子空间旋转法及神经网络的结构损伤识别研究与应用[D].大连理工大学硕士学位论文,2001.
    [74]王义,宁小锋,连项峰,原兵雁.浅谈机械振动的控制与利用[C].2007中小高炉炼铁学术年会论文集[C].
    [75]谢峻.基于振动的桥梁结构损伤识别方法研究[D].华南理工大学博士学位论文,2003.
    [76]郑渝.机械结构损伤检测方法研究[D].太原理工大学博士学位论文,2004.
    [77]岳桂华.基于神经网络的结构损伤识别[D].哈尔滨工程大学硕士学位论文,2004.
    [78]钟春彬,冯忠绪,张志峰,姚运仕.振动压路机的振动噪声测试与综合性能评价[J].长安大学学报(自然科学版),2007,(3).
    [79]李斌,卢文胜,沈剑浩,李检保.高层建筑结构动力特性测试实例分析[J].结构工程师,2006,(2).
    [80]樊海涛,何益斌,周绪红.基于Hilbert-Huang变换的结构损伤诊断方法研究[J].建筑结构学报,2006,(6).
    [81]饶文碧,张亮.建筑结构损伤无线监控系统及其协议设计[J].武汉理工大学学报,2005,(5).
    [82]孙敦本,杨国平.建筑结构损伤识别的一种方法[J].江苏建筑,2005,(3).
    [83]刘丽霞,陈立平,刘志宏.建筑物结构动态参数测试研究[J].哈尔滨工业大学学报,1998,(6).
    [84]樊海涛.钢筋混凝土建筑非线性阻尼性能及其地震反应研究[D].湖南大学博士学位论文,2005.
    [85]王长青.基于振动响应的海洋平台结构损伤诊断技术研究[D].中国海洋大学硕士学位论文,2006.
    [86]李春雷.基于反馈控制提高灵敏度的智能结构损伤识别及修复[D].南京航空航天大学硕士学位论文,2007.
    [87]谭冬梅.基于神经网络的空间网架有限元模型修正[D].武汉理工大学硕士学位论文,2003.
    [88]宋秀青.简介加利福尼亚理工学院建筑结构健康状态的实时监测和性能评估系统[J].国际地震动态,2006,(4).
    [89]M. Celebi,A. Sanli,M. Sinclair,S. Gallant,D. Radulescu,王飞.建筑物业主的实时地震监测需求和解决方案[J].世界地震译丛,2005,(5).
    [90]李宏男,伊廷华,王国新.GPS在结构健康监测中的研究与应用进展[J].自然灾害学报,2004,(6).
    [91]戴吾蛟.GPS精密动态变形监测的数据处理理论与方法研究[D].中南大学博士学位论文,2007.
    [92]申俊红.钢筋混凝土结构施工过程中静态作用效应监测技术研究[D].郑州大学硕士 学位论文,2006.
    [93]]蔡惟鑫,罗仁安.城市重要建筑物在营运中结构安全的长期连续监控与损伤诊断评估[C].2007中国科协年会专题论坛暨第四届湖北科技论坛优秀论文集:湖北科学技术出版社,2007-08.
    [94]Xu, Y. L. (Department of Civil Engineering, Hong Kong Polytechnic University); Zhu, Hongping; Chen, Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations[J] Structural Engineering and Mechanics, v 18, n 6, December,2004, p 709-729
    [95]Ivanovic, S. S. ((Univ of Montenegro); Trifunac, M. D.; Novikova, E.I.; Gladkov, A. A.; Todorovska, M.I. Ambient vibration tests of a seven-story reinforced concrete building in Van Nuys, California, damaged by the 1994 Northridge earthquake[J]Soil Dynamics and Earthquake Engineering, v 19, n 6, Sep,2000, p 391-411
    [96]Song, Yu (Dept. of Civil Engineering, Xiamen University); Lei, Ying; Wang, Jian-Xin. Study on damage identification of high-rise buildings [J]. Proceedings of SPIE-The International Society for Optical Engineering, v 6532, Health Monitoring of Structural and Biological Systems 2007,2007, p 653221
    [97]Kim, Heung-Sik (Department of Structural Engineering, Korea National Housing Corporation); Chun, Young-Soo. Structural damage assessment of building structures using dynamic experimental data[J]. Structural Design of Tall and Special Buildings, v13, n1, March,2004, p1-8
    [98]Saito, Tomoo (Institute of Technology, Shimizu Corporation); Mase, Shinji; Morita, Koichi A. probabilistic approach to structural damage estimation[J] Structural Control and Health Monitoring, v 12, n 3-4, July/December,2005, p 283-299
    [99]Kaneko, Yoshio (Tohoku University, Dept. of Architecture); Mita, Akira; Mihashi, Hirozo. Quantitative approach for damage detection of reinforced concrete frames [J] Earthquake Engineering and Engineering Vibration, v 2, n 1, June,2003, p 147-158
    [100]Lima, Hugo F. (Department of Physics, University of Aveiro); Da Silva Vicente, Romeu; Nogueira, Rogerio N.; Abe, Ilda; De Brito Andre, Paulo Sergio; Fernandes, Catarina; Rodrigues, Hugo; Varum, Humberto; Kalinowski, Hypolito Jose; Costa, Anibal; De Lemos Pinto, Joao. Structural health monitoring of the church of santa casa da misericordia of Aveiro using FBG sensors [J]. IEEE Sensors Journal, v 8, n 7, July,2008, p 1236-1242
