用户名: 密码: 验证码:
盐分对“棉花—土壤”系统水盐变化的影响及监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐渍化是影响土地生产力的重要障碍因子,严重制约了粮食生产和农业可持续发展。棉花是盐碱地种植的先锋作物,随着耕地面积的减少,棉花种植逐渐向盐碱地集中,大力提高盐碱地棉花产量已经成为棉花生产的主攻方向。因此研究土壤盐分对棉花水、盐的影响及其监测研究是当今农业发发展的重要研究课题之一。本研究以耐盐品种中棉所44和盐敏感性品种苏棉12号为研究对象,基于2008-2009年在南京农业大学牌楼试验站地行的土壤盐分盆栽试验,综合运用红外测温技术、光谱辐射技术和电磁波谱技术,构建了不同土壤盐分下棉花水分胁迫指数模型,建立了基于光谱反射特征的棉花含水量、含盐量和土壤电导率监测模型。同时,研究不同电磁测量频率下土壤盐分对土壤介电特性的影响,确定土壤水、盐含量测量时与土壤离子电导相关的合理测量频率段,建立土壤介电常数对土壤水、盐含量的反演模型,为盐渍化土壤条件下棉花水、盐状况的实时监测和精确诊断提供有效技术支撑。
     主要研究结果如下:
     1.盐分条件下棉花水分胁迫指数模型的构建及相关生理特性的变化
     随盐分水平的升高,棉花功能叶的蒸腾速率、含水量和净光合速率呈明显的下降趋势,以1.25dS m-1盐分处理作为充分灌水(即无水分胁迫)建立了棉花水分胁迫指数模型下基线方程,以此构建了不同土壤盐分下棉花水分胁迫指数模型。综合分析棉花水分胁迫指数与叶片含水量和净光合速率的关系,认为水分胁迫指数模型可以很好的反映棉花的受胁迫程度。
     2.基于高光谱参数的盐土棉田棉花功能叶含水量监测模型研究
     棉花功能叶含水量的敏感波段主要位于近红外和中红外波段,基于上述敏感波段,构建了最佳的(ratio spectral indices) RSI和(Normalized difference spectrum index)NDSI,以此建立了棉花功能叶含盐量的线性函数、幂函数和指数函数监测方程,比较发现,以1650/2220nm ratio, NDSI1(R1222, R2264)、NDSI2(R1347, R2307)、RSI1(R2264, R1321)和RSI2(R2307, R1347)为自变量构建的RWC和EWT线性回归方程的决定系数最大,标准误较小。利用2009年试验数据对所建立的模型进行检验发现:以NDSI2(R1347,R2307)和RSI2(R2307, R1347)为自变量构建的EWT监测模型的决定系数均较大,根均方差较小,拟合度均优于RWC监测模型,因此,以NDSI2(R1347, R2307)和RSI2(R2307, R1347)为自变量构建的EWT监测模型可以用来实时监测盐碱条件下棉花功能叶的水分状况。
     3.基于高光谱参数的盐土棉田棉花功能叶含盐量监测模型研究
     随土壤盐分水平的升高,棉花功能叶Na+,Cl-和SO42-含量逐渐上升,而K+和Ca2+呈相反的趋势。基于敏感波段,构建了最佳的RVI和NDSI,以此建立了棉花功能叶含盐量的线性函数、幂函数和指数函数监测方程,比较而言,以RSI(R2306,R1347)、RSI(R2276, R1343)、RSI(R2306,R1350)为自变量构建的K+,Na+,Ca2+线性回归方程、以RSI(R2202, R1361)、 RSI(R2317, R1154)为自变量构建的Mg2+, SO42幂函数方程、以RSI(R2264, R,335)为自变量构建的C1-指数函数方程、以NDSI(R1340, R2306)、NDSI(R1346, R2276)、NDSI(R1380,R2307)、 NDSI(R1200, R2211)、NDSI(R1154, R2317)为自变量构建的K+, Na+, Ca2+, Mg2+, SO42线性回归方程和以NDSI(R1300, R2250)为自变量构建的C1-幂函数方程的决定系数最大,标准误较小。利用2009年试验数据对所建立的模型进行检验发现:以RSI(R2306,R1347)、 RSI(R2276, R1343)、 RSI(R2306, R1350)为自变量构建的K+,Na+,Ca2+线性方程的监测模型、以RSI(R2202,R1361)、RSI(R2317, R1154)为自变量构建的Mg2+, SO42幂函数方程的监测模型和以RSI(R2264, R1335)为自变量构建的Cl-指数方程的监测模型的决定系数均大于0.69,根均方差较小,拟合度均优于以NDSI为自变量构建的的监测模型,因此,以RSI为自变量的监测模型可以用来实时监测盐碱条件下棉花功能叶的盐分状况。
     4.基于棉花功能叶高光谱参数的土壤电导率监测模拟
     棉花功能叶光谱反射率在近红外和中红外区域均随土壤盐分水平的升高而升高;以敏感波段1350nm和2307nm构建的归一化光谱指数NDSI(R1350, R2307)与土壤电导率的决定系数最高,基于此构建了基于NDSI(R1350, R2307)勺棉田土壤EC监测模型:EC=-42.899NDSI(R1350, R2307)+27.338;在光谱微分参数中,以TM影像的第5个波段(TM5-SWIR)与棉田土壤EC的决定系数最高,构建了基于TM5-SWIR的棉田土壤EC监测模型:EC=0.0574TM5-SWIR2-2.5928TM5-SWIR+30.021。模型检验的结果表明:分别以NDSI(R,350, R2307)和TM5-SWIR为自变量的监测模型的预测精度均较高,分别为0.887和0.8136,根均方差均较小,分别为1.09和1.29ds·m-1,表明利用棉花功能叶NDSI(R1350, R2307)和TM5-SWIR这两个高光谱参数均能较好地监测棉田土壤电导率。
     5.基于土壤介电常数的盐土棉田土壤含水量、含盐量变化的反演研究
     随土壤盐分水平的升高,土壤中可溶性Na+、K+、Ca2+、Mg2+、Cl-、SO42-和HCO3-含量上升,随生育期的推迟,同一盐分水平下土壤中可溶性Na+、K+、Ca2+、Mg2+、 C-、SO42-和HCO3含量呈下降趋势,综合分析土壤介电常数虚部与土壤体电导率土壤体电导率与土壤溶液电导率、土壤溶液电导率与土壤的离子浓度的一系列关系,最终建立了土壤介电常数的虚部模型。进一步利用2009年试验数据对土壤含水量、含盐量进行反演发现,Dobson的实部模型的R2较高(0.7428)、根均方差(RMSE)较小(1.16%),可以很好的反演土壤的含水量状况。在对含盐量进行反演时,频率较低(f<3Ghz)时,土壤Sc、Cl-、Ca2+的R2较高,分别为0.9417,0.6852,0.7965,RMSE较小分别为0.13g.kg-1,0.34g.kg-1,0.09g.kg-1;频率较高(f≥3Ghz)时,土壤Sc、Cl-、Ca2+、Na+的反演结果可以看出,Sc的检测结果最好,Na+次之,而Cl-、Ca2+的检验全结果较差,其R2及RMSE分别为0.8655,0.8408,0.8117,0.8217及0.25g.kg-1,0.15g.kg-1,0.02g.kg-1,0.21g.kg-1.总体上,模型检验结果较好,表明模型可以很好的对土壤水分、盐离子状况进行反演。
Salinity is considered to be one of the major limiting factors for plant growth and agricultural productivity. Cotton is one of the most important economic crops in China, which has been reported to be salt tolerant. With the reduction of field area, more and more cotton was planted in saline soil. Thus, study the effect and monitoring of soil salinity on water and salinity content is one of important research in development of agriculture. The objective of this study was to determine the crop water stress index, cotton water, salinity content, soil electrical conductivity monitoring model based on hyperspectral reflectance, ascertain the suitable frequency for monitoring soil water and salinity content and establish the imaginary part of dielectric constant models through comprehensive use of the infrared temperature measurement technology, spectral radiation technology and electromagnetic spectrum technology, on the basis of multiple pot experiments under varied soil salinity levels with Sumian12(salinity-sensitivity) and CCRI-44(salinity-tolerance) at Pailou experimental station of Nanjing Agricultural University, in order to provide the technical supports for real-time estimation and precision diagnose of plant water and salinity content in cotton under saline conditions.
     The main results were as follows:
     1. The construction of the cotton water stress index and changes of related physiological characteristics under salinity condition
     Soil salinity significantly reduced the transpiration rate, water content and net photosynthetic rate of cotton functional leaves. The lower equation of the cotton water stress index was set up in1.25dS m-1salinity rate (well watered), and the cotton water stress index based on the above lower equation under different salinity rates was constructed. Comprehensive analysis the relationship between cotton water stress index and leaf water content and net photosynthetic rate revealed that the cotton water stress index is a good indicator to detect cotton water stress in salinity field.
     2. Exploring hyperspectral bands and estimation indices for leaf water content of cotton (Gossypium hirsutum L.) in saline soil
     The sensitive spectral bands for EWT and RWC occurred mainly within the near infrared (NIR) and short-wave infrared (SWIR) ranges. The best spectral indices for estimating leaf water content (RWC and EWT) in cotton were NDSI1(R1222, R2264), NDSI2(R1347, R2307), RSI1(R2264, R1321), RSI2(R2307, R1347) and1650/2220nm ratio, and the linear regression models based on the above spectral indices were identified as the best equations for the effective estimation of EWT and RWC in cotton. From testing of the derived equations, the model for EWT estimation based on the NDSI2(R1347, R2307) and RSI2(R2307, R1347) gave R2over0.85with more satisfactory performance than the spectral indices1650/2220nm ratio and the RWC models based on NDSI1(R1222, R2264), RSI1(R2264, R1321) in saline soil. The present spectral parameters of NDSI2(R1347, R2307) and RSI2(R2307, R1347) can be used for monitoring plant water stress in cotton cultivated in saline soil.
