用户名: 密码: 验证码:
利用氧化还原引发体系制备聚合物接枝的纳米二氧化硅粒子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米SiO_2粒子被广泛用于填充改性聚合物以增强、增韧聚合物基体。但纳米SiO_2粒子表面能高,极易发生团聚,使其作为纳米材料的优点不能很好的表现。同时,SiO_2粒子表面极性大,在有机介质中难以浸润和分散,直接填充到高分子材料中,很难发挥其作用,从而限制了其发展和应用。因此,对纳米SiO_2粒子表面进行改性,使之较好地分散到有机介质中,增强SiO_2与有机分散介质的相容性,具有重要意义。
     本文提出了一种新方法制备聚合物接枝的纳米SiO_2粒子。首先,以3-氨丙基三乙氧基硅烷(APTES)处理纳米SiO_2,向其表面引入氨基(-NH_2)使其功能化,再用两种不同的路线对纳米SiO_2进行表面改性:
     (1)利用SiO_2表面的-NH_2与聚乙二醇丙烯酸酯(PEGA)反应,合成PEGA改性的纳米SiO_2;再以Ce4+与PEGA中的-OH为氧化还原体系,分别引发N-异丙基丙烯酰胺(NIPAAm)和甲基丙烯酸甲酯(MMA)在SiO_2表面的接枝聚合。
     (2)以Ce4+与SiO_2表面的-NH_2为氧化还原体系,以十二烷基硫酸钠(SDS)或十六烷基三甲基溴化铵(CTAB)为乳化剂,通过乳液聚合,分别引发苯乙烯(St)和MMA在SiO_2表面的接枝聚合。
     通过红外光谱、热失重、透射电镜、动态光散射及显微维氏硬度计对产物进行了表征和分析,计算了纳米Si02粒子表面接枝的聚合物含量。
     选用未经APTES处理的纳米SiO_2做对比实验,其他聚合反应条件完全相同,IR结果表明没有发生接枝聚合或均聚反应。而在PEGA改性的纳米SiO_2体系中,IR结果表明反应后的产物由聚合物和SiO_2组成,证明Ce~(4+)/-OH氧化还原体系成功引发了单体在纳米SiO_2粒子表面接枝聚合。
     聚合物的亲、疏水性对SiO_2@聚合物复合粒子在水中的分散稳定性起着决定作用,SiO_2@PMMA粒子不能稳定的分散在水中,很快形成沉淀。SiO_2@PNIPAAm粒子能稳定分散在水中,形成透明微带蓝色的溶液。SiO_2@PNIPAAm粒子表现出明显的温度响应性,当温度从310C上升到32~C时,粒子的平均粒径发生突变,从194nm下降到155nm,与纯PNIPAAm的相转变行为一致,此温度为其LCST。聚合物的亲、疏水性对SiO_2表面所接枝聚合物的量有很大影响,由TGA结果计算得每克SiO_2表面所接枝的PMMA和PNIPAAm质量分别为0.18g和0.50g。TEM照片中纳米SiO_2粒子表面接枝的PMMA和PNIPAAm壳层平均厚度分别15nm和25nm。这与TGA结果一致,表明SiO_2粒子表面PMMA的接枝量较PNIPAAm低,为了提高疏水性单体的接枝率,我们改进了实验路线,尝试使用乳化剂,改善单体的溶解性,提高聚合物的接枝率。
     在乳化剂存在的体系中,IR结果表明反应后的产物由聚合物和SiO_2组成,证明Ce~(4+)/-NH_2氧化还原体系也能成功引发单体在纳米SiO_2粒子表面接枝聚合。与未使用乳化剂的接枝聚合相比,SiO_2表面聚合物的接枝量有较大的增加。以SDS为乳化剂时,每克SiO_2表面所接枝的PMMA和PS的质量分别为7.34g和3.60g。以CTAB为乳化剂时,每克SiO_2表面所接枝的PMMA和PS的质量分别为3.87g和0.45g。因此使用此种氧化还原引发体系的同时,加入乳化剂可提高疏水单体的接枝率。
     单体在水中的溶解度影响了SiO_2表面聚合物的接枝量,无论是SDS还是CTAB做乳化剂,复合粒子中SiO_2表面PMMA的接枝量都大于PS的接枝量。以SDS为乳化剂时,SiO_2/PMMA粒子的平均粒径比SiO_2/PS的小很多,表明PMMA对SiO_2团聚体的分散程度比PS要好。以CTAB为乳化剂时,SiO_2/PMMA粒子的平均粒径比SiO_2/PS的大25nm左右,且PMMA和PS都对SiO_2团聚体起到较好的分散,使其重新达到纳米尺寸。乳化剂在水溶液中的电负性影响了SiO_2表面聚合物的接枝量,用SDS做乳化剂时两种单体的接枝率比用CTAB要高的多,可能是由于APTES中氨基在水溶液中为正电型,Ce~(4+)为阳离子,SDS亲水基团是阴离子,乳化剂与引发剂静电相吸,能有效引发单体在纳米二氧化硅表面聚合;而CTAB亲水基团是阳离子,乳化剂与引发剂静电相斥,导致引发效率下降。使用乳化剂所制备的SiO_2/PMMA、SiO_2/PS复合粒子的维氏硬度较纯PMMA、PS有所增加,杂化材料的力学性能有所提高。
     目前,有关Ce~(4+)引发单体在纳米SiO_2粒子表面接枝聚合的研究很少见文献报道,与常用的活性自由基聚合相比,该方法具有反应条件温和,水相聚合,不存在溶剂污染,操作简单,反应速率快,成本低等优点,且适用于大多数单体。该方法将有可能成为一种有效的改性纳米SiO_2的手段。
Silica nanopartiele is one of the most important fillers in rubber,plastic,painter industry. However,the silica nanoparticles have a poor wettability and dispersibility in organic medium due to their hydrophilic surfaces,which confines its application.Thus,the modification for silica,which enhances their dispersibility and compatibility in organic medium and improves its performance,is of great importance.