    [101]Yoshimoto, Reiki (Dept. of System Design Engineering, Keio University); Mita, Akira; Okada, Keiichi; Iwaki, Hideaki; Shiraishi, Michihito. Damage detection of a structural health monitoring system for a 7-story seismic isolated building[J]. Proceedings of SPIE-The International Society for Optical Engineering, v 5057,2003, p 594-605
    [102]Morita, Koichi (Building Research Institute); Teshigawara, Masaomi. Structural health monitoring of an existing 8-story building using strong motion observation data and structural design data[J]. Proceedings of SPIE-The International Society for Optical Engineering, v 6174 I, Smart Structures and Materials 2006-Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems,2006, p 61741T
    [103]Lin, Silian (Department of Civil and Environmental Engineering, University of California); Yang, Jann N; Zhou, Li. Damage identification of a benchmark building for structural health monitoring[J]. Smart Materials and Structures, v 14, n 3, Jun 1,2005, p S162-S16
    [104]Bani-Hani, KA; Zibdeh, HS; Hamdaoui, K. Health monitoring of a historical monument in Jordan based on ambient vibration test[C]. SMART STRUCTURES AND SYSTEMS Volume:4 Issue:2 Pages:195-208
    [105]O'Day, J; Caldwell, B; Kwan, K, et al. Three dimensional imaging for Structural Health Monitoring[C]. PROCEEDINGS OF THE THIRD EUROPEAN WORKSHOP STRUCTURAL HEALTH MONITORING 2006 Pages:1383-1396
    [106]Sawyer JP, Rao SS. Structural damage detection and identification using fuzzy logic[C]. AIAA JOURNAL Volume:38 Issue:12 Pages:2328-2335
    [107]Kobayashi M, Jen CK, Moisan JF, et al. Integrated ultrasonic transducers made by the sol-gel spray technique for Structural health monitoring [C]. SMART MATERIALS & STRUCTURES Volume:16 Issue:2 Pages:317-322
    [108]Nakamura, Mitsuru (Obayashi Corporation, Technical Research Institute); Masri, Sami F.; Chassiakos, A. G.; Caughey, T. K. A neural. Network approach to damage detection in a building from ambient vibration measurements[J]. Source: Proceedings of SPIE-The International Society for Optical Engineering, v 3321,1996, p 126-137
    [109]Hamamoto, Takuji (Musashi Inst of Technology); Kondo, Ippei. Damage detection of existing building structures using two-stage system identification[J]. Theoretical and Applied Mechanics, v 41,1992, p 147-158
    [110]Todorovska, Maria I. (Department of Civil Engineering, University of Southern California); Trifunac, Mihailo D. Earthquake damage detection in the Imperial County Services Building I:The data and time-frequency analysis[J]. Soil Dynamics and Earthquake Engineering, v 27, n 6, June,2007, p 564-576
    [111]Yoo, S. H. (Department of Architectural Engineering, Hanyang University); Kim, S. Y.; Shin, S. W. Damage detection of building structures using ambient vibration measuresent[J]. Key Engineering Materials, v 348-349, Advances in Fracture and Damage Mechanics Ⅵ,2007, p 721-724
    [112]Chen, B; Zheng, J. On-line damage detection on structural sudden degradation subjected to strong earthquake by using Hilbert-Huang transform[C]. NEAR-SURFACE GEOPHYSICS AND HUMAN ACTIVITY. Pages:203-206
    [113]Todorovska, M; Trifunac, MD. Impulse response analysis of the Van Nuys 7-storey hotel during 11 earthquakes and earthquake damage detection[J]. STRUCTURAL CONTROL & HEALTH MONITORING Volume:15 Pages:90-116
    [114]Zhang, J, Xu, YL, Xia, Y, et al. A new structural damage detection method based on statistical moments[C]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON HEALTH MONITORING OF STRUCTURE, MATERIALS AND ENVIRONMENT, VOLS 1 AND 2 Pages:168-173
    [115]Howard Demuth, Mark Beale. Neural Network Toolbox User's Guide. The MathWorks. 2002, version 4.
