用户名: 密码: 验证码:
干旱区秸秆覆盖对滴灌土壤水盐分布及棉花生长的调控效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索秸秆覆盖对干旱区土壤水盐分布和北疆滴灌棉花生长和产量的影响,2009-2012年以小麦秸秆为材料,通过室内土柱试验,对比研究了不同秸秆覆盖量、秸秆覆盖位置和秸秆长度对土柱一维垂直入渗和蒸发情况下土壤剖面水温盐分布的影响;同时结合4年测坑试验,研究了表层覆盖、地表下30cm覆盖和无覆盖三种处理分别在非盐碱土和盐碱土条件下对滴灌棉花生长、根系和产量的影响;利用HYDRUS软件模拟了秸秆覆盖土壤水分和温度的运动过程,揭示了秸秆覆盖土壤水温盐分布特点及对滴灌棉花生长的调控效应。主要结论有:
     (1)无覆盖和秸秆表层覆盖积水入渗湿润土体含水率由上向下逐渐由饱和含水率减少至初始值;垂直一维入渗中累积入渗量、入渗锋均随时间延长而增大,入渗初期累积入渗量和入渗锋增加较快,随时间延续其增加趋势渐缓,构建了无覆盖一维垂直积水入渗模型。
     (2)深处秸秆覆盖即秸秆夹层厚度和密度对入渗水流起到阻滞作用,使下渗水流滞留于秸秆夹层以上土体,还具减渗性,使下渗水量及入渗锋面湿润速度减小,同时也影响盐分及离子运移,盐分从上到下逐渐升高,Cl~-入渗后在剖面上变化规律与总盐变化规律相同,HCO_3~-离子对秸秆夹层的敏感性强于SO_4~(2-)。
     (3)秸秆覆盖对土壤温度场具有显著影响。秸秆层无论在何位置均能阻挡或吸收一部分热能,表层覆盖量越大剖面温度变化越缓并与无覆盖温差越大。20cm处覆盖在0-40cm范围温度变化特征与无覆盖一致,秸秆夹层传热性能远大于表层覆盖。表层覆盖0-20cm范围内温度均低于20cm深处覆盖相应位置温度,在0-40h以内20cm深处覆盖在20-40cm范围内温度均低于表层覆盖相应位置温度,但在40h以后20cm处覆盖吸热效应降低,在整个深度范围内温度升高速率高于表层覆盖;拟合得出了土层温度与深度和时间的通用函数关系。
     (4)秸秆覆盖对土壤水分分布影响显著,秸秆覆盖位置对一维土柱蒸发后土壤含水率分布具有显著影响。秸秆表层覆盖能有效抑制水分蒸发散失,表层秸秆覆盖量越大,对表层和上层土壤含水率蒸发抑制作用越强,长度5cm秸秆覆盖量12000kg/hm~2时相对无覆盖处理可抑制水分蒸发散失52.21%。20cm深处秸秆覆盖对抑制水分蒸发散失作用并不显著,在秸秆覆盖量达到12000kg/hm~2以上时,5cm长度秸秆覆盖相对具有较好的抑制土壤蒸发作用。表层覆盖0-20cm土层含水率均高于20cm深处秸秆覆盖,20cm深处秸秆覆盖在20-40cm土层含水率均高于表层覆盖,且秸秆覆盖量越大,这种现象越明显。方差分析结果表明秸秆覆盖量在表层覆盖情况下对累积蒸发量、0-15cm平均含水率、0-15cm平均含盐量的贡献最大,效应最显著;在20cm处覆盖时秸秆覆盖量只对0-15cm平均含水率的影响最大。
     (5)垂直一维蒸发条件下,秸秆覆盖相应影响或减少盐分上移,秸秆覆盖位置主要影响覆盖层紧密连接的下层土壤中盐分运动,使盐分积聚在秸秆层以下一定范围土壤里。表层土壤盐分变化率随秸秆覆盖量增加而减小,秸秆覆盖量在12000kg/hm~2以上时,对土壤盐分抑制作用显著,抑制深度20cm左右。20cm深处秸秆覆盖减少了盐分向上迁移,呈现上层盐分变化率减少,秸秆层以下10cm范围内盐分变化率升高,长度5cm秸秆在覆盖量较大时对上层土壤盐分抑制效果较好。表层覆盖在0-20cm土层范围内土壤盐分变化率高于20cm深处秸秆覆盖,在20-25cm土层则是20cm深处秸秆覆盖土壤盐分变化率较高。
     (6)秸秆覆盖测坑滴灌棉花试验表明,秸秆覆盖通过对土壤水分的影响间接影响了土壤盐分的运移和分布。表层秸秆覆盖具有明显的抑制水分散失作用,能减少中壤土、盐碱土0-20cm土层水分蒸发,保水效果较好。30cm深层秸秆覆盖在秸秆腐烂之前(有效期约100d)具有明显的抑制深层水分和盐分向上迁移,0-20cm土壤盐分含量较低,盐分主要在30-40cm深处聚集,有利于棉花根区形成脱盐区,抑盐效果高于表层覆盖,能够起到隔层抑盐改良盐碱土作用,但在棉花生长后期对于蒸发和盐分抑制作用不明显。
     (7)秸秆覆盖显著影响根系根长密度分布,对深层根系分布影响更大,中壤土根系分布更深,秸秆覆盖减少0-28cm耕作层根重密度分布比重,增加根长密度比重,分别促使棉花细根在耕作层和主根向深层发育和分布。表层覆盖促进耕作层根系发育,30cm覆盖限制上层根系发育,促进30cm以下土层根系发育。盐碱土棉花根系偏细长,单位体积土体细根较多,在盐碱逆境下秸秆覆盖更能促进根系向更细更长方面发育,提高根长分布密度。
     (8)秸秆覆盖对滴灌棉花生长及产量具有一定影响,尤其体现在盐碱土条件下。非盐碱土秸秆覆盖对滴灌棉花株高、叶面积指数和产量相对无覆盖促进作用不显著,但表层覆盖综合调控效应优于30cm深处覆盖尤其在棉花生长中后期(花铃期)。盐碱土秸秆覆盖对滴灌棉花株高、叶面积指数和产量促进作用相对显著,尤其在中后期秸秆覆盖可促进棉花生长,提高叶面积指数,提高产量,表层覆盖抑盐效应较30cm覆盖显著;30cm深层秸秆覆盖效应在棉花生长前期(苗期、蕾期)明显,后期(花铃期)减弱;表层覆盖相对无覆盖和30cm深层覆盖可分别提高棉花产量3.2-17.9%与3.1-16.3%。
     (9)利用HYDRUS软件对秸秆覆盖土壤水分、温度运动的模拟值与实测值对比结果比较理想,较好地反映土壤含水量在试验期内随蒸发、灌溉等因素的变化规律,可用作秸秆覆盖条件下土壤水热盐运移预测研究。
     作为探索减缓新疆农田残膜污染、发展生态高效农业的一种尝试,秸秆覆盖与滴灌结合在盐碱地棉花等作物上具有应用的可能和前景,相关技术还需深入研究。