     3. Monitoring cotton(Gossypium hirsutum L.) leaf ion content in saline soil with hyperspectral reflectance
     The Na+, Cl-, and SO42-content in functional cotton leaves increased with the soil salinity rates increasing. In contrast, K+and Ca2+decreased at the same growth stage. The best spectral indices for estimating cotton leaf ion content were found to be NDSI (R1340, R2306) RSI(R2306, R1347); NDSI (R,346, R2276), RSI (R2276, R1343); NDSI (R1380, R2307), RSI (R2306, R1350); NDSI (R1200, R2211), RSI (R2202, R1361); NDSI (R1300, R2250), RSI (R2264, R1335); and NDSI (R1154, R2317), RSI (R2317, R1154) for K+, Na+, Ca2+, Mg2+, Cl-, and SO42-, respectively, and the linear, power and exponential regression models based on the above spectral indices were formulated. Among them, the linear equations based on RSI(R2306, R,347)、RSI(R2276, R1343)、RSI(R2306, R1350), NDSI(R1340,R2306)、NDSI(R1346,R2276)、 NDSI(R1380,R2307)、NDSI(R1200,R2211)、NDSI(R1154、R2317), the power equations based on RSI(R2202, R1361)、RSI(R2317, R1154), NDSI(R1300,R2250) and exponential equations based on RSI(R2264, R1335), for K+, Na+, Ca2+, Mg2+, Cl-, and SO42-, respectively, can well estimated the ion content of cotton under different levels of salinity, After testing of the derived equations, the high fit between the measured and estimated values indicate that the present models based on RSI is better than the models based on NDSI, and could be used for the reliable estimation of leaf salinity in cotton plants with R2greater than0.69under different saline conditions.
     4. Monitoring simulation of soil electrical conductivity based on hyperspectral parameter of cotton(Gossypium hirsutum L.) functional leaves.
     During near-infrared and middle-infrared spectral bands, with soil salinity rate increased, the spectral reflectance of cotton functional leaves increased, and spectral parameter Normalized difference spectrum index (NDSI) based on1350nm and2307nm correlated to soil electrical conductivity well, soil EC monitoring model was constructed as EC=-42.899NDSI (R1350, R2307)+27.338, with vegetation index NDSI (R1350, R2307) as independent variable. Vegetation index Thematic Mapper5(TM5-SWIR) was most correlation to soil EC during all derivative spectral parameters, so soil EC monitoring model was constructed as EC=0.0574(TM5-SWIR)2-2.5928(TM5-SWIR)+30.021, with vegetation index TM5-SWIR as independent variable. Take2009experiment data to test soil conductivity models, and show that with the predicted values of soil EC by the two models were very consistent with the observed values, with determination coefficient of0.887,0.8136,and root mean square error (RMSE) of1.09ds-m-1,1.29ds-m-1. The experiment shows that soil EC in saline cotton field can be effectively monitored by two spectral parameters of NDSI (R1350, R2307) and TM5-SWIR.
     5. Monitoring simulation of soil electrical conductivity based on hyperspectral parameter of cotton (Gossypium hirsutum L.) functional leaves.
     As the soil salinity increasing, the Na+、K+、Ca2+、Mg2+、Cl-、SO42-and HCO3-content increased. At the same salinity levels, the Na、K+、Ca2+、Mg2+、Cl-、SO42-and HCO3-content declined as the postpone of the growth stage. The imaginary part of soil dielectric constant model was developed through the relation of imaginary part of dielectric constant (ε"), soil bulk conductivity, conductivity of soil solution, and soil ion content in mixed-salinity soil to retrieve soil ion content. After testing with the data of2009, the results showed that the real part of dielectric constant model based on Dobson had high values of R2, low values of RMSE, and can be used to retrieve soil water status well. The inversed values of total concentration of salt (Sc), Cl-, Ca2+by using the model were very consistent with the observed values, with high R2values of0.9417,0.6852,0.7965, and root mean square error (RMSE) lower than0.34g/kg,0.09g/kg and0.13g/kg, respectively. However, the RMSE of total concentration of salt (Sc), Cl-, Na+were small at high frequencies (C-band), with R2values of0.8655,0.8408,0.8117,0.8217, and RMSE value of0.25g.kg-1,0.15g.kg-1,0.02g.kg-1,0.21g.kg-1respectively. The high fit between the measured and invered values indicate that the present models could be used for the reliable estimation of soil salinity in cotton field under different saline conditions.
引文
[1]Gunes Aydin, Inal Ali, Alpaslan Mehmet. Effect of salinity on stomatal resistance, proline, and mineral composition of pepper [J]. Journal of Plant Nutrition,1996,19(2):389-396.
    [2]刘友良.植物水分逆境生理[M].北京:农业出版社,1992:109-127.
    [3]杨劲松,陈德明,沈其荣.作物抗盐机制研究I.小麦水分保持与质膜渗透性[J].土壤学报,2002,39(4):524-528.
    [4]张丽辉.含盐土壤节水灌溉下作物水盐响应研究[D].内蒙古农业大学硕士学位论文,2002.
    [5]Katerji N., van Hoorn J. W., Hamdy A., et al. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods [J]. Agricultural Water Management, 2003,62(1):37-66.
    [6]Maggio A., De Pascale S., Ruggiero C., et al. Physiological response of field-grown cabbage to salinity and drought stress [J]. European Journal Of Agronomy,2005,23(1):57-67.
    [7]Katerji N., van Hoorn J. W., Hamdy A., et al. Response of tomatoes, a crop of indeterminate growth, to soil salinity [J]. Agricultural Water Management,1998,38(1):59-68.
    [8]Reina-Sanchez A., Romero-Aranda R., Cuartero J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water [J]. Agricultural Water Management,2005, 78(1-2):54-66.
    [9]崔悦慧,刘静,张汝民,等.植物蒸腾与土壤盐分的研究[J].内蒙古科技与经济,2002,(05):18-20.
    [10]王冉,陈贵林,宋炜,等.NaCl胁迫对两种南瓜幼苗离子含量的影响[J].植物生理与分子生物学学报,2006,(01):94-98.
    [11]Grieve Catherine M., Poss James A., Donovan Terence J., et al. Salinity effects on growth, leaf-ion content and seed production of Lesquerella fendleri (Gray) S. Wats [J]. Industrial Crops And Products,1997,7(1):69-76.
    [12]周峰.NaCl胁迫对碱蓬K-+吸收及质膜H-+-ATPase活性的效应[D].山东师范大学硕十学位论文,2003.
    [13]陈德明,俞仁培.土壤一作物系统中的盐分运移与分布特征[J].土壤通报,1995,(01):3-5.
    [14]张宝泽,赵可夫.刺槐和沙枣耐盐性能的研究[J].山东科学,1996,(02):53-55.
    [15]Khan M. A., Ungar Irwin A., Showalter Allan M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk [J]. Journal of Arid Environments,2000,45(1):73-84.
    [16]Roban B.A.棉花生理学[M].陈恺元译.上海:上海科技出版社,1983.
    [17]庞士铨.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社,1985:39-70.
    [18]袁国富,唐登银,罗毅,等.基于冠层温度的作物缺水研究进展[J].地球科学进展,2001,(01):49-54.
    [19]Idso S.B., Jackson R.D., Reginato R.J. Remote sensing of crop yields [J]. Science,1977,196: 19-25.
    [20]Jackson R D., Reginato R J., Idso S.B. Wheat canopy temperature:A practical tool for evaluating water requirements [J]. Water Resource Research,1977,13(1):651-656.
    [21]Gardner B. R., Blad B. L., Garrity D. P. Relationships between crop temperature, grain yield, evapotranspiration and phenological development in two hybrids of moisture stressed sorghum [J]. Irrigation Science,1981,2(1):213-224.
    [22]Clawson K. L., Blad B.L. Infrared thermometry for scheduling irrigation of corn [J]. Agronomy Journal,1982,74(1):311-316.
    [23]Idso S. B., Jackson R. D., Pinter P. J. Jr. Normalizing the stress degree day for environmental variability [J]. Agricultural Meteorology,1981,24(1):45-55.
    [24]Jackson R. D., Idso S.B., Reginato R. J. Canopy temperature as a crop water stress indicator [J]. Water Resource Research,1981,17:1133-1138.
    [25]Jackson R.D., Kustas W.P., Choudhury B.J. A reexamination of the crop water stress index [J]. Irrigation Science,1988,9:309-317.
    [26]Alves Isabel, Pereira Luis Santos. Non-water-stressed baselines for irrigation schedulingwith infrared thermometers:A new approach [J]. Irrigation Science,2000,19:101-106.
    [27]Moran M.S., Clarke T.R., Inoue Y. Estimating crop water deficit using the relation between surface air temperature and spectural vegetation index [J]. Remote Sensing of Environment,1994,49(3): 246-263.
    [28]Yuan Guofu, Luo Yi, Sun Xiaomin, et al. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain [J]. Agricultural Water Management,2004,64(1): 29-40.
    [29]Emekli Yasar, Bastug Ruhi, Buyuktas Dursun, et al. Evaluation of a crop water stress index for irrigation scheduling of bermudagrass [J]. Agricultural Water Management,2007,90(3):205-212.
