用户名: 密码: 验证码:
丙烯腈和醋酸乙烯酯水相沉淀连续共聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯腈(AN)共聚物(AN wt%>85%)纤维即腈纶,在合成纤维中因其纺织服用性能类似羊毛,深受消费者欢迎,成为当今世界轻纺工业的重要原料。通常引入第二单体,如丙烯酸甲酯(MA)、醋酸乙烯酯(VAc)、衣康酸(IA)、丙烯酸(AA)等,以改善纤维的纺丝性能。目前国内工业化的腈纶共聚第二单体主要为丙烯酸甲酯(MA)和醋酸乙烯酯(VAc)两种。其中后者原料来源丰富,价格低,且高含量下还可提供纤维的高伸缩性,成为近年来研发的热点。
     本文首先在模拟工业流程的连续小试装置上进行以VAc为二单AN水相沉淀共聚合研究。通过不同引发聚合体系和不同调控聚合体系pH值策略等实验表明,在线聚合体系pH值和聚合温度的实时反馈控制技术能快速确保聚合过程的稳定性,且重现性良好。在有种子开车的情况下一般聚合温度和体系pH值分别在半倍和二倍停留时间内趋于稳定,而离线测定的转化率、沉降值则在三倍停留时间后也达稳定。通过对比小试实验和工业生产的相关数据,可以证明连续小试装置模拟工业生产具有一定的代表性。同时,针对AN水相沉淀聚合中两种常见非稳态现象进行了初步分析。当聚合体系pH值超过3.0以后极易发生爆聚现象,而当体系pH值进一步上升超过4.0后则会导致失活现象。
     其次,通过提高单体进料中二单VAc浓度配比及聚合体系pH值,可以顺利提高丙烯腈共聚物中VAc组成,聚合转化率也略有提高,达到高醋腈纶的目标。但测试结果发现,丙烯腈共聚合物粘均分子量明显增大,与理论分析相反,原因有待进一步剖析。分子量是决定纺丝原液粘度的关键因素。分子量过大,纺丝原液粘度会大大增加,不利于后加工和纤维的形成。为降低丙烯腈共聚物分子量,分别采用了增加链转移剂用量和调节引发体系的氧化剂还原剂比例。发现链转移剂TEG用量或氧化剂浓度提高5%,聚合转化率略有增加,共聚物VAc组成有明显下降,聚合物粘均分子量明显减小,但提高到10%时变化幅度减小。此外,平均停留时间从47min缩短到44min,聚合转化率、聚合物组成和粘均分子量均基本不变,可适度提高产能。
     而且,共聚物中VAc%提高,体均和数均粒径均增大,粒径分布变窄,沉降值下降。值得注意的是,数均粒径增大幅度比较大,这说明小粒子之间凝聚速度加快。聚合体系pH值增加,体均粒径变化趋势是先增加后减小,数均粒径是先减小后增加;分布指数PDI是先增大后减小,分散系数C.V.则单边下降,而沉降值变化不明显。平均停留时间增加,数均粒径变化不大,体均粒径增加,粒径分布略变宽,沉降值略有下降。链转移剂用量或O/M比增加,体均和数均粒径都减小,粒径分布变宽,且小粒子增多,沉降值略有上升。
     最后,探讨了丙烯腈共聚物的硫氰酸钠水溶液原液的流变特性,发现剪切应力与剪切速率在双对数坐标上呈线性关系,较好地符合幂律定律,属剪切变稀的非牛顿流体,即假塑性流体。共聚物组成VAc%相近的纺丝原液剪切粘度随分子量的升高而增加。其中,非牛顿指数n变化不明显,而共聚物分子量的增大将导致其表观粘度ηα及稠度系数κ_(sp)明显增大。相同分子量范围的丙烯腈共聚物,其纺丝原液剪切粘度随着二单VAc组成的提高而降低。其中,稠度系数κ_(sp)下降明显,而非牛顿指数n仍然变化不大。
Acrylic fiber is acylonitrile copolymer fiber with acylonitrile fraction more than 85wt%. It is welcomed very much due to the wool-like clothing properties compared to other synthetic fibers and has become one of the important raw materials in the world textile and other light industries. A second comonomer, such as methacrylate (MA), vinyl acetate (VAc), itaconic acid (IA), and acrylic acid (AA), is usually incorporated into acrylic fiber to modify the spinning properties of fiber. Up to now, methacrylate (MA) and vinyl acetate (VAc) are most used as second comonomers in domestic acrylic fiber industry. The resource of VAc raw material is abundant with low price, and the fiber with high VAc content can also perform the high retractility. Therefore, acrylic fiber with high VAc content has received a lot of attention.