In order to explore the effect of straw mulching on soil water salt distribution in cotton growth andyield under drip irrigation in North Xinjiang.2009-2012with wheat straw as the material, the effect ofdifferent quantity of straw mulching, straw mulching position and straw length on soil profile water-saltdistribution in the case of soil column one-dimensional vertical infiltration and evaporation werecomparatively studied through soil column experiments in lab. Meanwhile combining four years test-pitexperiments, the effect of surface coverage, coverage below the surface30cm and no coverage on cottongrowth, root system and yield under drip irrigation respectively in the condition of nonsaline alkali soilsand saline-alkali soil on was studied. Motion process of soil moisture and temperature under straw mulchhas been simulated using HYDRUS. The main conclusions are as follows.
     (1)Ponding infiltration moist soil moisture in the treatment of no coverage and surface coveragegradually Reduce, from top to bottom, from saturated water content to initial value. Both cumulativeinfiltration and wetting front in one-dimensional vertical infiltration increase with the time. At thebeginning of infiltration, cumulative infiltration and wetting front increase rapidly. But its increasing trendgradually become slow over time and continue. The model of no cover one-dimensional vertical waterinfiltration is built.
     (2)Deep straw mulching which can block infiltration flow make infiltration flow detained in the soilabove straw mezzanine and it also has the permeability reduction which make infiltration water's andinfiltration front's wetting velocity reduced. Meanwhile it also affects salinity and ion migration. Salinityrises gradually from top to bottom. After infiltration, change rule of Cl~-and change rule of total salinity isthe same in profile. Sensitivity of HCO_3~-to the straw interlining is stronger than SO_4~(2-).
     (3)Straw mulching has a significant effect on soil temperature field. Straw layer can stop or absorb partof heat energy at any position. The bigger surface cover, more slowly profile temperature changes and thebigger temperature difference than no cover. In the treatment of, temperature variation characteristics is thesame with no cover in the rage of0-40cm and heat transfer performance of straw laminated is greater thanthe surface coverage. The temperatures of the treatment of surface coverage are all lower than coveragebelow the surface20cm in the rage of0-20cm. In the0-40h, the temperatures of the treatment of coveragebelow the surface20cm are all lower than surface coverage in the rage of20-40cm. But endothermic effectof the treatment of coverage below the surface20cm reduces after40h and temperature rise rate is higherthan the treatment of surface coverage in the rage of entire depth. The general function of the soiltemperature with the depth and time is fitted.