     This study describes a facile and versatile method for preparing polymer grafted silica nanopartieles by surface-initiated graft polymerization,using a redox initiation system comprising ceric ion(Ce~(4+))and reducing agents immobilized on the nanoparticle surfaces. Different from the living free radical polymerizations,the present method has some merits, e.g.it is able to allow a facile and mild grafting polymerization at low temperatures in aqueous solutions,and it involves only inexpensive,commercially available reagents,and is versatile for many monomers,especially for water soluble monomers.Silica nanoparticles were treated with 3-aminopropyltriethoxysilane(APTES),and subsequently modified in two different routes.
     (1)The aminated silica was reacted with poly(ethylene glycol)acrylate through the Michael addition reaction,so that terminal hydroxyl was introduced onto the silica surface.Two model monomers,methyl methacrylate(MMA)and N-isopropylacrylamide(NIPAAm), were used for graft polymerization from the silica surface initiated by the Ce~(4+)/-OH redox system.
     (2)An emulsion polymerization of MMA and St initiated by the Ce~(4+)/-NH_2 redox system was performed for modification of the aminated silica,respectively.Surfactants used were sodium dodecyl sulfate(SDS)and hexadecyl trimethyl ammonium bromide(CTAB). The polymer grafted silica nanoparticles were characterized by dynamic light scattering, infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy and micro-Vickers hardness tester.
     IR spectra confirm that PMMA and PNIPAAm are successfully grafted onto the silica surface initiated by the Ce~(4+)/-OH redox system.On the contrary,graft polymerization does not occur on bare silica nanoparticles.
     The hydrophobicity of polymer plays a crucial role in determining the suspendability of silica@polymer particles in the aqueous solutions.The silica@PMMA nanoparticles cannot be suspended stably and finally precipitate from water,while the suspension of silica@PNIPAAm particles has bluish color and remains stable for almost 24 h.The silica@PNIPAAm particles exhibit a reversible change in response to temperature changes. The mean diameter sharply decreased from 194 nm to 155 nm when temperature was increased from 31℃to 32℃,which was consistent with the previously reported LCST of pure PNIPAAm.The hydrophobicity of polymer has large effect on the amount of polymer grafted onto silica surface.According to the TGA results,the grafted contents of PMMA and PNIPAAm on 1 g of silica are calculated to be about 0.18g and 0.50g,respectively.The TEM images show that the average thickness of PMMA and PNIPAAm shell on the silica surface is about 15 nm and 25 nm,respectively.This is consistent with the result of TGA,which shows that the amount of PMMA grafted onto the silica surface is less than that of PNIPAAm.