     In this work, the aqueous precipitation copolymerization of AN and VAc was investigated in a continuous pilot apparatus, which was scaled down from an industrial process. The experiments were carried out with different initiation systems and various pH values of polymerization system. It had been found that that the on-line monitor and control system of the polymerization temperature and pH could ensure stability and replicability of the polymerization process. For start-up with polymer seed, polymerization temperature and pH generally reach their stable state in half and two residence times respectively while the monomer conversion and sedimentation value became stable after three residence times. The comparison between pilot experimental and industrial process data has proven that the continuous pilot plant could repeat the industrial process. Meanwhile, two common unstable phenomena in AN aqueous precipitation polymerization had been analyzed. When the pH value of polymerization system was increased over 3.0, run away polymerization would take place very easily. On the other hand, when the pH value was further increased over 4.0, deactivation phenomenon would occur.
     VAc content in Copolymers had been successfully increased by increasing VAc content in monomers feeding and pH value of polymerization system. The conversion was increased slightly correspondingly, which meet requirements for high VAc content acrylic fiber. However, the average molecular weight of copolymer was increased apparently, which contradict the results of theoretical analysis. Further investigation is necessary to reveal the reasons of this phenomenon. Molecular weight was the key factor determining the viscosity of spinning dope. If the molecular weight is increased excessively, the viscosity of spinning dope will be increased dramatically, which was not favorable for post-processing and fiber formation. In order to lower the molecular weight of AN copolymer, the amount of chain transfer agent (TEG) and the oxidant in initiation system were separately increased. It was found that with 5% increase in either chain transfer agent or oxidant concentration, polymerization conversion was increased slightly, while VAc composition content in copolymer and viscosity average molecular weight decreased significantly. However, further increase in either chain transfer agent or oxidant concentration did not have significant effects on resultant copolymer. In addition, when the average residence time was shortened from 47 minutes to 44 minutes, polymerization conversion, polymer composition and viscosity average molecular weight were not significantly affected, which might improve production capacity moderately.
     When VAc content in the copolymer was increased, both volume average and number average particle sizes were increased, particle size distribution became narrow, and sedimentation value was declined. It is worth noting that the increase in number average particle size was greater, which indicated that cohesion rate between small particles was increased. When pH was increased, volume average particle size was increased first then decreased, while number average particle size was decreased first then increased. The distribution index of particle size (PDI) was increased first then decreased, while the coefficient of dispersibility (C.V.) was decreased and sedimentation value did not change significantly. When average residence time was increased, number average particle size was not changed, volume average particle size was increased, particle size distribution became broader slightly, and the sedimentation value was declined slightly. When the amount of chain transfer agent addition or oxidant was increased, both volume average and number average particle sizes were decreased, particle size distribution was broadened, the number of small particles was increased, and sedimentation value was increased slightly.
     Rheological properties of acrylonitrile copolymer in NaSCN-aqueous solution have been investigated. It was found that the shear stress and shear rate showed a linear relationship in the double logarithmic coordinates, which meet with power-law. The solution is a shear thinning non-Newtonian fluid, also called pseudoplastic fluid. The shear viscosities of solution with similar Copolymers composition was increased with the increase of the molecular weight. The non-Newtonian index n was not obviously changed, while notable increase of apparent viscosityη_αand consistency coefficient k_(sp) have been found with the increase of copolymer molecular weight. The shear viscosities of solution of Copolymers with similar molecular weight were increased with the increase of the VAc content in copolymer. Consistency coefficient k_(sp) was decreased significantly, while non-Newtonian index n was not changed.