     (4)Straw mulching shows significant influence on soil water distribution. And the location of strawmulching has a remarkable effect on the distribution of soil moisture content after the evaporation ofone-dimensional soil column. Straw coating can effectively restrain water loss from evaporation. The morethe surface of straw mulching quantity is, the stronger inhibition on the surface and the upper evaporationof soil moisture content is. Straw mulching of5cm length and12000kg/hm~2or more could inhibit theevaporation loss by52.21%or much better. Soil moisture content of the treatment of surface coverage ishigher than coverage below the surface20cm in0-20cm, and coverage below the surface20cm is higherthan the surface coverage in20-40cm. The more the straw mulching quantity is, the more obvious thephenomenon is. Variance analysis shows that straw mulching quantity under the condition of surfacecoverage influences cumulative evaporation, averaging moisture content of0-15cm and averaging a saltcontent of0-15cm most significantly.When the straw cover is20cm, it only has the biggest influence on theaveraging moisture content of0-15cm.
     (5) Under the conditions of one-dimensional vertical evaporation, straw mulching affects or reduces saltup accordingly. The position of straw mulching mainly influences salt movement in the lower soil closelyconnected to the cover, the salt accumulating under straw layer in a certain range. Surface soil salinity gradient decreases with the increase of straw mulching. When the amount of straw mulching is far morethan12000kg/hm~2, it inhibits soil salt significantly. And the depth of inhibition is about20cm. Coveragebelow the surface20cm reduces the upward migration of salinity, rendering the upper salinity rate reduce.And the salinity rate within the scope of the following10cm straw layer is to rise. Straw cover of5cmlength is more, the effect of the inhibition on the upper soil salt is better. The soil salinity gradient is higherthan coverage below the surface20cm within0-20cm soil layer, and the depth of20cm is higher within20-25cm.
     (6) Drip irrigation cotton trials in Straw mulching test pit showed that straw mulching affected themigration and distribution of soil salt indirectly. Surface of straw mulching has obvious effect on inhibitingwater loss. It can reduce the evaporation in the medium loam soil and saline-alkali soil within0-20cm. Theeffect of protecting water is better.30cm deep Straw mulching stalk (for about100days) has obviousinhibition on water and salt migration upwards in deep layer before rot.0-20cm.Soil salt content within0-20cm is lower and mainly gather in the deep of the30to40cm, which is beneficial for the cotton rootzone to form desalting area. The effect of inhibiting salt is higher than the surface coverage, thus play a rolein interlayer, inhibiting salt and improving saline soil. But the effect of the inhibition on evaporation andsalt is not obvious in the late cotton growth.
     (7) Straw mulching significantly affected the density distribution of root length, and has a greaterimpact on deep root system distribution. The root system distribution in medium loam is deeper. Reducingroot weight density distribution proportion in plow layer by0to28cm, or increasing root length density,prompted the development and distribution of fine roots of cotton in plow layer and taproot in deep layerrespectively.Surface coverage promotes root development in plow layer. The cover of30cm limits upperroot development, whereas promotes lower root development. Cotton root system in saline alkali soil isusually thin and long, and fine roots are more in per unit volume of soil. Under salinity stress, straw covercan promote the root to develop more and longer, increasing root length density distribution.
     (8) Straw mulching has certain influence on drip irrigation cotton growth and yield, especially under thecondition of saline alkali soil. The saline alkali soil straw mulching on drip irrigation for cotton plant leafarea index and yield is relatively high coverage for promoting effect was not significant.The effect of strawmulching on the plant height,leaf area index and yield of drip irrigation cotton is not significant innon-saline alkali soils. But the surface covered comprehensive control effect is better than that of coveragebelow the surface30cm especially during the later period of cotton growth (the blooming period).However,the effect of straw mulching on the plant height, leaf area index and yield of drip irrigation cotton issignificant in saline alkali soils, especially in the middle. The effect of salt suppression in surface cover ismore significant than coverage below the surface30cm. The effect of coverage below the surface30cm isobvious at the early stage of the cotton growth (seedling stage, bud stage), and weakens during the laterperiod (flowering and boll setting stage).The cotton yield of surface coverage has increased respectively by3.2-17.9%and3.1-16.3%than no cover and coverage below the surface30cm.