    [30]Alderfasi Ali Abdullah, Nielsen David C. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat [J]. Agricultural Water Management,2001,47(1):69-75.
    [31]Kar G., Kumar A. Surface energy fluxes and crop water stress index in groundnut under irrigated ecosystem [J]. Agricultural and Forest Meteorology,2007,146:94-106.
    [32]Gardner B.R., Nielsen D.C., Shock C.C. Infrared thermometry and the Crop Water Stress Index I. History, theory, and baselines [J]. Journal of Production Agronomy,1992a,5:462-466.
    [33]Gardner B.R., Nielsen D.C., Shock C.C. Infrared thermometry and the Crop Water Stress Index. II. Sampling procedures and interpretation [J]. Journal of Production Agronomy,1992b,5:466-475.
    [34]Nielsen D. C. Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI) [J]. Field Crops Research,1990,23(2):103-116.
    [35]Gontia N. K., Tiwari K. N. Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry [J]. Agricultural Water Management,2008,95(10): 1144-1152.
    [36]刘学著,张连根,周守华.基于冠层温度的冬小麦水分胁迫指数的实验研究[J].应用气象学报,1995,6(04):449-453.
    [37]Wei-xing Wang, Xi-wen Luo, Ying-gan Qu, et al. Preliminary research on model for determining crop water stress index of flowering chainese cabbage based on canopy temperature [J]. Transactions of the CSAE,2003,19(05):47-50.
    [38]袁国富,罗毅,孙晓敏,等.作物冠层表面温度诊断冬小麦水分胁迫的试验研究[J].农业工程学报,2002,18(06):13-17.
    [39]Wanjura D.F., Maas S.J., Winslow J.C., et al. Scanned and spot measured canopy temperatures of cotton and corn [J]. Computers and Electronics In Agriculture,2004,44:33-48.
    [40]崔晓,许利霞,袁国富,等.基于冠层温度的夏玉米水分胁迫指数模型的试验研究[J].农业工程学报,2005,21(08):22-24.
    [41]肖冠云,于海业,李国臣.基于叶气温差的温室作物水分胁迫指数的试验研究[J].西北农业学报,2006,15(06):100-103.
    [42]齐述华,张源沛,牛铮,等.水分亏缺指数在全国干旱遥感监测中的应用研究[J].土壤学报,2005,(03):367-372.
    [43]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998.
    [44]浦瑞良,鹏宫.高光谱遥感及其应用[M].北京:高等教育山版社,2000.
    [45]王人潮,周启发.水稻氮素营养水平与光谱特性的关系[J].浙江农业大学学报,1993,19:40-45.
    [46]Feng W., Yao X., Zhu Y, et al. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat [J]. European Journal of Agronomy,2008,28:394-404.
    [47]胡继超,曹卫星,罗卫红,等.小麦水分胁迫影响因子的定量研究Ⅱ.模型的建立与测试[J].作物学报,2004,(05):460-464.
    [48]Zhang Y.Q., Chen M. J., Miller J. R., et al. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery [J]. Remote Sensing of Environment,2008,112:3234-3247.
    [49]王登伟,李少昆,田庆玖,等.棉花主要栽培生理参数的高光谱估测研究[J].中国农业科学,2003,(07):770-774.
    [50]Wang D., Wilson C., Shannon M.C. Interpretation of salinity and irrigation effects on soybean canopy reflectance in the visible and near-infrared spectrum domain [J]. International Journal of Remote Sensing,2002,23(5):811-824.
    [51]方红亮,田庆久.高光谱遥感在植被监测中的研究综述[J].遥感技术与应用,1998,(01):65-72.
    [52]Wang D., Poss J. A., Donovan T. J., et al. Biophysical properties and biomass production of elephant grass under saline conditions [J]. Journal of Arid Environments,2002,52(4):447-456.
    [53]Poss J.A., Russell W.B., Grieve C.M. Estimating yields of salts-and water-stressed forages with remote sensing in the visible and near infrared [J]. Journal of environment quality,2006,35(4): 1060-1071.
    [54]Thomas J.R., Namken L.N., Oerther G.F., et al. Estimating leaf water content by reflectance measurement [J]. Agronomy Journal,1971,63:845-847.
    [55]Carter G.A. Primary and secondary effects of water cotent of the spectral reflectance of leaves [J]. American Journal of Botany,1991,78:916-924.
    [56]Tian Q., Tong Q., Pu R., et al. Spectroscopic determination of wheat water status using 1650-1850 nm spectral absorption features [J]. International Journal of Remote Sensing,2001,22:2329-2338.
    [57]Leone A. P., Menenti M., Buondonno A., et al. A field experiment on spectrometry of crop response to soil salinity [J]. Agricultural Water Management,2007,89(1-2):39-48.
    [58]Jackson R. D., Ezra C. E. Spectral response of cotton to suddenly induced water stress [J]. International Journal of Remote Sensing,1985,6(1):177-185.
    [59]Shibayama M., Takahashi W., Morinaga S. Canopy water deficit detection in paddy rice using a high-resolution field's peetro-radiometer [J]. Remote Sensing Of Environment,1993,45:117-126.
    [60]Ceccato P., Stephane F., Stefano T., et al. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing of Environment,2001,77(1):22-33.
    [61]代辉,胡春胜,程一松,等.不同氮水平下冬小麦农学参数与光谱植被指数的相关性[J].干旱地区农业研究,2005,(04):16-21.
    [62]程一松,胡春胜,郝二波,等.氮素胁迫下的冬小麦高光谱特征提取与分析[J].资源科学2003,25(1):86-93.
    [63]孟卓强,胡春胜,程一松.高光谱数据与冬小麦叶绿素密度的相关性研究[J].干旱地区农业研究,2007,(06):74-79.
    [64]田永超,朱艳,曹卫星,等.小麦冠层反射光谱与植株水分状况的关系[J].应用生态学报,2004,15(11):2072-2076.
    [65]田永超,曹卫星,姜东,等.不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系[J].植物生态学报,2005,(02):318-323.
    [66]沈艳,牛铮,王汶,等.基于导数光谱变量叶片含水量模型的建立[J].地球与地球信息科学,2005,21(4):16-19.
    [67]Helen C.C., Cheng Y.F., David A.F. Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index [J]. Remote Sensing of Environment,2006, 103:304-311.
    [68]Yilmaz M.T., Hunt Jr E.R., Jackson T.J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery [J]. Remote Sensing of Environment,2008, 112(5):2514-2522.
    [69]Danson F. M., Bowyer P. Estimating live fuel moisture content from remotely sensed reflectance [J]. Remote Sensing of Environment,2004,92(3):309-321.
    [70]Jacquemoud S., Bacour C., Poilv H., et al. Comparison of Four Radiative Transfer Models to Simulate Plant Canopies Reflectance:Direct and Inverse Mode [J]. Remote Sensing of Environment,2000,74(3):471-481.
    [71]刘良云,王纪华,张永江,等.叶片辐射等效水厚度计算与叶片水分定量反演研究[J].遥感学报,2007,11(3):289-295.
    [72]Glenn D.H., Gregory C.A., Kenneth H.W. The radiative-equivalent water thickness of leaves [J]. Remote Sensing of Environment,1993,46(1):103-107.
    [73]Liu Liangyun, Wang Jihua, Huang Wenjiang, et al. Detecttion of leaf and canopy EWT by calculating REWT from reflectance spectra [J]. International Journal Of Remote Sensing,2010, 31(10):2681-2695.
    [74]Penuelas J., Pinol J., Ogaya R., et al. Estimating of plant water concentration by the reflectance water index WI(R900/R970) [J]. International Journal of Remote Sensing,1997,18:2869-2872.
    [75]Penuelas J., Filella I., Biel C., et al. The reflectance at the 950-970nm regions as an indicator of plant water status [J]. International Journal of Remote Sensing,1993,14(10):1887-1905.
    [76]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(01):104-107.
    [77]Gao B. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment,1996,58(3):257-266.
    [78]Chen Daoyi, Huang Jingfeng, Jackson Thomas J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands [J]. Remote Sensing of Environment,2005,98(2-3):225-236.
    [79]蒋桂英.新疆棉花主要栽培生理指标的高光谱定量提取与应用研究[D].湖南农业大学博士学位论文,2004.
    [80]Norris K.H, Barnes R. F., Moore J.E, et al. Predicting Forage Quality by Infrared Replectance Spectroscopy [J]. Journal of Animal Science,1976,43:889-897.
    [81]Brown W.F., Moore J.E., Kunkle W.E., et al. Forage testing using near infrared refectance spectroscopy [J]. Journal of Animal Science,1990,68:1416-1427.
    [82]Duncan P.A., Clanton D.C., Clark D.H. Near infrared reflectance spectroscopy for quality analysis of Sandhills meadow forage [J]. Journal of Animal Science,1987,64:1743-1750.
    [83]Shenk J. S., Westerhaus M.O., Hoover M.R. Analysis of forages by infrared reflectance [J]. Journal of Dairy Science,1979,62(5):807-812.
    [84]Shenk J. S., Landa I., Hoover M.R., et al. Description and evaluation of a near infrared reflectance spectrocomputer for forage and grain analysis [J]. Crop Science,1981,21(1):355-358.
    [85]Clark D.H., Mayland H.F., Lamb R.C. Mineral analysis of forages with near infrared reflectance spectroscopy [J]. Agronomy Journal,1987,79:485-490.
    [86]Saiga S., Tohru S., Kazuhisa N., et al. Pridiction of mineral concentration of Orchardgrass (Dactylis glomerata L.) with near infrared reflectance spectroscopy [J]. Journal of Japan Grassland science, 1989(3):228-233.