     As to the emulsion polymerization,IR spectra confirm that PMMA and PS are successfully grafted onto silica initiated by the Ce~(4+)/-NH_2 redox system.Compared with the former system without surfactant,the amount of polymer grafted onto the silica surface increased.Thus,the addition of surfactant can significantly improve the graft ratio.
     The solubility of monomer has effect on the amount of grafted polymer.The grafted amount of PMMA is larger than that of PS under the use of either SDS or CTAB.When SDS was used,the mean diameter of SiO_2/PMMA particles was much smaller than that of SiO_2/PS particles.When CTAB was used,the mean diameter of SiO_2/PMMA particles was larger by 25 nm than that of SiO_2/PS particles,and both polymers reduced the aggregation of the silica nanopartieles.The electric charge of surfactant has effect on the amount of grained polymer. When SDS was used,the grained amounts of both polymers are larger.Because SDS is negative charged and is electrostatically attracted with the Ce~(4+)ions,graft polymerization can be effectively initiated.While CTAB is positive charged and electrostatically repulsed with the Ce~(4+)ions,graft polymerization cannot be effectively initiated on the surface of silica nanoparticles.The Vickers hardness of SiO_2/PMMA and SiO_2/PS is higher than that of pure PMMA and PS.
引文
[1]R Roy,S Komameni.Canion-Exchange Properties of Hydrated Cements[J].Mater.Res.Soc.Symp.Proc.,1984,32:347
    [2]吴培熙,张留成。聚合物共混改性。北京:中国轻工业出版社,1996
    [3]欧玉春,杨锋,庄严。原位分散聚甲基丙烯酸甲(?)一二氧化硅纳米复合材料的研究[J],高分子学报,1997,45(1):199
    [4]Tsubokawa N.In:Blits JP,Little CB,editors.Fundamental and applied aspects of chemically modified surfaces.London:CRC Press;1999:36.
    [5]Tsubokawa N.Functionalization of carbon materials by surface grafting of polymers.Bull Chem Soc Jpn.,2002,75:2115.
    [6]Advincula RC.Surface initiated polymerization from nanoparticlesurfaces.J Dispersion Sci Technol 2003,24:343.
    [7]Bourgeat-Lami E.;Lang J.Encapsulation of inorganic particles by dispersion polymerization in polar media.2.Effect of silica size and concentration on the morphology of silica- polystyrene composite particles.J.Colloid Interface sci.1999,210:281.
    [8]Erdem B.;Sudol E.D.;Dimonie V.L.;EL-Aasser M.Encapsulation of inorganic particies via miniemusion polymerization.l.Dispersion of titanium dioxide particles in organic media using OLOA370 as stabilizer.J.Polym.Sci.Polym.Chem.2000,38:4419.
    [9]Tiarks F.;Landfster K;Antonietti M.Silica nanoparticles as surfactants and fillers for latexes made by miniemusion polymerization.Langmuir.2001,17:5775.
    [10]Lee M.H.;Beyer F.L.;Furst E.M.;Synthesis of monodisperse fluorescent core-shell silica particles using a modified Stober method for imaging individual particles in dense colloidal suspensions.J.Collioid and Interface Sci.2005,288:114.
    [11]Caruso F.Nanoengineering of particle surfaces.Adv.Mater.2001,13:11.
    [12]Castelvetro V.;Vita C.D.;Nanostructured hybrid materials from aqueous polymer dispersions.Adv.Colloid Interface Sci.2004,108-109:167
    [13]Neoh K.G.;Tan K.K.;Gob P.L.;Huang S.W.;Kang E.T.;Tan K.L.;Electroactive Polymer-SiO_2nanocomposites for metal uptake.Polymer.1999,40:887.
    [14]Hasegawa H.;Arai K.;Satio S.;Soapless Enlulsion Polymerization of Methyl Methacrylate in Water in the Presence of Calcium Sulfite.J.Appl.Polym.Sci.1987,33:441.
    [15]龙复,王伟。无机-有机高分子乳液研究进展,化工进展,1991,2:1
    [16]Caris C H M,Louisa P M,Herk A M.Polymerization of MMA at the Surface of Inorganic Submicron Particles.J.British Polym.,1989,21:133
    [17]黄琨,向明,周德惠等。核壳式无机-高分子纳米复合微粒的制备与表征,化工新型材料,2002,30:8.