     (9) Using HYDRUS to compare the results of simulated values and measured values about soilmoisture and motion temperature of straw mulching is more ideal. It can reflect the law that how soilmoisture content is changing with the factors such as irrigation and evaporation during the test period muchbetter. And it could be used to study and predict how soil water salt and heat move under the conditions ofstraw mulching.
     As a try to explore how to ease membrane fouling in Xinjiang farmland and develop efficientecological agriculture, the combine of straw mulching and drip irrigation in cotton crops in saline-alkaliland has the possibility of application and prospect. However, technologies related still need furtherresearch.
引文
[1]安俊波.无膜移栽地下滴灌棉花耗水规律及灌溉制度研究[D].新疆:石河子大学,2009:1-12.
    [2]信乃诠,张燕卿,王立祥,等.中国北方旱区农业研究[M].中国农业出版社,2002:1-7.
    [3]柴付军,尹飞虎,程鸿.新疆节水灌溉发展现状、存在问题及对策[M].中国节水农业发展战略研究与实践.中国农业科学技术出版社,2006:115-119.
    [4]李继红.对新疆农田残膜污染与治理现状的思考[M].新疆第六届青年学术年会暨新疆首届博士生论坛论文集(中).新疆科学技术出版社,2006:(11).
    [5]毛树春.育苗移栽新技术示范在新疆.中国棉花[J].2007,34(8):35.
    [6]马富裕,严以绥.棉花膜下滴灌技术理论与实践[M].新疆大学出版社,2002.
    [7] Qadir M,Ghafoor A,and Murtaza G. Amelioration Strategies for Saline Soils[J].Land Degradation andDevelopment,2000,11:501-521.
    [8]王尊亲.中国盐渍土[M].北京:科学出版社,1993:250-311.
    [9] Barrel-Lennard E G.Restoration of saline land thought revegetation[J].Agricultural WaterManagement,2002,53:213-226.
    [10]王连庄,徐树贞.麦田秸秆覆盖的作用及其节水效应的初步研究[J].干早地区农业研究,1989,(2):7-15.
    [11]郑力群,陈铭达,刘兆普,等.地面覆盖对盐渍土水热盐运动及作物生长的影响[J].土壤报.2003,34(2):93-97.
    [12]李新举,张志国,刘勋岭,等.秸秆覆盖对土壤水盐运动的影响[J].山东农业大学报,2000,31(1):38-40.
    [13]黄强,殷志刚,田长彦,等.两种覆盖方式下的土壤溶液盐分含量变化[J].干旱区地理,2001,24(1):52-56.
    [14] Rooney D J,Brown K W,and Thomas J C.The effectiveness of capillary barriers to hydraulicallyIsolate salt contaminated[J].Water Air and Soil Pollution,1998,104:403-411.
    [15]刘昌明,何希吾,等.中国21世纪水问题方略[M].北京:科学出版社,2001:7-8.
    [16]崔运峰,董洁,邹皆明.秸秆覆盖节水保墒效应的研究进展[J].农技服务,2011,(4):15.
    [17]刘玉含,张展羽,伊德里萨,等.农田秸秆覆盖技术及其发展趋势分析[J].水利经济,2007,(3):30.
    [18] Vos, J.G. M,Sumarni, N. Integrate crop management of hot pepper under tropical low land conditions:effect of mulch on crop performance and production [J]. Journal Horticultural Science,1997,72(3):415-424.
    [19] Huixiao W, Changming L, Lu Z. Water-saving agriculture in china: An overview[J]. Advances inAgronomy,2002,75(2):135-171.
    [20]高亚军,李生秀.旱地秸秆覆盖条件下作物减产的原因及作用机制分析[J].农业工程学报,2005,21(7):15-19.
    [21]巩杰,黄高宝,陈利顶,等.旱作麦田秸秆覆盖的生态综合效应研究[J].干旱区农业研究,2003,21(3):69-73.
    [22]晋凡生,张宝林.免耕覆盖玉米秸秆对旱塬地土壤环境的影响[J].农业生态研究,2000,8(3):47-50.
    [23]蔡太义,贾志宽,黄耀威,等.中国旱作农区不同量秸秆覆盖综合效应研究进展[J].干旱区农业研究,2011,29(5):63-68.
    [24] Wang Y, Xie Z, Malhi S S, et al. Effects of rainfall harvesting and mulching technologies on water useefficiency and crop yield in the semi-arid loess plateau, China[J]. Agric Water Manage,2009,96(3):374-382.