    [87]Smith K. F., E.Willis S, C.Flinn P. Measurement of the magnesium concentration in perennial ryegrass (Lolium perenne) using near infrared reflectance spectroscopy [J]. Australian Journal of Agricultural Research,1991,42(8):1399-1404.
    [88]Clark D H., H F. Mayland, Lamb R C. Mineral analysis of forages with near infrared reflectance spectroscopy [J]. Agronomy Journal,1987,79(1):485-490.
    [89]Clark D H., Cary E E., Mayland H F. Analysis of trace elements in forages by near infrared reflectance spectroscopy [J]. Agronomy Journal,1989,81(1):91-95.
    [90]Ruano-Ramos A., Garcia-Ciudad A., Garcia-Criado B. Near infrared spectroscopy prediction of mineral content in botanical fractions from semi-arid grasslands [J]. Animal Feed Science and Technology,1999,77(3-4):331-343.
    [91]Aldana B.R.V., Criado B. Garcia, Ciudad A. Garcia, et al. Estimation of mineral content in natural grasslands by near infrared reflectance spectroscopy [J]. Communications in Soil Science and Plant Analysis,1995,26(9&10):1386-1396.
    [92]Clark D H., E.Cary E, F.Mayland H. Analysis of trace elements in forages by near infrared reflectance spectroscopy [J]. Agronomy Journal,1981,81(1):91-95.
    [93]Clark DH, Cary E E., Mayland H F. Mineral analysis of forages with near infrared reflectance spectroscopy [J]. Agronomy Journal,1987,79:485-490.
    [94]Hallett R., Hornbeck J., Martin M. Predicting elements in white pine and red oak foliage with visible-near infrared reflectance spectroscopy [J]. Journal of Near Infrared Spectroscopy,1997,5(1): 77-82.
    [95]Cozzolino D., Moron A. Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes [J]. Animal Feed Science and Technology,2004,111(1-4): 161-173.
    [96]Wang G Q., Wang F., Chen D., et al. A novel method for the determination of inorganic ions in complex plant samples by near infrared spectroscopy [J]. Guang Pu Xue Yu Guang Pu Fen Xi,2004, 24(12):1540-1542.
    [97]He Zhihui, Lian Wenliu, Wu Mingjian, et al. Determination of tobacco constituents with acousto-optic tunable filter-near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy, 2006,14(1):45-50.
    [98]Huang Caijin, Han Lujia, Yang Zengling, et al. Exploring the use of near infrared reflectance spectroscopy to predict minerals in straw [J]. Fuel,2009,88(1):163-168.
    [99]Moron A., Cozzolino D. Determination of macro elements in alfalfa and white cover by near-infrared reflectance spectroscopy [J]. Journal of Agricultural Science,2002,139:413-423.
    [100]汪杰,张晓琴,魏怀东.河西走廊盐渍化草场土壤水盐动态观测研究[J].甘肃林业科技,1999,(03):7-11.
    [101]Tchouaffe T., Norbert F. Strategies to reduce the impact of salt on crops (rice, cotton and chili) production:A case study of the tsunami-affected area of India [J]. Desalination,2007,206(1-3): 524-530.
    [102]Greenway H., Munns R. Mechanisms of salt tolerance in nonhalophytes [J]. Annal Review of Plant Biology,1980,31:149-190.
    [103]张伟,吕新,王家平,等.膜下滴灌棉田水盐运移规律研究[J].中国棉花,2009,(01):12-14.
    [104]申玉香.盐分胁迫对小麦产量和品质形成的影响及调控措施研究[D].扬州大学博士学位论文,2007.
    [105]龙文瑞.滨海盐渍土的水盐动态及其调控[J].土壤通报,1993,(S1):23-30.
    [106]王美丽,李军,岳甫均,等.天津盐渍化农田土壤盐分变化特征[J].生态学杂志,2011,(09):1949-1954.
    [107]郗金标,张福锁,陈阳,等.盐生植物根冠区土壤盐分变化的初步研究[J].应用生态学报,2004,(01):53-58.
    [108]叶含春,刘太宁,王立洪.棉花滴灌田间盐分变化规律的初步研究[J].节水灌溉,2003,(04):4-6+46.
    [109]李国振.不同作物下的土壤水盐运动分析[J].干旱区地理,1997(04):84-90.
    [110]雷玉平,田魁祥,孙景玉,等,农田耕作与土壤盐分的变化.1995.73-76.
    [111]D'Urso G., Minacapilli M. A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness [J]. Journal of Hydrology,2006, 321:297-310.
    [112]Cashion James, Lakshmi Venkataraman, Bosch David, et al. Microwave remote sensing of soil moisture:evaluation of the TRMM microwave imager (TMI) satellite for the Little River Watershed Tifton, Georgia [J]. Journal of Hydrology,2005,307:242-253.
    [113]Brest C.L. Deriving surface albedo measurement from narrow band satellite data [J]. International Journal of Remote Sensing,1987,8:351-367.
    [114]Zotova E., Geller A. Soil moisture content estimation by radar survy data during the sowing campaign [J]. International Journal of Remote Sensing,1985,6(2):352-364.
    [115]Ulaby F.T., Batlivala P.P. Optimum radar parameters for mapping soil misture [J]. IEEE Tansaction on Geoscience and Remote Sensing,1976, CE-14(2):81-93.
    [116]Dobson M.C., Ulaby F.T., Hallikai Martti T., et al. Microwave Dielectric Behavior of Wet Soil-Part II:Dielectric Mixing Models [J]. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1):35-46.
    [117]Oh Y., Sarabandi K., Ulaby F.T. An empirical model and an inversion technique for radar scattering from bare soil surface [J]. IEEE Transactions on Geoscience and Remote Sensing,1992, 30(2):370-381.
    [118]Shi J.C., Wang J., Hsu A.Y. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data [J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1254-1266.
    [119]Roger D., De R., Yang D. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(4):864-872.
    [120]Rahman M.M., Moran M.S., Thoma D.P., et al. A derivation of roughness correlation length for parameterizing radar backscatter models [J]. International Journal of Remote Sensing,2007, 28(18):3995-4012.
    [121]Rahman M.M., Moran M.S., Thoma D.P., et al. Mapping surface roughness and soil moisture using multi-angle radar imaginary without ancillary data [J]. Remote Sensing of Environment, 2008,112(2):391-402.
    [122]杨虎,郭华东,李新武,等.极化雷达目标信息分解技术及其在古湖岸线探测中的应用[J].地球信息科学,2003,2:109-114.
    [123]鲍艳松,刘良云,王纪华.综合利用光学、微波遥感数据反演土壤湿度研究[J].北京师范大学学报(自然科学版),2007,(03):228-233.
    [124]Bowers S.A., Hanks R.J. Reflection of radiant energy from soil [J]. Soil Science.1965.100(2): 130-138.
    [125]Bowers S.J., Smith S.J. Spectrophotometric determinaion of soil warer content [J]. Soil Science Society of America Proceedings,1972,36(6):978-980.
    [126]Liu W.D., Baret F., Gu X.F., et al. Relating soil surface moisture to reflectance [J]. Remote Sensing of Environment,2002,81:238-246.
    [127]Liu W.D., Bare F., Zhang B., et al. Extracion of soil moisture information by hyperspectral remote sensing [J]. Acta Pedologica Sinica,2004,41(5):700-706.
    [128]Jackson R.D., Slaler P.N., Pinter P.J. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmosphere [J]. Remote Sensing of Environment,1983, 13(3):187-208.
    [129]Carlson T.N. Regional scale estimates of surface moisture availability and thermal inertia using thermal measurements [J]. Remote Sensing Reviews.1986.1:197-247.
    [130]Abduwasit Ghulan. NIR-red spectral space based new method for soil moisture monitoring [J]. Science in China (Series D:Earth Sciences).2007,50(02):283-289.
    [131]Huang Y., Yang X.R., Geng H.B. The relationship of the microwave reflective characteristic to soil moisture [J]. Remote Sensing of Environment,1986,1(2):101-106.
    [132]Dang D.Y. An aridity index based on energy balance [J]. Geographical Research,1987,6(2): 21-31.
    [133]Qi S.H., Wang C.Y, Niu Z. Evaluating soil moisture status in china using the temperature/vegetation dryness index (TVDI) [J]. Journal of Remote Sensing,2003,7(5): 420-426.
    [134]Liang Y., Zhang F., Han T. Monitoring soil humidity by using EOS/MODIS XSW1 product in Qingyang [J]. Arid Meteorology,2007,25(1):44-47.
    [135]刘安麟,李星敏,何延波,等.作物缺水指数法的简化及在干早遥感监测中的应用[J].应用生态学报,2004,(02):210-214.
    [136]张振华,蔡焕杰,杨润亚.基于CWSI和土壤水分修正系数的冬小麦田土壤含水量估算[J].土壤学报,2005,42(03):373-378.
    [137]魏国栓,沈润平,丁国香.仪征地区农田深层土壤湿度遥感反演初探[J].遥感技术与应用,2008,(01):36-41.
    [138]苏莹,王全九,叶海燕,等.咸淡轮灌土壤水盐运移特征研究[J].灌溉排水学报,2005,(01):50-53.
    [139]乔玉辉,宇振荣.灌溉对土壤盐分的影响及微咸水利用的模拟研究[J].生态学报,2003,(10):2050-2056.
    [140]Sreenivas K., Venkataratnam L., VNarasimha R.P.盐渍土壤的介电特性[J].海岸工程,1996, 15(04):81-85.