    [18]Franciosee Sommer,Tran Minh Due,Rosangela Pirri et al.Action of AFM in the detection of core-shell particles.Langmuir.1995,541:440.
    [19]Misra S.C,Pichot C,Vandethoff J.W.Effect of Emulsion Polymerization Process on the Morphology of VAc-BA Copolymer Latex Film.J.Polym.Sci.:Polymer Letters Ed,1979,17:567
    [20]阚成友,刘漫红,孔祥正。种子乳液聚合物胶粒形态及胶膜结构研究,高等学校化学学报,1995,16(3):477
    [21]Callaghan K.L.O,Paine A.J.,RudinA,Use of SEM and WAXS in the detection of core-shell Particles J.Polym.Sci.Part A:Polym Chem,1995,33(10):1849
    [22]Franciosee Sommer,Tran Minh Due,Rosangela Pirri etal.Action of AFM in the detection of core-shell Particles.Langmuir,1995,541(3):440
    [23]Liles D T.Silicone/organic copolymer emulsion from performed organic emulsion.Eur.Pat.Appl.,1995,684:266.
    [24]邱广明,高晓松,杨春雁等。Fe_3O_4,P(St-AA)核壳复合微球的制备和表征,应刚化学,1996,13:7
    [25]Lee J,Senna M.Preparation of Monodispersed PSt Microspheres Uniformly Coated by Magnetite via Heterogeneous Polymerization.Colloid Polym.Sci.,1995,273:76
    [26]Royer G.P.,Green G.M.,Silica B.K.Rigid Support Materials for the Immobilization of Enzymes.J.Macromol.Sci.,1976,10:289
    [27]Okubo M,Yamaguchi S,Matsumoto T.Morphology of composite polymer emulsion particles consisting of two kinds of polymers between which ionic bonding intermolecular interaction operates.J.Appl.Polym.Sci.1986,31:1075
    [28]Dimonie V,EL-Aasser M.S.,Klein A,et al.Core-shell emulsion copolymeri- zation of St and AN on PSt seed particles.J.Polym.Sci.,Polym.Chem.Ed.,1984,22:2197
    [29]官建国,邓惠勇,王维等。以胶体粒子为模板制备核壳纳米复合粒子,化学进展,2004,16:327.
    [30]Ohtsu Y.,Fukui H.,Kanda T.Structures and Chromatographic Characteristics of Capsulated-type silica Gels Coated with Hydrophobic Polymers in Reversed-phase Liquid Chromatography.Chromatographia,1987,24:380
    [31]Haga Y.,Inone S.,Satio T.Photoconductivity Properties of Zinic Oxide Encapsulated in Polymers.Die Angew Macromol.Chem.,1986,139:49
    [32]Haga Y.,Inone S.,Satio T.Photoconductivity Properties of Cadmium Sulfide Encapsulated in Polymers.Die Angew Macronlol.Chem.,1987,153:71
    [33]杨中文,刘西文。纳米技术在高分子材料改性中的应用,现代塑料加工应用,1999,11(6):38
    [34]朱晓光,漆宗能。 聚合物增韧研究进展,材料研究学报,1997,11(6):623
    [35]欧玉春。刚性粒子填充聚合物的增强增韧与界面相结构,高分子材料工程与科学,1998,14(2):12
    [36]S.R.Johnson,S.D.Evans,Synthesis and characterisation of surfactant-stabilised gold nanoparticles.Supermol.Sci.,1997,4:329
    [37]S.Bharathi,N.Fishelson,et al.,Direct synthesis and characterization of gold and other noble metal nanodispersions in sol-gel-derived organically modified silicates.Langmuir,1999,15(6):1929
    [38]S.R.Johnson,S.D.Evans,et al.,Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles.Langmuir,1998,14(23):6639
    [39]Tijana Rajh,David M,et al.,Surface modification of TiO_2 nanoparticles with bidentate ligands studied by EPR spectroscopy.J.Non-cryst.Solids.,1996,205-207:815
    [40]K.E.Gonsalves,S.P.Rangarajan,Synthesis of homogeneously dispersed nanoscale M50-type steel powders via polymeric surfactants.J.Appl.Polym.Sci.,1997,64:2667
    [41]刘洪波。微波诱导等离子体合成有机膜包裹的TiO_2纳米粉体,化学通报,1997,10:44
    [42]P.Auroy,L.Auvray,L.Leger,Silica particles stabilized by long grafted polymer chains:From electrostatic to steric repulsion.J.Colloid Interf.Sci.,1992,150:187.