    [25] Liu Y, Li S Q, Chen F, et al. Soil water dynamics and water use efficiency in spring maize (zea maysl.) fields subjected to different water management practices on the loess plateau,China[J]. Agric WaterManage,2010,97(5):769-775.
    [26]谷洁,高华,方日尧.施肥和秸秆覆盖对旱地作物水分利用效率的影响[J].农业工程学报,1998,14(2):160-164.
    [27]刘婷,贾志宽,张睿,等.秸秆覆盖对旱地冬小麦灌浆动态及产量的影响[J].干旱区农业研究,2010,28(2):34-37.
    [28]刘超,王有科,湛景武,等.秸秆覆盖量对夏玉米产量影响的试验研究[J].灌溉排水学报,2008,27(4):64-66.
    [29]翟胜,梁银丽,王巨媛,等.地表覆盖对日光温室黄瓜生长发育及生理特性的影响[J].中国生态农业学报,2007,15(2):73-77.
    [30]赵忠华,张晓海,晋艳.综合抗旱栽培技术对烤烟生长发育和产值量的影响[J].中国农学通报,2011,27(12):238-243.
    [31]王谊,马富裕,樊华,等.播期和晚播秸秆覆盖对加工番茄干物质积累和产量的影响[J].干旱地区农业研究,2012,30(3):25-30.
    [32]严昌荣,王序俭,何文清,等.新疆石河子地区棉田土壤中地膜残留研究[J].生态学报,2008,28(7):3470-3484.
    [33]王鹏,曹卫彬,张振国.新疆建设兵团地膜残留特点的研究[J].农机化研究,2012,(8):107-110.
    [34]刘建国,李彦斌,张伟,等.绿洲棉田长期连作下残膜分布及对棉花生长的影响[J].农业环境科学学报,2010,29(2):246-250.
    [35]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [36]马宗斌,李伶俐,房卫平,等.麦秸覆盖对土壤温湿度变化和夏棉生长发育的影响[J].河南农业大学学报,2004,38(4):379-383.
    [37]郑九华,冯永军,于开芹,等.秸秆覆盖条件下微咸水灌溉棉花试验研究[J].农业工程学报,2002,18(4):26-31.
    [38]黄国勤,贺娟芬,王翠玉,等.红壤旱地棉田覆盖种植对棉花生长和农田环境的影响[J].中国农学通报,2010,26(7):336-342.
    [39]张贵永,张利华,王静,等.旱作农田秸秆覆盖综合效应的研究[J].江西农业学报,2010,22(8):64-66.
    [40]董志勇,钱炳.棉田秸秆覆盖试验研究[J].浙江工业大学学报,2003,31(1):12-15.
    [41] Sauer Thomas J,et al.Corn residue age and placement effects on evaporation and thermalregime[J].Soil Sci Soc Am J,1996,60:1558-1564.
    [42]周少平,谭广洋,沈禹颖,等.保护性耕作下陇东春玉米-冬小麦-夏大豆轮作系统土壤水分动态及水分利用效率[J]草业科学.2008,25(7):6-975.
    [43]赵耕毛,刘兆普,张博,等.滨海盐渍区海水养殖废水利用与减蒸抑盐措施研究[J].土壤,2010.42(2):292-296.
    [44]李玲玲,黄高宝,张仁陟,等.不同保护性耕作措施对旱作农田土壤水分的影响[J].生态学报,2005,25(9):2326-2332.
    [45]黄刚,王发鹏,丁福章,等.不同保水措施对烟地土壤水分及烤烟生长的影响[J].土壤肥料科学,2008,24(9):265-268.
    [46]景明,姜丙州,张会敏,等.不同覆盖材料对干旱区春小麦棵间蒸发的影响[J].水资源与水工程学报,2010,21(2):92-99.
    [47]侯连涛,江晓东,韩宾,等.不同覆盖处理对冬小麦气体交换参数及水分利用效率的影响[J].农业工程学报,2006,22(9):58-63.
    [48]于舜章,陈雨海,周勋波,等.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报,2004.18(6):175-178.
    [49]伊德里萨,张展羽,郭相平,等.非充分灌溉条件下秸秆覆盖对玉米生长的影响[J].河海大学学报,2008,36(3):342-345.
    [50]李晓明,王飞,胡林,等.风速和秸秆覆盖对土壤水分蒸发影响的模拟试验研究[J].干旱地区农业研究,2011,29(3):186-190.
    [51]李全起,陈雨海,于舜章.灌溉条件下秸秆覆盖麦田耗水特性研究[J].水土保持学报,2005,19(2):130-141.