引文
[1]吴林波.丙烯腈连续水相沉淀聚合工艺及工业装置扩能可行性研究:[硕士学位论文].杭州:浙江大学,1998
    [2]邱高,黄南薰,唐志廉,任铃子.丙烯腈.醋酸乙烯酯-甲基丙烯磺酸钠共聚体系竞聚率的研究.合成纤维工业,1999,22(4):25-28
    [3]洪璋传.丙烯腈连续水相聚合的过程分析及控制.合成纤维工业,1994,17(2):37-41
    [4]孙春峰,王成国,张旺玺.不同共聚单体与丙烯腈的共聚合及其表征.合成技术及应用,2003,18(4),9-12
    [5]张旺玺,李木森,徐忠波,王艳芝,王成国.丙烯腈与衣康酸在DMSO/H_2O中的聚合及聚合物性能表征.高分子学报,2003,(1):83-87
    [6]陈厚,刘军深,曲荣君,纪春暖,王成国,蔡华甦.不同共聚体系对丙烯腈与丙烯酸单体竞聚率的影响.高分子材料科学与工程,2005,21(6),66-69
    [7]郝文奇,周美华.丙烯腈/甲基丙烯酸正丁酯/衣康酸三元共聚体系竞聚率的研究.合成纤维,2005,35(1),6-8,11
    [8]裴玉新,徐又一.丙烯腈-马来酸酐共聚物合成的研究(一).纺织学报,1999,20(6),347-349,376;丙烯腈-马来酸酐共聚物合成的研究(二).纺织学报,2000,21(1),24-26;丙烯腈-马来酸酐共聚物的表征.纺织学报,2000,21(2),18-20
    [1]城宏内,渡边正元.丙烯腈水相沉淀连续聚合中的pH值上升.工业化学杂志,1963,66(3),370-373
    [2]城内宏,柚口贞夫,渡边正元.丙烯腈聚合物分子量分布与聚合条件的关系.工业化学杂志,1964,67(7),1063-1068
    [3]城内宏,吉村坚次.丙烯腈水相沉淀聚合机理的电镜考察.工业化学杂志,1965,68(6),1098-1102
    [4]城宏内,西尾捻.过硫酸铵-三乙醇引发丙烯腈水相聚合的聚合物分子量分布及末端基含量.工业化学杂志,1964,67(9),1476-1478
    [5]城内宏,柚口贞夫,渡边正元.高转化率下丙烯腈水相聚合机理.工业化学杂志,1964,67(9).1479-1484
    [6]W.M.Thomas.Propagation rote in AN pylon.J.Polymn.Sci.,1957,25(108):124-125
    [7]W.M.Thomas.AN Polymn.In aq.Suspension.J.Polymn.Sci.,1957,24:43-56
    [8]F.S.Dantain.The Polymn.of AN in aq.soln.J.Polymn.Sci.,1959,34:209-228
    [9]F.S.Dantain.The Polymn.of AN in aq.soln.:1.The reaction catalyzed by Frenton's reagent at 25C;2.The reaction photosensitized by Fe,FeOH,Fe and I ions;3.The ferris ion-photosensitized reaction at 15,25,30 and 50C.,J.Polymn.Sci.,1959,39:279-297,299-312,313-320
    [10]杉森辉彦等.丙烯腈水相沉淀聚合析出粒子的考察.化学工学论文集,1979,5(1):96-101
    [11]杉森辉彦等.氧化还原体系引发丙烯腈水相沉淀聚合的速率.高分子化学,1972,29(331):817-825
    [12]杉森辉彦等.丙烯腈水相沉淀聚合的速率.化学工学论文集,1977,3(4):323-330
    [13]杉森辉彦等.流体混合对丙烯腈水相沉淀聚合的影响.化学工学论文集,1977,3(4):331-337
    [14]伊藤精一,吉田完儿.低水/单体比条件下丙烯腈连续水相聚合研究:1.水/单体比和亚硫酸盐/过硫酸盐比对聚合物性质和聚合行为的影响.高分子论文集,1983,40(5):307-315
    [15]伊藤精一.低水/单体比条件下丙烯腈连续水相聚合研究:2.丙烯腈和醋酸乙烯酯水相连续共聚粒子形成过程,高分子论文集,1984,41(8),445-452
    [16]伊藤精一.低水/单体比条件下丙烯腈连续水相聚合研究:3.丙烯腈和醋酸乙烯酯水相连续共聚动力学研究.高分子论文集,1985,42(2),865-874
    [17]伊藤精一.低水/单体比条件下丙烯腈连续水相聚合研究:4.电解质对丙烯腈和醋酸乙烯酯水相连续共聚物性质的影响.高分子论文集,1986,43(1),1-8
    [18]伊藤精一等.低水/单体比条件下丙烯腈连续水相聚合研究:5.搅拌对丙烯腈和醋酸乙烯酯水相连续共聚物性质和聚合行为的影响.高分子论文集,1986,43(6),345-351