    [141]Sreenivas K., Venkataratnam L., Rao P. V. Narasimha. Dielectric properties of salt-affected soils [J]. International Journal of Remote Sensing,1995,16(4):641-649.
    [142]吕远,邵芸.含水含盐土壤的微波介电特性分析研究[J].遥感信息,2001,(03):19-23.
    [143]Wang James R., Schmugge Thomas J. An empirical model for the complex dielectric permittivity of soils as a function of water content [J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4):288-295.
    [144]Hallikainen Martti T., Ulaby F.T., Dobson M.C., et al. Microwave dielectric behavior of wet soil-Part Ⅰ:Empirical models and experimental observations [J]. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1):25-34.
    [145]Stogryn A. Equations for calculating the dielectric constant of saline water [J]. IEEE Transactions on Microwave Theory Techniques,1970, MIT-19:733-736.
    [146]Peplinski Neil R., Ulaby Fawwaz T., Dobson Myron C. Dielectric properties of soils in the 0.3-1.3Ghz range [J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(3): 803-807.
    [147]邵芸,吕远,董庆,等.含水含盐土壤的微波介电特性分析研究[J].遥感学报,2002,6(06):416-423.
    [148]胡庆荣.含水含盐土壤介电特性实验研究及对雷达图像的响应分析[D].中国科学院研究生院(遥感应用研究所)博士学位论文,2003.
    [149]熊文成,邵芸.氯化钠盐土壤介电虚部特性的初步研究[J].遥感学报,2006,10(02):279-286.
    [150]Jackson Thomas J., O'Neill Peggy E.. Salinity effects on the microwave emission of soils [J]. IEEE Transactions on Geoscience and Remote Sensing,1987, GE-25 (2):214-220.
    [151]Caver R.K. Microwave remote sensing of saline seeps [C]. In Proceedings of Microwave Remote Sensing Sympoium(Houston, TX:NASA Johnson Space Center),1977:216-231.
    [152]Bao B.R.C., Sankar T.R., Dwivdei R.S. Spectral behavior of salt-affected soils [J]. International Journal of Remote Sensing,1995,16(2):2125-2136.
    [153]Douaoui A.E.K., Nibolas H., Walter C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data [J]. Geoderma,2006,134:217-230.
    [154]Farifteh J., Meer F. Van der, Meer M. Van der. Spectral characteristics of salt-affected soils:A laboratory experiment [J]. Geoderma,2008,145:196-206.
    [155]Dwivedi R.S., Rao B.R.M. The selection of the best possible Landsat TM band combination for delineating salt-affected soils [J]. International Journal of Remote Sensing,1992,13(11): 2051-2058.
    [156]Bui E.N., Henderson B.L. Vegetation indicators of salinity in northern Queensland [J]. Australian Ecology,2003,29:539-552.
    [157]Kirkby S.D. Integrating a GIS with an expert system to identify and manage dryland salinization [J].Apllied Geograph,1996,1(16):289-303.
    [158]Fernandez-Buces N., Siebe C., Cram S., et al. Mapping soil salinity using a combined spectral response index for bare soil and vegetation:A case study in the former lake Texcoco, Mexico [J]. Journal of Arid Environment,2006,64(4):6.
    [159]Taylor G.R., Mah A.H. Characterization of saline soil using Airborne Radar Imagery [J]. Remote Sensing of Environment,1996,57(3):127-142.
    [160]李海涛,Brunner P.,李文鹏,等.ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质,2006,(05):75-79.
    [161]张恒云,肖淑招.NOAA/AVHRR资料在监测土壤盐渍化程度中的应用[J].遥感信息,1992,(01):24-26.
    [162]刘庆生,刘高焕,励惠国.辽河三角洲土壤盐分与上覆植被野外光谱关系初探[J].中国农学通报,2004,(04):274-278.
    [163]刘庆生,骆剑承,刘高焕.资源一号卫星数据在黄河三角洲地区的应用潜力初探[J].地球信息科学,2000(02):56-57.
    [1]Zhang G.W., Lu H.L., Zhang L., et al. Salt tolerance evaluation of cotton (Gossypium hirsutum L.) at its germinating and seedling stages and selection of related indices [J]. Chinese Journal of Applied Ecology,2011,22(08):2045-2053.
    [2](ASD) Analytical Spectral Device. Inc. FieldSpec Pro User's guide.2002.
    [3]Li Gang, Wan Shuwen, Zhou Jian, et al. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels [J]. Industrial Crops and Products,2010,31(1):13-19.
    [4]Ulaby F.T., Bergal T.H. Microwave dielectric properties of dry rocks [J]. IEEE Transaction on Geoscience and Remote Sensing,1990,28:325-336.
    [5]Zheng Y.H., Wang Z.L., Sun X.Z., et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage [J]. Environmental and Experimental Botany,2008,62(2): 129-138.
    [6]Liu J., Guo W.Q., Shi D.C. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions [J]. Photosynthetica,2010,48(2):278-286.
    [7]Wei-xing Wang, Xi-wen Luo, Ying-gan Qu, et al. Preliminary research on model for determining crop water stress index of flowering chainese cabbage based on canopy temperature [J]. Transactions of the CSAE,2003,19(05):47-50.
    [8]Yao X., Zhu Y., Tian Y., et al. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat [J]. International Journal of Applied Earth Observation and Geoinformation, 2010,12:89-100.
    [9]MathWorks The. MATLAB 6.0 [M]. The MathWorks, Inc, Natick, MA,2000.
    [10]Gitelson A.A., Kaufman Y.J., Stark R., et al. Novel algorithms for remote estimation of vegetation fraction [J]. Remote Sensing of Environment,2002,80:76-87
    [11]程一松,胡春胜,郝二波,等.氮素胁迫下的冬小麦高光谱特征提取与分析[J].资源科学,2003,25(1):86-93.
    [12]Liu J., Pattey E., Miller J.R., et al. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model [J]. Remote Sensing of Environment,2010,114(6):1167-1177.
    [13]Zhang Y.Q., Chen M. J., Miller J. R., et al. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery [J]. Remote Sensing Of Environment,2008,112:3234-3247.
    [I]Munns Rana. Genes and salt tolerance:bringing them together [J]. New Phytologist,2005,167: 645-663.
    [2]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52.
    [3]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
    [4]Norbert F., T Tchiadje. Strategies to reduce the impact of salt on crops (rice, cotton and chili) production:A case study of the tsunami-affected area of India [J]. Desalination,2007,206: 524-530.
    [5]Jackson R D., Reginato R J., Idso S.B. Wheat canopy temperature:A practical tool for evaluating water requirements [J]. Water Resource Research,1977,13(1):651-656.
    [6]Idso S B, Jackson R D, al. Pinter P J Jr, et al. Normalizing the stress degree day for environmental variability [J]. Agricultural Meteorology,1981,24(1):45-55.
    [7]Stark J.C., Wright J.L. Relationship between foliage temperature and water stress in potatoes [J]. American Potato Journal,1985,62(2):57-68.
    [8]Gardner B.R., Nielsen D.C., Shock C.C. Infrared thermometry and the Crop Water Stress Index Ⅰ. History, theory, and baselines [J]. Journal of Production Agronomy,1992a,5:462-466.
    [9]Gardner B.R., Nielsen D.C., Shock C.C. Infrared thermometry and the Crop Water Stress Index. Ⅱ. Sampling procedures and interpretation [J]. Journal of Production Agronomy,1992b,5:466-475.
    [10]Yuan Guofu, Luo Yi, Sun Xiaomin, et al. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain [J]. Agricultural Water Management,2004,64(1): 29-40.
    [11]Nielsen D. C. Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI) [J]. Field Crops Research,1990,23(2):103-116.
    [12]Emekli Yasar, Bastug Ruhi, Buyuktas Dursun, et al. Evaluation of a crop water stress index for irrigation scheduling of bermudagrass [J]. Agricultural Water Management,2007,90(3):205-212.
    [13]Stegman E.C., Soderlund M. Irrigation scheduling of spring wheat using infrared thermometry [J]. Transactions of the CSAE,1992,35(1):143-152.
    [14]Alderfasi Ali Abdullah, Nielsen David C. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat [J]. Agricultural Water Management,2001,47(1):69-75.
    [15]Erdem Yesim, Arin Levent, Erdem Tolga, et al. Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica) [J]. Agricultural Water Management,2010,98(1):148-156.
    [16]Jackson Scott H. Relationships between normalized leaf water potential and crop water stress index values for acala cotton [J]. Agricultural Water Management,1991,20:108-118.
    [17]李国臣,于海业,赵红霞,等.基于叶片空气温差的温室黄瓜水分胁迫指数的应用分析[J].吉林农业大学学报,2006,28(04):469-472.
    [18]Alves Isabel,Pereira Luis Santos. Non-water-stressed baselines for irrigation scheduling with infrared thermometers:A new approach [J]. Irrigation Science,2000,19:101-106.
    [19]Abdulelah Al-Faraj, George E. Meye, Horst Garald L. A crop water stress index for tall fescue (Festuca arundinacea Schreb.) irrigation decision-making-a traditional method [J]. Computers and Electronics in Agriculture,2001,31:107-124.
    [20]张国伟,张雷,唐明星,等.土壤盐分对棉花(Gossypium hirsutum L.)功能叶气体交换参数和叶绿素荧光参数日变化的影响[J].应用生态学报,2011,22(08):2045-2053.
    [21]王卫星,罗锡文,区颖刚,等.基于冠层温度的菜心缺水指数模型初步试验研究[J].农业工程学报,2003,19(5):47-50.