    [52]赵长增,陆璐,陈佰鸿.荒漠旱区梨园秸秆覆盖的节水效应及对梨树生长结果的影响[J].农业工程学报,2002,18(4):32-36.
    [53]李新举,张志国,刘勋岭.秸秆覆盖对土壤水盐运动的影响[J].山东农业大学学报,2000,31(1):38-40.
    [54]孙博,解建仓,汪妮.秸秆覆盖对盐渍化土壤水盐动态的影响[J].干旱地区农业研究,2011,29(4):180-184.
    [55]吴庆华,张薇,蔺文静,等.秸秆覆盖条件下土壤水动态演变规律研究[J].干旱地区农业研究,2009,27(4):76-82.
    [56]乔海龙,刘小京,李伟强,等.秸秆深层覆盖对土壤水盐运移及小麦生长的影响[J].土壤通报,2006,37(5):885-889.
    [57] J A TOLK,T A HOWELL,S R EVE1Tr.Effect of mulch,irrigation and soil type oll water use andyield of maize[J].Soil and Tillage Research,1999,50:137-147.
    [58]周凌云,徐梦雄.秸秆覆盖对麦田耗水量与水分利用率影响的研究[J].土壤通报,1997,28(5):205-206
    [59]李新举,张志国,刘勋岭,等.秸秆覆盖对土壤水盐运动的影响[J].东北农业大学学报(自然科学版),2000,31(1):38-40.
    [60]逄焕成.秸秆覆盖对土壤环境及冬小麦产量状况的影晌[J].土壤通报,1999,30(4):174-175.
    [61]杜守宇,田恩平,温敏,等.秸秆覆盖还田的整体功能效应与系列化技术研究[J].干旱地区农业研究,1994,2(2):88-94.
    [62]丁玉川,王笳,王树楼.玉米免耕整秸秆覆盖增产效果[J].作物杂志,1995(5):25-27.
    [63]晋凡生,张宝林.免耕覆盖玉米秸秆对旱塬地土壤环境的影响[J].生态农业研究,2000,8(3):4-750.
    [64]萧复兴,李海金,刘国定,等.旱地麦田二次秸秆覆盖增产模式及机理研究[J].水土保持研究,1996,3(3):15-19.
    [65]王盛霞,薛宗让,刘虎林,等.旱地玉米耕作覆盖与播种方式研究[J].山西农业科学,1994,22(3):28-30.
    [66]王昕,贾志宽,韩清,等.半干旱区秸秆覆盖量对土壤水分保蓄及作物水分利用效率的影响[J].干旱地区农业研究,2009,27(4):196-202.
    [67]于晓蕾,吴普特,汪有科,等.不同秸秆覆盖量对冬小麦生理及土壤温、湿状况的影响[J].灌溉排水学报,2007,26(4):41-44.
    [68]张俊鹏,孙景生,刘祖贵,等.不同麦秸覆盖量对夏玉米田棵间土壤蒸发和地温的影响[J].干旱地区农业研究,2009,27(1):95-100.
    [69]张立强,汪有科,员学锋,等.不同水分状况下秸秆覆盖量对玉米根、冠生长的影响[J].干旱地区农业研究,2007,25(5):46-51.
    [70]肖继兵,杨久廷,辛宗绪.辽西地区秸秆覆盖试验研究[J].节水灌溉,2008,(2):8-13.
    [71]刘超,汪有科,湛景武,等.秸秆覆盖量对夏玉米产量影响的试验研究[J].灌溉排水学报,2008,27(4):64-66.
    [72]逄焕成.秸秆覆盖对土壤环境及冬小麦产量状况的影响[J].土壤通报,1999,30(4):174-175.
    [73]李新举,张志国,李永昌.秸秆覆盖对盐渍土水分状况影响的模拟研究[J].土壤通报,1999,30(4):176-177.
    [74]王兆伟,郝卫平,龚道枝.秸秆覆盖量对农田土壤水分和温度动态的影响[J].中国农业气象,2010,31(2):244-250.
    [75]员学锋,吴普特,汪有科.秸秆覆盖桃树地生态效应及桃树的生长状况[J]农业工程学报,2007,23(1):91-94.
    [76]王兆伟,王春堂,郝卫平,等.秸秆覆盖下的土壤水热运移[J].中国农学通报,2010,(7):239-242.
    [77] De Vries D A. Simultaneous transfer of heat and moisture in porous media[J].Trans.Am.Gepphy.Union.1958,39:9-16.
    [78]林家鼎,孙菽芬.土壤内水分流动、温度分布及其表面蒸发效应的研究[J].水利学报,1983,(7):1-8.
    [79]康绍忠,刘晓明,高新科,等.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992(3):1-12.