    [19]伊藤精一等.低水/单体比条件下丙烯腈连续水相聚合研究:6.丙烯腈和醋酸乙烯酯水相连续共聚聚合场所.J.Appl.Polym.Sci.,1986,31,849-859
    [20]伊藤精一等.低水/单体比条件下丙烯腈连续水相聚合研究:7.丙烯腈和醋酸乙烯酯共聚物中末端基和组成分布.J.Appl.Polym.Sci.,1986,32,4001-4008
    [21]伊藤精一等.低水/单体比条件下丙烯腈连续水相聚合研究:8.丙烯腈和醋酸乙烯酯共聚物分子量分布.纤维学会志,1986,42(1),618-625
    [22]伊藤精一.低水/单体比条件下丙烯腈连续水相聚合研究:9.聚合条件和流体混合对丙烯腈和醋酸乙烯酯水相连续共聚物分子量分布的影响.J.Appl.Polym.Sci.,1986,32,4001-4008
    [23]李伯耿.丙烯腈连续水相沉淀聚合:动力学及过程解析.浙江大学博士学位论文,1987
    [24]G.Manivannan,Peroxo salts as initiators in vinyl polymn:4.Polymn.of AN initiated by the permonosulphate-oxovanadium(Ⅳ)system,Polym.J.,1988,20(11),1011-1019
    [25]G.Manivannan,Peroxo salts as initiators in vinyl polymn:5.Polymn.of AN initiated by the permonosulphate-thioglyic acid system,Eur.Polym.J.,1989,25(5),487-589
    [26]K Rai Shesshappa,Aq.Polymn.of AN initiated by Mn(Ⅲ)pyrophosphate-thiocyanate redox system:a kinetic study,Transition Met.Chem.,1995,20,630-633
    [27]W.-C.Hsu,Studies on aq.Polymn.of vinyl monomers initiated by metal oxiandant-chelating agent redox initiators.,J.Polymn.Sci.Part A:Poly.Chem.,1993,31,3213-3222
    [28]JP 04,245,921
    [29]JP04,285,814
    [301 US 5,106,925
    [31]WO 91,15,525
    [32]JP 07,70,812
    [33]胡西芬、李志敬.丙烯腈和二丙酮丙烯酰胺的水相共聚合研究.合成纤维工业,1983,3,18-23
    [34]K W Min,W H Ray.On the mathematical modeling of emulsion polymerization reactor.J Macromol Sci,Rev Macromol Chem,1974,11,177-205
    [35]长尾英夫.丙烯腈聚合中单体的吸附.工业化学杂志,1956,59(6),695-699
    [36]H.Peebles Leighton,Copolymn.Chap4,Copolymn.Involving AN as a Principal Component,P525-582,Ham G.E.ed.Wiley,New York,1964
    [37]J.Bandrup,Faserforch U.Textiltech.,12,133,208,1961
    [38]G.R.Cotton,J.Appl.Polymn.Sci.,7,1043,1963
    [39]唐施华,丙烯腈连续水相沉淀聚合研究.浙江大学硕士学位论文,1987
    [40]任国强等.混合对丙烯腈连续水相聚合的影响:1.转速和挡板的影响;2.丙烯腈共聚物颗粒形态.合成树脂与塑料,1993,10(1),29-34;1993,10(2),13-18
    [41]吴林波.丙烯腈连续水相沉淀聚合工艺及工业装置扩能可行性研究.浙江大学硕士学位论文,1998
    [42]陈光大.丙烯腈水相沉淀聚合.合成材料,1975,6,78-86
    [43]王占平.丙烯腈-丙烯酸甲酯-衣康酸在氯化锌溶液中的聚合反应.合成纤维工业,1997,20(2),16-18
    [44]王延相.丙烯酸甲酯对聚丙烯腈原丝及预氧化丝结构和性能的影响.化工科技,2002,10(6),5-8
    [45]王艳芝.聚丙烯腈原丝纺丝溶液的合成.合成技术及应用,2001,16(4),7-9