    [116]Martin T. H, Howard B.D,Mark H. B著.戴葵等译.神经网络设计[M].机械工业出版社,2002.9.
    [117]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].电子工业出版社,2006.
    [118]许力.智能控制与智能系统[M]:机械工业出版社,2007年.
    [119]靳蕃.神经计算智能基础原理.成都[M]:西南交通大学出版社,2000.
    [120]周志华,曹存根.神经网络及其应用[M]:清华大学出版社,2004.
    [121]梁久帧.智能计算[M]:国防工业出版社,2007.
    [122]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M]:科学出版社,2007年.
    [123]侯媛彬,杜京义等.神经网络[M].西安:电子科技大学出版社,2007.
    [124]申东日,冯少辉,陈义俊.BP网络改进方法概述.化工自动化及仪表.2000,27(1):30-32.
    [125]马正华,薛国新.BP神经网络训练的改进[J].江苏理工大学(自然科学版),2000,21(1):79-82
    [126]陈善广,鲍勇.BP神经网络学习算法研究[J].应用基础与工程科学学报,1995,12,3(4).
    [127]冯英浚,王雪峰,张少仲。BP网络瘫痪的原因分析。计算机仿真2000(5)
    [128]薛年喜,贾永乐.用自调整S函数提高神经网络BP算法.计算机仿真2003(2).
    [129]张荣沂.一种新的集群优化方法——粒子群优化算法.哈尔滨工业大学学报(自然科学版),2004,18(4):34-36.
    [130]苗夺谦,王国胤,刘清,林早阳,姚一豫。粒计算:过去、现在与展望[M]:科学出版社,2007.
    [131]Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proceedings IEEE International Conference on Neural Networks. Piscataway, NJ:
    [132]Eberhart R C, Shi Y. Particle swarm optimization:developments, applications and resources [A], Proc.2001 Congress Evolutionary Computation [C]. Piscataway, NJ:IEEE Press,2001:81-86.
    [133]杨维,李岐强.粒子群优化算法综述.中国工程科学,2004,16(5):87-93.
    [134]施彦,黄聪明,侯朝桢.基于改进的PSO算法的神经网络集成.复旦大学学报(自然科学版),2004,43(5):105-112.
    [135]Reynolds C. Flocks, Herds, and Schools:A Distributed Behavioral Model.Computer Graphics.1987.21(4):25-34
    [136]Carlisle A, Dozier G. An off- the- shelf PSO[C]//Proceedings of the Particle Swarm Optimization Workshop,2001:1-6.
    [137]王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法.中国机械工程,2005,16(11):945-948.
    [138]吕振肃,侯志荣.自适应变异的粒子群优化算法.电子学报.
    [139]李宁,孙德宝,岑冀刚,邹彤.带变异算子的粒子群优化算法.计算机学报.No.17,2004:12-15
    [140]侯志荣,吕振肃.基于MATLAB的粒子群优化算法及其应用.计算机仿真,2003,20(10):103-107.
    [141]焦李成,杜海峰,刘芬,公茂果.免疫优化计算、学习与识别[M]:科学出版社,2006.
    [142]黄席樾,张著洪,何传江,胡小兵,马笑潇.现代智能算法理论及应用[M].2005年4月第一版,科学出版社,2005:15-153.
    [143]Licheng Jiao, Lei Wang. A novel genetic algorithm based on immunity[J]. Systems, Man and Cybernetics, Part A, IEEE Transactions on. Sep 2000 Volume:30, Issue: 5.
    [144]肖本贤,余炎峰,余雷,陈昊.基于免疫遗传算法的移动机器人全路径规划[J].计算机工程与应用,2007,43(30),91.
    [145]de Castro, L. N. Immune, swarm, and evolutionary algorithms. Part II: philosophical comparisons. [C]//Neural Information Processing,2002. ICONIP '02. Proceedings of the 9th International Conference on.
    [146]焦李成,杜海峰,刘芬,公茂果.免疫优化计算、学习与识别[M]:科学出版社,2006.
    [147](美)克拉夫,彭津著.王光远译.结构动力学.北京:科学出版社,1981.
    [148]Brekhovskikh L. M. Waves in layered media. New York, Academic Press,1980.
    [149]盛美萍,王敏庆,孙进才.噪声与振动控制技术基础.科学出版社,2001.
    [150]李桂青,徐家云,等.结构控制与控制结构计算理论和方法.地震出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700