    [80]蔡树英,张瑜芳.温度影响下土壤水分蒸发的数值分析[J].水利学报,1991(11):1-8.
    [81]隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:II.有限元分析及应用[J].地理学报,1992,47(2):74-79.
    [82]沈荣开,任理,张瑜芳.夏玉米麦秆全覆盖下土壤水热动态的田间试验与数值模拟[J].水利学报,1997(2):14-21.
    [83]虎胆·吐马尔拜.秸秆覆盖条件下土壤水分运动的试验研究[J].灌溉排水,1998,17(2):1-6.
    [84]陈凤,蔡焕杰,王健.秸秆覆盖条件下玉米需水量及作物系数的试验研究[J].灌溉排水学报,2004,23(1):41-43.
    [85]杨邦杰.土壤蒸发过程的数值模型及其应用[M].北京:学术书刊出版社,1989.
    [86] Nassar I N, Robert Horton. Simultaneous transfer of heat water and solute in porous media[J]. Soil SciSoc Am J,1992,56:1350-1365.
    [87]康绍忠,刘晓明,张国瑜.作物覆盖条件下的水热运移的模拟研究[J].水利学报,1993,(3):11-17.
    [88]脱云飞,费良军,杨路华,等.秸秆覆盖对夏玉米农田土壤水分与热量影响的模拟研究[J].农业工程学报,2007,23(6):2-732.
    [89] Gupta S C. Predicting temperatures of bare and residue covered soils with and without a corn crop[J].Soil Sci Soc Am J,1981,45:405-412.
    [90] Chung Sang-Ok, Robert Horton. Soil heat and water with a partialsurface mulch[J]. Water ResourRes,1987,23:2175-2186.
    [91]任理,张瑜芳,沈荣开.条带覆盖下土壤水热动态的田间试验与模型建立[J].水利学报,1998,(1):71-83.
    [92] Bristow K L, Campbell G S, Papendic R L, et al. Simulation of heat and moisture through a surfaceresidue-soil system[J]. Agric For Meteorol,1986,36:193-214.
    [93]王建东,龚时宏,许迪.地表滴灌条件下水热耦合迁移数值模拟与验证[J].农业工程学报2010,26(11):66-71.
    [94]李志新,许迪,李益农.畦灌施肥地表水流与非饱和土壤水流一溶质运移集成模拟:I模型[J].水力学报.2009,40(6):673-678.
    [95]王一民.膜下滴灌棉花根系吸水模型研究及应用[D].新疆:新疆农业大学,2011:18-25.
    [96]李毅,覆膜条件下土壤水、盐、热耦合迁移试验研究[D].陕西:西安理工大学,2002:45-64.
    [97] Philip J R, de Vries D A. Moisture movement in porous materials under temperature gradients[J].Trans Am Geophys Union,1957,38:222-232.
    [98]陆森,任图生.不同温度下的土壤热导率模拟[J].农业工程学报,2009,25(7):13-18.
    [99] Campbell G S. Soil Physics with BASIC: Transport Models for Soil-plant Systems[M]. New York:Elsevier Science Publishing Company,1985.
    [100] C té J, Konrad J M. A generalized thermal conductivity model for soils and constructionmaterials[J]. Can Geotech J,2005,42(2):443-458.
    [101] Johansen O. Thermal Conductivity of Soils[D]. Trondheim, Norway: University of Trondheim,1975.
    [102] Lu Sen, Ren Tusheng, Gong Yuanshi, et al. An improved model for predicting soil thermalconductivity from water content at room temperature[J]. Soil Sci Soc Am J,2007,71(1):8-14.
    [103] Hiraiwa Y, Kasubuchi T. Temperature dependence of thermal conductivity of soil over a wide rangeof temperature(5-75℃)[J]. European Journal of Soil Science,2000,51(2):211-218.
    [104] Cass A, Campbell G S, Jones T L. Enhancement of thermal water vapor diffusion in soil[J]. Soil SciSoc Am J,1984,48:25-32.
    [105]赵世平,核废物处置库顶盖毛细屏障中水分流动的实验研究[D].山西:太原科技大学,2008:20-40.
    [106]王全九,王文焰,吕殿青.膜下滴灌盐碱地水盐运移研究[J].农业工程学报,2000,16(4):54-57.
    [107]冯永军.山东省莱州湾海水入侵区环境灾害与治理对策,中美农业科技与发展研讨会论文集[C].北京:中国农业出版社,1996:307-310.
    [108] Wang quanjiu,Rober Horton,and Shao Mingan.Algebraic model for one for one-dimensionalinfiltration and soil waer distribution[J].Soil Sciences,2003,168(10):671-676.