    [46]张旺玺,李木森,徐忠波,王艳芝,王成国.丙烯腈与衣康酸在DMSO/H_2O中的聚合及聚合物性能表征.高分子学报,2003,(1):83-87
    [47]夏平.硫醇引发甲基丙烯酸甲酯与丙烯腈共聚的研究.湖州师专学报,1992,14(6),42-46
    [48]陈尔凡,陈新,牟永宁.甲基丙烯酸甲酯-丙烯腈共聚物的扭辫研究.沈阳化工学院学报,1989,3(1),67-71
    [49]郝文奇,周美华.丙烯腈/甲基丙烯酸正丁酯/农康酸三元共聚体系竞聚率的研究.合成纤维,2005,35(1),6-8,11
    [50]裴玉新,徐又一.丙烯腈-马来酸酐共聚物合成的研究(一).纺织学报,1999,20(6),347-349,376;丙烯腈-马来酸酐共聚物合成的研究(二).纺织学报,2000,21(1),24-26;丙烯腈-马来酸酐共聚物的表征.纺织学报,2000,21(2),18-20
    [51]吴雪平,吕春祥,吴刚平,凌立成,贺福.炭纤维前驱体丙烯腈-丙烯酰胺共聚物研究.高分子材料科学与工程,2005,21(2),132-134,138
    [52]吴雪平,杨永刚,凌立成,李永红,贺福.丙烯腈-丙烯酰胺溶液共聚合及其产物热性能研究,新型炭材料,2003,18(3),196-202
    [53]陈厚,张旺玺,王成国,蔡华甦.悬浮与溶液据合法合成丙烯腈共聚物的对比.合成纤维,2002,31(3),10-13
    [54]陈厚,刘军深,曲荣君,纪春暖,王成国,蔡华甦.不同共聚体系对丙烯腈与丙烯酸单体竞聚率的影响.高分子材料科学与工程,2005,21(6),66-69
    [55]王艳芝,张旺玺.丙烯腈与丙烯酸的共聚合及表征.化工科技,2001,9(4),1-4
    [56]山崎信助,滨岛求女,福田稔.高分子化学,1968,25:203;1970,27.469;1970,27:600
    [57]赵建青,李伯耿,袁惠根,潘祖仁.丙烯腈水相沉淀聚合研究进展.高分子通报,1992,1:1-8
    [58]陈忠仁,于在璋,李宝芳.AN-MA-MAS水相沉淀聚合动力学:1.引发体系的影响.化学反应工程与工艺,1987,3(3):23-29;2.单体浓度、温度和搅拌的影响.化学反应工程与工艺,1987,3(3):31-36;3.竞聚率和共聚速率.石油化工,1989,18(2):96.99
    [59]李伯耿,赵建青.丙烯腈连续水相聚合工艺研究.合成纤维,1987,4:1-7;李伯耿,赵建青,袁惠根,潘祖仁.合成纤维,1987,(4):1;全国高分子年会-武汉,1987;化学反应工程与工艺,1990,6(1):79
    [60]姜灿平.腈纶聚合新工艺及分散体系聚合的Monte Carlo模拟:[硕士学位论文].杭州:浙江大学,2001
    [61]山崎信助.水介质中非均相聚合的机理.高分子化学,1970,27(303):469-467
    [62]李勇,徐群,郭艳.丙烯腈-醋酸乙烯酯-甲基丙烯酸羟乙酯三元共聚合反应的研究.齐齐哈尔大学学报:自然科学版,2004,20(3),4-6,9
    [63]彭浩.丙烯腈-醋酸乙烯酯-甲基丙烯磺酸钠三元水相共聚体系竞聚率的研究.安徽化工2002(5),15-17
    [64]邱高,黄南薰,唐志廉,任铃子.丙烯腈-醋酸乙烯酯-甲基丙烯磺酸钠共聚体系竞聚率的研究.合成纤维工业,1999,22(4),25-28
    [65]张林,杨明远,孙钟,毛萍君.AN/VAc/MAS序列结构的表征.中国纺织大学学报,1998,24(1),91-94
    [66]郑成松,徐群,王雅臻,王蜂.酸性染料可染丙烯腈共聚合研究.齐齐哈尔大学学报自然科学版,2003,19(3),10-12
    [67]邵正彬,常静.丙烯腈水相沉淀聚合反应的影响因素分析及建议.炼油与化工,2005,3,41
    [68]于衍善.丙烯腈生产过程中pH值控制的研究.安徽化工,2004,(6),19-2l
    [69]何伟.单体VA聚合的过程分析与控制.油气田地面工程,2004,23(6),1-3
    [70]孙春峰,王成国,张旺玺.不同共聚单体与丙烯腈的共聚合及其表征.合成技术及应用,2003,18(4),9-12
    [7l]孙春峰,王成国,张旺玺.不同共聚单体与丙烯腈的共聚合及其表征.合成技术及应用,2003,18(4),9-12
    [72]Bajaj P,Paliwal D K,Gupta A K,Acrylonitrile-acrylic acids copolymers I synthesis and characterization,J Appl.Polym.Sci.,1993,49(4):823-833
    [73]洪璋传.丙烯腈二元共聚单体的选择.安庆石化,1997,19(1):1-4