    [22]屈卫群,王邵华,陈兵林,等.棉花主茎叶SPAD值与氮素营养诊断研究[J].作物学报,2007,33(6):1010-1017.
    [23]杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报,2006,37(2):302-305
    [24]梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究[J].生态农业研究,2000,8(1):24-26.
    [25]石培华,梅旭荣,冷石林,等.冠层温度与冬小麦农田系统水分状况的关系[J].应用生态学报,1997,8(3):332-334.
    [26]黄晓林,李妍,李国强.冠层温度与作物水分状况关系研究进展[J].安徽农业科学,2009(04):1511-1512.
    [27]Reginato R. J. Field quantification of crop water stress [J]. Transactions of the CSAE,1983,25(6): 1651-1655.
    [28]袁国富,罗毅,孙晓敏,等作物冠层表面温度诊断冬小麦水分胁迫的试验研究[J].农业工程学报,2002,18(06):13-17.
    [29]李雪,顾明,张晓东,等.基于冠层温度的温室葡萄CWSI模型试验研究[J].农机化研究,2009,2:129-130.
    [1]王遵亲.中国盐渍土[M].北京:北京科学出版社,1993:325-344.
    [2]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell Environment,2002,25: 239-250.
    [3]Kramer P.J. Water relations of plants [M]. San Diego:Acdemic press,1983:354-359.
    [4]Filella I., Penuelas J. The red edge position and shape as indictators of plant chorophyll content, biomass and hydric status [J]. International Journal of Remote Sensing,1994,15:1459-1470.
    [5]Carter GA. Primary and secondary effects of water cotent of the spectral reflectance of leaves [J]. American Journal of Botany,1991,78:916-924.
    [6]王纪华,赵春江,郭晓维,等.利用遥感方法诊断小麦叶片含水量的研究[J].华北农学报,2000,15(4):68-72.
    [7]田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2645-2650.
    [8]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(01):104-107.
    [9]Penuelas J., Pinol J., Ogaya R., et al. Estimating of plant water concentration by the reflectance water index WI(R900/R970) [J]. International Journal of Remote Sensing,1997,18:2869-2872.
    [10]田永超,朱艳,曹卫星,等.小麦冠层反射光谱与植株水分状况的关系[J].应用生态学报,2004,15(11):2072-2076.
    [11]Penuelas J., Filella I., Biel. C., et al. The reflectance at the 950-970nm regions as an indicator of plant water status [J]. International Journal of Remote Sensing,1993,14(10):1887-1905.
    [12]Gao B. NDWI--A normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing Of Environment,1996,58(3):257-266.
    [13]Dawson T.P., Curran P.J., North PR J., et al. The propagation of foliar biochemical absorption features in forest canopy reflectance:A theoritical analysis [J]. Remote Sensing of Environment, 1999,67:147-159.
    [14]蒋桂英.新疆棉花主要栽培生理指标的高光谱定量提取与应用研究[D].湖南农业大学博士学位论文,2004.
    [15]Ceccato P., Stephane F., Stefano T., et al. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing of Environment,2001,77(1):22-33.
    [16]Yilmaz M.T., Hunt Jr E.R., Jackson T.J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery [J]. Remote Sensing of Environment,2008, 112(5):2514-2522.
    [17]Danson F. M., Bowyer P. Estimating live fuel moisture content from remotely sensed reflectance [J]. Remote Sensing Of Environment,2004,92(3):309-321.
    [18]隋学艳.棉花主要栽培生理指标的近地高光谱监测研究[D].石河子大学硕士学位论文,2006.
    [19]Jacquemoud S., Bacour C., Poilv H., et al. Comparison of Four Radiative Transfer Models to Simulate Plant Canopies Reflectance:Direct and Inverse Mode [J]. Remote Sensing of Environment,2000,74(3):471-481.
    [20]刘良云,王纪华,张永江,等.叶片辐射等效水厚度计算与叶片水分定量反演研究[J].遥感学报,2007,11(3):289-295.
    [21]Danson F. M., Steven M. D., Malthus T.J., et al. High-spectral resolution data for determining leaf water content [J]. International Journal of Remote Sensing,1992,13(3):461-470.
    [22]龚富生,张嘉宝.植物生理学实验[M].北京:北京气象出版社,1995:12-15.
    [23]Hunt E. R., Rock B. N., Nobel P. S. Measurement of leaf relative water content by infrared reflectance [J]. Remote Sensing of Environment,1987,22:429-435.
    [24]Hunt E. R. Airborne remote sensing of canopy water thickness scaled from leaf spectrometer data [J]. International Journal of Remote Sensing,1991,12:643-649.
    [25]Elvidge C.D., Lyon R. J. P. Estimation of the vegetation contribution to the 1.65/2.22um ratio in airborne thematic-mapper imagery of the Virginia Range, Nevada [J]. International Journal of Remote Sensing,1985,6:75-88.
    [26]Hardisky M.A., Klemas V., and Smatr R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies [J]. Photogrammetric Engineering and Remote Sensing,1983,49:77-83.
    [27]姚霞.小麦冠层和单叶氮素营养指标的高光谱监测研究[D].南京农业大学博士学位论文,2009.
    [28]Blackburn G. A. Spectral indices for estimating photosynthetic pigment concentrations:a test using senescent tree leaves [J]. International Journal of Remote Sensing,1998,19:657-675.
    [29]Tucker Compton J. Remote sensing of leaf water content in the near infrared [J]. Remote Sensing of Environment,1980,10:23-32.
    [30]Bowman William D. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves [J]. Remote Sensing of Environment,1989,30(3):249-255.
    [31]Wu C., Niu Z., Tang Q., et al. Predicting vegetation water content in wheat using normalized difference water indices derived from ground measurements [J]. Journal of Plant Research,2009, 122(1):317-326
    [32]Claudio H.C., Cheng Y., Fuentes D.A., et al. Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970nm water band index [J]. Remote Sensing of Environment, 2006,103(3):304-311
    [33]沈艳,牛铮,王汶,等.基于导数光谱变量叶片含水量模型的建立.地球与地球信息科学,2005,21(4):16-19.
    [34]Pu R, Ge S, Kelly NM, et al. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves [J]. International Journal of Remote Sensing,2003,24:1799-1810.
    [1]R. Munns. Genes and salt tolerance:bringing them together [J]. New Phytologist,2005,167: 645-663.
    [2]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52.
    [3]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
    [4]F. Norbert, T. T. Strategies to reduce the impact of salt on crops(rice, cotton and chili) production:A case study of the tsunami-affected area of india [J]. Desalination,2007,206:524-530.
    [5],张国伟.土壤盐分影响棉花生长的生理机制研究[D].南京农业大学博士学位论文,2010.
    [6]J.S. Shenk, M.O. Westerhaus, M.R. Hoover. Analysis of forages by infrared reflectance [J]. Journal of Dairy science,1979,62(5):807-812.
    [7]J.S. Shenk, I. Landa, M.R. Hoover, et al. Description and evaluation of a near infrared reflectance spectrocomputer for forage and grain analysis [J]. Crop science,1981,21(1):355-358.
    [8]D.H. Clark, H F. Mayland, R.C. Lamb. Mineral analysis of forages with near infrared reflectance spectroscopy [J]. Agronomy Journal,1987,79(1):485-490.
    [9]D.H. Clark, E.E. Cary, H.F:Mayland. Analysis of trace elements in forages by near infrared reflectance spectroscopy [J]. Agronomy Journal,1989,81(1):91-95.
    [10]A. Ruano-Ramos, A. Garcia-Ciudad, B. Garcia-Criado. Near infrared spectroscopy prediction of mineral content in botanical fractions from semi-arid grasslands [J]. Animal Feed Science and Technology,1999,77(3-4):331-343.
    [11]B.R.V.d. Aldana, B.G. Criado, A.G. Ciudad, et al. Estimation of mineral content in natural grasslands by near infrared reflectance spectroscopy [J]. Communications in Soil Science and Plant Analysis, 1995,26(9&10):1386-1396.
    [12]D.H. Clark, E. E.Cary, H. F.Mayland. Analysis of trace elements in forages by near infrared reflectance spectroscopy [J]. Agronomy Journal,1981,81(1):91-95.
    [13]D. Clark, E.E. Cary, H.F. Mayland. Mineral analysis of forages with near infrared reflectance spectroscopy [J]. Agronomy Journal,1987,79:485-490.
    [14]K.F. Smith, S. E.Willis, P. C.Flinn. Measurement of the magnesium concentration in perennial ryegrass (Lolium perenne) using near infrared reflectance spectroscopy [J]. Australian journal of Agricultural research,1991,42(8):1399-1404.
    [15]R. Hallett, J. Hornbeck, M. Martin. Predicting elements in white pine and red oak foliage with visible-near infrared reflectance spectroscopy [J]. Journal of Near Infrared Spectroscopy,1997,5(1): 77-82.
    [16]D. Cozzolino, A. Moron. Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes [J]. Animal Feed Science and Technology,2004,111(1-4): 161-173.
    [17]G.Q. Wang, F. Wang, D. Chen, et al. A novel method for the determination of inorganic ions in complex plant samples by near infrared spectroscopy [J]. Guang Pu Xue Yu Guang Pu Fen Xi,2004, 24(12):1540-1542.
    [18]Z. He, W. Lian, M. Wu, et al. Determination of tobacco constituents with acousto-optic tunable filter-near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy,2006,14(1):45-50.
    [19]C. Huang, L. Han, Z. Yang, et al. Exploring the use of near infrared reflectance spectroscopy to predict minerals in straw [J]. Fuel,2009,88(1):163-168.