    [43]K.Ebata,K.Furkawa,N.Matsumoto,Synthesis and characterization of end-grafted polysilane on a substrate surface.J.Am.Chem.Sot.,1998,120:7367.
    [44]Z.K.Zhang,A.E.Berns,S.Willbold,J.Buitenhuis,Synthesis of poly(ethylene glycol)(PEG)-grafted colloidal silica particles with improved stability in aqueous solvents.J.Colloid Interf.Sci.,2007,310:446.
    [45]O.Prucker,J.Ruhe,Synthesis of poly(styrene)monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators.Macromolecules,1998,31:592.
    [46]O.Prucker,J.Rube,Mechanism of radical chain polymerizations initiated by azo compounds covalently bound to the surface of spherical particles.Macromolecules,1998,31:602.
    [47]S.Bachmann,H.Y.Wang,K.Albert,R.Partch,Graft polymerization of styrene initiated by covalently bonded peroxide groups on silica.J.Colloid Interf.Sci.,2007,309:169.
    [48]S.Kim,E.Kim,S.Kim and W.Kim,Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.J.Colloid Interf.Sci.,2005,292:93.
    [49]X.Y.Chen,D.P.Randall,C.Perruchot,J.F.Watts,T.E.Patten,T.von Werne,S.P.Armes,Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization.J.Colloid lnterf.Sci.2003,257:56.
    [50]T.von Weme,T.E.Patten,Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations.J.Am.Chem.Soc.,1999,121:7409.
    [51]T.von Weme,T.E.Patten,Atom transfer radical polymerization from nanoparticles:A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces.J.Am.Chem.Soc.,2001,123:7497.
    [52]C.Perruchot,M.A.Khan,A.Kamitisi,S.P.Armes,T.yon Weme,T.E.Patten,Synthesis of well-defined,polymer-grafted silica particles by aqueous ATRP.Langmuir,2001,17:4479.
    [53]Y.P.Wang,X.W.Pei,Z.Y.He,K.Yuan,Synthesis of well-defined,polymer-grafted silica nanoparticles via reverse ATRP.Eur.Polym.J.,2005,41:1326.
    [54]Y.P.Wang,X.W.Pei,K.Yuan,Reverse ATRP grafting from silica surface to prepare well-defined organic/inorganic hybrid nanocomposite.Mater.Lett.,2005,59:520.
    [55]L.Barner,N.Zwaneveld,S.Perera,Y.Pham,T.P.Davis,Reversible addition-fragmentation chain-transfer graft polymerization of styrene:Solid phases for organic and peptide synthesis.J.Polym.Sci.Part A:Polym.Chem.,2002,40:4180.
    [56]C.Y.Hong,X.Li,C.Y.Pan,Grafting polymer nanoshell onto the exterior surface of mesoporous silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization.Eur.Polym.J.2007,43:4114.
    [57]J.Parvole,J.P.Montfort,L.Billon,Formation of inorganic/organic nanocomposites by nitroxidemediated polymerization in bulk using a bimolecular system.Macromol.Chem.Phys.,2004,25:1369.
    [58]C.Bartholome,E.Beyou,E.Bourgeat-Lami,P.Chaumont,N.Zydowicz,Nitroxide-mediated polymerizations from silica nanoparticle surfaces:"Graft from" polymerization of styrene using a triethoxysilyl-terminated alkoxyamine initiator.Macromolecules,2003,36:7946.
    [59]J Parvole,L.Billon,J.P.Montfort,Formation of polyacrylate brushes on silica surfaces.Polym.Int.,2002,51:1111.
    [60]A.Kasseh,A.Ait-Kadi,B.Riedl,J.F.Pierson,Organic/inorganic hybrid composites prepared by polymerization compounding and controlled free radical polymerization.Polymer,2003,44:1367.
    [61]毋伟,陈建峰,邵磊等。聚合物接枝改性超细二氧化硅表面状况及形成机理[J],北京化工大学学报,2003,30(2):1.