    [109]穆天亮,黄土坡面土壤溶质随地表径流迁移特征与数学模型[D].陕西:西安理工大学,2009:18-46.
    [110]王文焰,张建丰,王志荣.砂层在黄土中的阻水性及减渗性的研究[J].农业工程学报,1995,17(3):33-41.
    [111]王全九,汪志荣,张建丰.层状土入渗机制与数学模型[J].水利学报,1998,(12):30-38.
    [112]秦耀东.土壤物理学[M].北京:高等教育出版社,2003:116-144.
    [113]刘超,汪有科,湛景武,等.秸秆覆盖量对农田土面蒸发的影响[J].中国农学通报,2008,5(24):448-451.
    [114]绍明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006:148-156.
    [115]黄凤玲.包气带黄土层中六价铬的分布运移规律试验研究及数学模拟[D].陕西:西北农林科技大学,2008:24-36.
    [116]吴建涛.基于流变特性的沥青与集料交互作用能力的研究[D].黑龙江:哈尔滨工业大学,2009:26-50.
    [117]王允喜.大田条件下滴灌土壤湿润区对棉花根系分布与产量的影响[D].新疆:石河子大学,2010:38-60.
    [118]杨传杰,罗毅,孙林,等.灌溉水矿化度对玛纳斯流域棉花生长影响的试验研究[J].资源科学,2012,34(4):660-667.
    [119]胡晓棠,陈虎,王静,等.不同土壤湿度对膜下滴灌棉花根系生长和分布的影响[J].中国农业科学,2009,42(5):1682-1689.
    [120]龚江,鲍建喜,吕宁,等.滴灌条件下不同盐水平对棉花根系分布的影响[J].棉花学报,2009,21(2):138-143.
    [121]张金珠,虎胆·吐马尔白,王振华,等.不同深度秸秆覆盖对滴灌棉田土壤水盐运移的影响[J].灌溉排水学报,2012,31(3):37-41.
    [122]张金珠,虎胆·吐马尔白,王振华.秸秆覆盖对滴灌棉花土壤盐分分布的调控影响[J].节水灌溉,2012,(7):26-28.
    [123]郑曙峰,王维,徐道青,等.覆盖免耕对棉田土壤物理性质及棉花生理特性的影响[J].中国农学通报,2011,27(7):83-87.
    [124]马宗斌,李伶俐,房卫平,等.麦秸覆盖对土壤温湿度变化和夏棉生长发育的影响[J].河南农业大学学报,2004,38(4):379-383.
    [125]黄国勤,贺娟芬,王翠玉,等.红壤旱地棉田覆盖种植对棉花生长和农田环境的影响[J].中国农学通报,2010,26(7):336-342.
    [126]吴婕,朱钟麟,郑家国,等.秸秆覆盖还田对土壤理化性质及作物产量的影响[J].西南农业学报,2006,19(2):192-195.
    [127]贺欢,田长彦,王林.不同覆盖方式对新疆棉田土壤温度和水分的影响[J].干旱区研究,2009,26(6):826-831
    [128]谢瑞芝,李少昆,李小君,等.中国保护性耕作研究分析—保护性耕作与作物生产[J].中国农业科学,2007,40(9):1914-1924.
    [129]刘冬青,辛淑荣,张世贵.不同覆盖方式对旱地棉田土壤环境及棉花产量的影响[J].干旱地区农业研究,2003,21(6):18-21.
    [130]卜玉山,苗果园,邵海林,等.对地膜和秸秆覆盖玉米生长发育与产量的分析[J].作物学报,2006,32(7):1090-1093.
    [131]董志勇,钱炳.棉田秸秆覆盖试验研究[J].浙江工业大学学报,2003,31(1):12-15.
    [132]邓力群,陈铭达,刘兆普,等.地面覆盖对盐渍土水热盐运动及作物生长的影响[J].土壤通报,2003,34(2):93-97.
    [133]孙博,解建仓,汪妮,等.不同秸秆覆盖量对盐渍土蒸发、水盐变化的影响[J].水土保持学报,2012,26(1):246-250.
    [134]张贵永,张利华,王静,等.旱作农田秸秆覆盖综合效应的研究[J].江西农业学报,2010,22(8):64-66.
    [135]李红.地下滴灌条件下土壤水分运动试验及数值模拟[D]湖北:武汉大学,2005.
    [136]杨会峰,张发旺,王贵玲,等.河套平原次生盐渍化地区地下水动态调控模拟研究[J].南水北调与水利科技,2011,(5):28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700