    [20]A. Moron,D. Cozzolino. Determination of macro elements in alfalfa and white cover by near-infrared reflectance spectroscopy [J]. Journal of Agricultural Science,2002,139:413-423.
    [21]吴华兵,朱艳,田永超,等.棉花冠层高光谱指数与叶片氮积累量的定量关系[J].作物学报,2007(03):518-522.
    [22]T.H. Demetriades-Shah, M.D. Steven, J.A. Clark. High resolution derivative spectra in remote sensing [J]. Remote Sensing of Environment,1990,33(1):55-64.
    [23]A.A. Gitelson, Y.J. Kaufman, R. Stark, et al. Novel algorithms for remote estimation of vegetation fraction [J]. Remote Sensing of Environment,2002,80:76-87.
    [24]J.R. Miller, E. W. Hare, J.Wu. Quantitative characterization of the vegetation rede edge reflectance I.An inverted-Gaussion reflectance model [J]. International Journal of Remote Sensing,1990, 11(10):1755-1773.
    [25]J. Penuelas, J.A. Gamon, K.L. Griffin, et al. Assessing community type,plant biomass, pigment composition and photosynthetic effiency of aquatic vegetation from spectral reflectance [J]. Remote Sensing of Environment,1993,46:110-118.
    [26]J.G. Lyon, D. Yuan, R.S. Lunetta, et al. A change detection experiment using vegetation indices [J]. Photogrammetric Engineering and remote sensing,1998,64(2):143-150.
    [27]Y. Zheng, Z. Wang, X. Sun, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage [J]. Environmental and Experimental Botany,2008,62(2): 129-138.
    [28]J. Liu, W.Q. Guo, D.C. Shi. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions [J]. Photosynthetica,2010,48(2):278-286
    [29]姚霞.小麦冠层和单叶氮素营养指标的高光谱监测研究[D].南京农业大学博士学位论文,2009
    [30]T. He, G.R. Cramer. Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity [J]. Plant and soil,1992,139:285-294.
    [31]D. Wang, J.A. Poss, T.J. Donovan, et al. Biophysical properties and biomass production of elephant grass under saline conditions [J]. Journal of Arid Environments,2002,52(4):447-456.
    [32]D. Wang, C. Wilson, M.C. and Shannon. Interpretation of salinity and irrigation effects on soybean canopy reflectance in the visible and near-infrared spectrum domain [J]. International Journal of Remote Sensing,2002,23(5):811-824.
    [1]房朋,任丽丽,张立涛,等.盐胁迫对杂交酸膜叶片光合活性的抑制作用[J].应用生态学报,2008,19(10):2137-2142.
    [2]Munns R. Comparative physiology of salt and water stress [J]. Plant, Cell and Environment,2002,25: 239-250.
    [3]Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes [J]. Plant Physiology,1991,95:628-635.
    [4]李海波,陈温福,李全英.盐分胁迫下水稻叶片光合参数对光强的响应[J].应用生态学报,2006,17(9):1588-1592.
    [5]刘正鲁,朱月林,胡春梅,等.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响[J].应用生态学报,2007,18(3):537-541.
    [6]Martino CD, Delfine S, Pizzuto R, et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress [J]. New Phytologist,2003,158:455-463.
    [7]Chen HX, Li WJ, An SZ, et al. Characterization of PSII photochemistry and thermostability in salt treated RumexK-1 leaves [J]. Journal of Plant Physiology,2004,161:257-264.
    [8]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报,2006,18(4):248-254.
    [9]Saghir A, Kham NUL, Ipbal MZ, et al. Salt tolerance of cotton (Gossypium hirsutum L.) [J]. Asian Journal of Plant sciences,2002,1:715-719.
    [10]刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报,2005,42(2):247-252.
    [11]Heydari N, Gupta AD, Loof R. Salinity and sodicity influences on infiltration during surge flow irrigation [J]. Irrigation Science,2001,20:165-173.
    [12]颜宏,赵伟,盛艳敏,等.碱胁迫对羊草和向日葵的影响[J].应用生态学报,2005,16(8):1497-1501.
    [13]Ramsis BS, Clause JO, Robert WF. Contributions of groundwater conditions to soil and water salinization [J]. Hydrogeology Journal,1999,7:46-64.
    [14]Leone AP, Menenti M, Buondonno A, et al. A field experiment on spectrometry of crop response to soil salinity. Agriculture Water Management,2007,89:39-48.
    [15]Leone AP, Menenti M, Sorrentino G. Reflectance spectroscopy to study crop response to soil salinity [J]. Italian Journal of Agronomy,2000,4:75-85.
    [16]Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.) [J]. Environmental and Experimental Botany,2006,56:136-146.
    [17]Wang D, Poss JA, Donovan TJ, et al. Biophysical properties and biomass production of elephant grass under saline conditions [J]. Journal of Arid Environments,2002,52:447-456.
    [18]Wang D, Wilson C, Shannon MC. Interpretation of salinity and irrigation effects and soybean canopy reflectance in visible and near-infrared spectrum domain [J]. International Journal of Remote Sensing,2002,23:811-824.
    [19]Poss JA, Russell WB, Grieve CM. Estimating yields of salt-and water-stressed forages with remote sensing in the visible and near infrared [J]. Journal of Environmental Quality,2006,35:1060-1071.
    [20]张丽平,张格英,史庆华,等.黄瓜对氯化钠和碳酸氢钠胁迫的生理响应差异[J].植物营养与肥料学报,2008,14(4):761-765.
    [21]孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验[J].作物学报,2001,27(6):794-801.
    [22]周祥胜,成灿土,施满法,等.中棉所抗早耐盐品种在浙江种植的应用前景[J].中国棉花,2000,1:25-26.
    [23]Turhan H, Genc L, Smith SE, et al. Assessment of the effect of salinity on the early growth stage of the common sunflower (Sanay cultivar) using spectral discrimination techniques [J]. African Journal of Biotechnology,2008,7:750-756.
    [24]Yao X, Zhu Y, Tian YC, et al. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat [J]. International Journal of Applied Observation and Geoinformation,2010,12:89-100.
    [25]屈卫群,王绍华,陈兵林,等.棉花主茎叶SPAD值与氮素营养诊断研究[J].作物学报,2007,33(6):1010-1017
    [1]申玉香.盐分胁迫对小麦产量和品质形成的影响及调控措施研究[D].扬州大学博士学位论文,2007.
    [2]Sreenivas K., Venkataratnam L., Rao P. V. Narasimha. Dielectric properties of salt-affected soils [J]. International Journal of Remote Sensing,1995,16(4):641-649.
    [3]K. Sreenivas, L. Venkataratnam, Rao P. V. Narasimha.盐渍土壤的介电特性[J].海岸工程,1996, 15(04):81-85.
    [4]吕远,邵芸.含水含盐土壤的微波介电特性分析研究[J].遥感信息,2001(03):19-23.
    [5]Hallikainen Martti T., Ulaby Fawwaz T., Dobson Myron C., et al. Microwave dielectric behavior of wet soil-Part I:Empirical models and experimental observations [J]. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1):25-34.
    [6]Wang James R.,Schmugge Thomas J. An empirical model for the complex dielectric permittivity of soils as a function of water content [J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4):288-295.
    [7]Dobson Myron C., Ulaby Fawwaz T., Hallikainen Martti T., El-rayes and Mohamed A. Microwave Dielectric Behavior of Wet Soil-Part Ⅱ:Dielectric Mixing Models [J]. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1):35-46.
    [8]Peplinski Neil R., Ulaby Fawwaz T., Dobson Myron C. Dielectric properties of soils in the 0.3-1.3Ghz range [J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(3):803-807.
    [9]胡庆荣.含水含盐土壤介电特性实验研究及对雷达图像的响应分析[D].中国科学院研究生院(遥感应用研究所)博士学位论文,2003.
    [10]Stogryn A. Equations for calculating the dielectric constant of saline water [J]. IEEE Transactions on Microwave Theory Techniques,1970, MIT-19:733-736.
    [11]Leao Tairone P., Perfect Edmund, Tyner John S. New semi-empirical formulae for predicting soil solution conductivity from dielectric properties at 50 MHz [J]. Journal of Hydrology,2010, 393(3-4):321-330.
    [12]Mortl A., Munoz-Carpena R., Kaplan D., et al. Calibration of a combined dielectric probe for soil moisture and porewater salinity measurement in organic and mineral coastal wetland soils [J]. Geoderma,2011,161(1-2):50-62.
    [13]熊文成.含水含盐土壤介电特性及反演研究.中国科学院研究生院(遥感应用研究所)硕士 学位论文,2005.
    [14]Rhoades J D, Manteghi N A, Shouse P J, et al. Soil electrical conductivity and soil salinity:new formulations and calibrations [J]. Soil Science of American journal 1989,53:433-439.
    [15]Mualem Y., S.P. Friedman. Theoretical prediction of electrial conductivity in saturated and unsaturated soil [J]. Water Resource Research,1991,27:2771-2777.
    [16]郭彩华.土壤溶液常规分析中离子含量和电导率之间的关系[J].科技情报开发与经济,2006,16(14):153-154.
    [17]Liu, Jingsong Yang, Yao Rongjiang. Electrical conductivity in soil extracts:Chemical factors and their intensity [J]. Pedosphere,2006,16(1):100-107.
    [18]王海江,王开勇,刘玉国,等.膜下滴灌棉田不同土层盐分变化及其棉花生长的影响[J].生态环境学报,2010,19(10):2381-2385.
    [19]马孝义,马建仓.土壤水分广义电磁测量方法的潜力分析[J].应用基础与工程科学学报,2002,10(01):25-35.