    [62]张超灿,何东铭,郝爽。两亲性聚合物改性二氧化硅及其与聚丙烯酸酯乳液复合体系性能研究[J],武汉工业大学学报,2000,22(6):8
    [63]Tsubokawa N,Ishida H,Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface.J.Polym.Sci.,Part A:Polym.Chem.,1992,30:2241
    [64]Elodie Bourgeat-Lami,Jacques Lang,Encapsulation of inorganic particles by dispersion polymerization in polar media-l.Silica nanoparticles encapsulated by polystyrene.J.Colloid.Interf.Sci.,1998,197:293
    [65]F.Corcos,E.Bourgeat-Lami,et al.,Poly(styrene-b-ethylene oxide)copolymers as stabilizers for the synthesis of silica-polystyrene core-shell particles.Colloid.Polym.Sci.,1999,277:1142
    [66]E.C.Cooper,B.Vincent,Encapsulation of filler particles in polymethylmethacrylate beads by a double-dispersion method.J.Colloid.Interf.Sci.,1989,132(2):592
    [67]郭薇,贾丽萍等。超细粉的分散及粒度分布测量研究,材料研究学报,1992,6(4):320
    [68]Kenjiro Meguro,Yukari Nakamura,Bull.Chem.Soc.Jap.,1988,61:347
    [69]张宇涛,赵斌等。化学还原法制备纳米级Ag粉高分子保护机理研究,化学学报,1996,54(4):379
    [70]C.H.Bamford,K.G.AI-Lamee,Polymer surface functionalisation and grafting by a simple and inexpensive method.Macromol.Rapid.Commun.1994,15:379.
    [71]S.R.Shuckla,A.R.Athalye,Graft-copolymerization of glycidyl methacrylate onto cotton cellulose.J.Appl.Polym.Sci.,1994,54:279.
    [72]GF.Fanta R.C.Burr,W.E.Goane,Graft polymerizations of acrylonitrile and methyl acrylate onto starch and cellulose at different stirring speeds.J.Appl.Polym.Sci.,1984,29:4449.
    [73]丘坤元。铈离子氧化还原引发体系与铈离子引发接枝或嵌段共聚合研究的新进展,高等学校化学学报,1991,12(1):133
    [74]Y.P.Wang,K.Yuan,Q.Li,L.Wang,S.Gu,X.W.Pei,Preparation and characterization of poly(N-isopropylacrylamide)films on a modified glass surface via surface initiated redox polymerization.Mater.Lett.,2005,59:1736.
    [75]Stober W.;Fink A.Controlled growth of monodisperse silica spheres in the micron size range.J.Colloid.Interf.Sci.1968,26:62.
    [76]赵丽,余家国,程蓓等。单分散二氧化硅球形颗粒的制备与形成机理,化学学报,2003,61,562
    [77]刘晓云。二氧化硅/聚甲基丙烯酸叔丁酯核壳复合微粒的制备与表征,东华大学硕士学位论文,2006,17
    [78]Vanblaaderen A,Kentgens A.P.M.Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes,J.Non-Cryst.Solids.,1992,149:161
    [79]Pavlinek V,Quadrat O,Porsch B,et al.,Electrorheological behaviour of suspensions of various surface-modified porous silica particles.Colloids and Surfaces.Part A:Physicochemical and Engineering Aspects.1999,155:241
    [80]Kneuer C,Sameti M,Bakowsky U.et al.,A Nonviral DNA Delivery System Based on Surface Modified Silica Nanoparticles Can Efficiently Transfer Cells in Vitro.Bioconjugate Chemistry,2000,11:926
    [81]Mathew G,Huh M Y,Rhee J M.et al.,Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica[J].Polymers for Advanced Technologies.2004,15:400
    [82]Ahn S.H,Kim S.H,Lee S.G.Surface-modified silica nanoparticle-reinforced poly(ethylene 2,6naphthalate).J.Appl.Polym.Sci.,2004,94:812
    [83]B.Nitzan,S.Margel,Surface modification.2.Functionalization of solid surfaces with vinylic monomers.J.Polym.Sci.Part A:Polym.Chem.,1997,35,171
    [84]S.Hayashi,Y.Takeuchi,M.Eguchi,el al.,Graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto silica surface by Michael addition.J.Appl.Polym.Sci.,1999,71,1491
    [85]高其标。苯乙烯/纳米二氧化硅原位聚合,浙江大学硕士学位论文,2002,33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700