    [20]Caver R.K. Microwave remote sensing of saline seeps. In Proceedings of Microwave Remote Sensing Sympoium (Houston, TX:NASA Johnson Space Center),1977:216-231.
    [21]邵芸,吕远,董庆,等.含水含盐土壤的微波介电特性分析研究[J].遥感学报,2002,6(06):416-423.
    [1]申玉香.盐分胁迫对小麦产量和品质形成的影响及调控措施研究[D].扬州大学博士学位论文,2007.
    [2]Munns R. Physiological process limiting plant growth in saline soils:some dogmas and hypotheses [J]. Plant, Cell and Environment,1993,16:15-24.
    [3]Alarcon J.J., Sanchez-Bianco M.J., Bolarin M.C., Torrecillas A. Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short-term salt exposure and recovery [J]. Physiologia Plantarum,1993,89(1):441-447.
    [4]Tchouaffe T.,Norbert F. Strategies to reduce the impact of salt on crops (rice, cotton and chili) production:A case study of the tsunami-affected area of India [J]. Desalination,2007,206(1-3): 524-530.
    [5]梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究[J].生态农业研究,2000,8(01):24-26.
    [6]袁国富,罗毅,孙晓敏,等.作物冠层表面温度诊断冬小麦水分胁迫的试验研究[J].农业工程学报,2002,18(6):13-17.
    [7]Singh N., Singh P., Narang R.S. Water relation of the water under different soil water conditions [J]. Journal of Research Punjob Agricultural University 1992,29(4):438-442.
    [8]刘学著,张连根,周守华.基于冠层温度的冬小麦水分胁迫指数的实验研究[J].应用气象学报,1995,6(4):449-453.
    [9]Falkenberg N.R., Piccnnni G., Cothren J.T. Remote sensing of biotic and abiotic stress for irrigation management of cotton [J]. Agricultural Water Management,2007,87(1):23-31.
    [10]Choudhary O.P., Bajwan A.S. Tolerance of wheat and triticale to sodiciry [J]. Crop Improvement, 1996,23(2):238-246.
    [11]Idso S.B., Jackson R.D., Reginato R.J. Remote sensing of crop yields [J]. Science,1972,196(1): 19-25.
    [12]蔡焕杰,张振华,柴红敏.冠层温度定量诊断覆膜作物水分状况试验研究[J].灌溉排水,2001,20(01):1-4.
    [13]肖冠云,于海业,李国臣.基于叶气温差的温室作物水分胁迫指数的试验研究[J].西北农业学报,2006,15(06):100-103.
    [14]Tubaileh A.S., Sammis T.W., Lugg D.G. Utilization of thermal infrared thermometry for detection of water stress in spring barley [J]. Agricultural Water Management,1986,12:75-85.
    [15]崔晓,许利霞,袁国富,等.基于冠层温度的夏玉米水分胁迫指数模型的试验研究[J].农业工程学报,2005,21(08):22-24.
    [16]Jackson Scott H. Relationships between normalized leaf water potential and crop water stress index values for acala cotton [J]. Agricultural Water Management,1991,20(1):109-118.
    [17]Reginato R. J. Field quantification of crop water stress [J]. Transactions of the CSAE,1983,25(6): 1651-1655.
    [18]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004
    [19]朱义,谭贵娥,何池全,等.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J].生态学报,2007(12):5447-5454.
    [20]Carter G.A. Primary and secondary effects of water cotent of the spectral reflectance of leaves [J]. American Journal of Botany,1991,78:916-924.
    [21]Penuelas J., Filella I., and Sweeand L. Cell wall elasticity and water index (R970nm/R900nm) in wheat under different nitrogen availabilities [J]. International Journal of Remote Sensing,1996,17: 373-382.
    [22]Ceccato P., Stephane F., Stefano T., Jacquemoud S., Gregoire J.M. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing Of Environment,2001,77(1): 22-33.
    [23]Gausman H.W., Allen W.A., Cardenas R. Reflectance of cotton leaves and their structure [J]. Remote Sensing Of Environment,1969,1:19-22.
    [24]Penuelas J., Pinol J., Ogaya R., Filella I. Estimating of plant water concentration by the reflectance water index WI(R900/R970) [J]. International Journal of Remote Sensing,1997,18:2869-2872.
    [25]Danson F. M., Bowyer P. Estimating live fuel moisture content from remotely sensed reflectance [J]. Remote Sensing of Environment,2004,92(3):309-321.
    [26]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(01):104-107.
    [27]沈艳,牛铮,王汶,等.基于导数光谱变量叶片含水量模型的建立[J].地球与地球信息科学,2005,21(4):16-19.
    [28]隋学艳.棉花主要栽培生理指标的近地高光谱监测研究[D].石河子大学硕士学位论文,2006.
    [29]蒋桂英.新疆棉花主要栽培生理指标的高光谱定量提取与应用研究[D].湖南农业大学博士学位论文,2004.
    [30]Yao X., Zhu Y., Tian Y, Feng W., Cao W. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat [J]. International Journal of Applied Earth Observation and Geoinformation,2010,12:89-100.
    [31]金继云,白由路.精确农业与土壤养分管理[M].北京:中国大地出版社,2001:10-15.
    [32]申广荣,王人潮.植被高光谱遥感的应用研究综述[J].上海交通大学学报(农业科学版),2001(04):315-321.
    [33]王珂,沈掌泉,王人潮.植物营养胁迫与光谱特性[J].国土资源遥感,1999(01):13-18.
    [34]王人潮,周启发.水稻氮素营养水平与光谱特性的关系[J].浙江农业大学学报,1993,19:40-45.
    [35]王珂,沈掌泉,王人潮.不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J].科技通报,1997(04)
    [36]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell and Environment,2002, 25:239-250.
    [37]Tie He, Cramer, Grant R. Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity [J]. Plant and Soil,1992,139:285-294.
    [38]Masoni A., Ercoli L., Mariotti M. Spectral properties of leaves deficient in iron, sulfur, magnesium, and manganese [J]. Agronomy Journal,1996,88:937-943.
    [39]王磊,白由路.基于光谱理论的作物营养诊断研究进展[J].植物营养与肥料学报,2006,12(6):902-912.
    [40]Leone A. P., Menenti M., Buondonno A., Letizia A., Maffei C., Sorrentino G. A field experiment on spectrometry of crop response to soil salinity [J]. Agricultural Water Management,2007,89(1-2): 39-48.
    [41]Gong P., Pu R., Heald C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia [J]. International Journal of Remote Sensing,2002,23(9):1827-1850.
    [42]王珂,沈掌泉,王人潮.植物营养胁迫与光谱特性[J].国土资源遥感,1999(1):9-14.
    [43]Al-Abbas A.H., Barr R., Hall J.D. Spectra of normal and nutrient deficient maize leaves [J]. Agronomy Journal,1974,66:16-20.
    [44]Clark D.H., Mayland H.F., Lamb R.C. Mineral analysis of forages with near infrared reflectance spectroscopy [J]. Agronomy Journal,1987,79:485-490.
    [45]Ruano-Ramos A., Garcia-Ciudad A., Garcia-Criado B. Near infrared spectroscopy prediction of mineral content in botanical fractions from semi-arid grasslands [J]. Animal Feed Science And Technology,1999,77(3-4):331-343.
    [46]Cozzolino D., Fassio A., Ferndez E.,et al. Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy [J]. Animal Feed Science and Technology,2006,129(3-4):329-336.
    [47]Heydari N., Gupta A.D., Loof R. Salinity and sodicity influences on infiltration during surge flow irrigation [J]. Irrigation Science,2001,20:165-173.
    [48]刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报,2005(02):247-252.
    [49]Koyro H.W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halphyte coronpus [J]. Environmental and Experimental Botany,2006,56: 136-146.
    [50]邵芸,吕远,董庆,等.含水含盐土壤的微波介电特性分析研究[J].遥感学报,2002,6(06):416-423.
    [51]Wang J.R., Schmugge T.J. An empirical model for the complex dielectric perimitivity of soils as a function of water content [J]. IEEE Transaction Journal of Geoscience and Remote Sensing,1985, 18(4):288-295.
    [52]Hallikainen Martti T., Ulaby Fawwaz T, Dobson Myron C., et al. Microwave dielectric behavior of wet soil-Part I:Empirical models and experimental observations [J]. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1):25-34.
    [53]Dobson M.C., Ulaby F.T., Hallikai Martti T., El-rayes Mohamed A. Microwave Dielectric Behavior of Wet Soil-Part II:Dielectric Mixing Models [J]. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1):35-46.
    [54]Peplinski Neil R., Ulaby Fawwaz T., Dobson Myron C. Dielectric properties of soils in the 0.3-1.3Ghz range [J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(3):803-807.
    [55]胡庆荣.含水含盐土壤介电特性实验研究及对雷达图像的响应分析[D].中国科学院研究生院(遥感应用研究所)博士学位论文,2003.
    [56]Stogryn A. Equations for calculating the dielectric constant of saline water [J]. IEEE Transactions on Microwave Theory Techniques,1970, MIT-19:733-736.
    [57]Leao Tairone P., Perfect Edmund, Tyner John S. New semi-empirical formulae for predicting soil solution conductivity from dielectric properties at 50 MHz [J]. Journal of Hydrology,2010, 393(3-4):321-330.
    [58]Mortl A., Munoz-Carpena R., Kaplan D., et al. Calibration of a combined dielectric probe for soil moisture and porewater salinity measurement in organic and mineral coastal wetland soils [J]. Geoderma,2011,161(1-2):50-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700