    [74]赵建青,李伯耿.丙烯腈水相沉淀聚合研究进展.高分子通报,1992,1,1-8
    [75]城内宏,渡边正元,柚口贞夫.工业化学杂志.1963,66.370;1964,67:1479;1965,68:1604
    [76]W M Thomas,W C Mallison,Petroleum Refinew,1961,40:211
    [77]吴林波,曹堃,李宝芳,李伯耿,宋晓东,康健.高单体进料浓度下丙烯腈连续水相沉淀共聚的研究 Ⅰ.转化率和分子量及其分布.化学反应工程与工艺,1999,15(4):364-372;Ⅱ.聚合物颗粒形态.化学反应工程与工艺,1999,15(4):373-381
    [78]孙春峰,王成国,张旺玺.丙烯腈共聚物序列分布的Monte Carlo模拟.化工科技,2003,11(6):1-3
    [79]贾文杰,王成国,孙春峰,丙烯腈/丙烯酸甲酯/衣康酸三元共聚物序列结构的Monte Carlo模拟,合成纤维工业,2004,27(6):11-14
    [80]杨玉良,张红东.高分子科学中的Monte Carlo方法.上海:复旦大学出版社。1993:295-307
    [81]Kaname Katsuraya,Kenichi Hatanakal,Kei Matsuzakia,Kazuo Yamaura,Assignment of finely resolved 13C NMR spectra of poly(vinyl acetate),Macromocular Rapid Communications,2000,21,697-700
    [82]Kaname Katsuraya,Kenichi Hatanakal,Kei Matsuzakia,Masatomo Minagawa,Assignment of finely resolved 13C NMR spectra of polyacrylonitrile,Polymer,2001,42,6323-6326
    [83]Jacob Schaefer,High-Resolution Pulsed Carbon-13 Nuclear Magnetic Resonance Analysis of Polyacrylonitrile,1971,4(1),105-107
    [84]Cla'udia M.G.de Souza,Maria INES B.Tavares,NMR Study of Commercial Poly(ethylene-Co-Vinyl Acetate),Polymer Testing,1998,17,533-541
    [85]Regina F.Nogueira,Maria INES B.Tavares,Carbon-13 Solution and Solid-State NMR Investigation of Alpha-Methylstyrene-co-acrylonitrile,Journal of Applied Polymer Science,2002,84,138-143
    [1]马俊英,王文新,张智萍,潘立登.丙烯腈聚合反应过程中聚合物浓度与聚合转化率的联合控制.合成纤维,1995,28(3):24-26
    [2]潘立登,马俊英,赵国新,张智萍.丙烯腈聚合过程的先进控制.北京化工大学学报,1996,23(4):31-36
    [3]蓝其盈,杨波,张继壮.腈纶生产聚合过程转化率在线测定及巡检.兰化科技,1995,13(3):165-168
    [4]汪维良,任铃子,王精铎.腈纶生产工艺 Ⅰ 腈纶生产路线概况.合成纤维工业,1993,16(3):41-45
    [5]吴林波,曹堃,李宝芳,李伯耿,宋晓东,康健.高单体进料浓度下丙烯腈连续水相沉淀共聚的研究Ⅰ.转化率和分子量及其分布.化学反应工程与工艺,1999,15(4):364-372;Ⅱ_聚合物颗粒形态.化学反应工程与工艺,1999,15(4):373-381
    [6]吴林波.丙烯腈连续水相沉淀聚合工艺及工业装置扩能可行性研究.[硕士学位论文].杭州:浙江大学,1998
    [1]赵建青,李伯耿,袁惠根,潘祖仁.丙烯腈连续水相沉淀聚合动力学数模.化学反应工程与工艺,1990,6:79-88;李伯耿,赵建青,袁惠根,潘祖仁.丙烯腈连续水相聚合宏观动力学模型.化工学报,1991,2:162-170
    [2]张颖,徐冬梅,张可达.醋酸乙烯酯的可控-活性自由基聚合.功能高分子学报,2005,18(3):526-533
    [3]李伯耿.丙烯腈连续水相沉淀聚合:动力学及过程解析.浙江大学博士学位论文,1987
    [4]潘祖仁.高分子化学.北京:化学工业出版社。2003:39-49
    [5]杨慧中,张素贞,陶振麟,黄翔宇,张超峰.丙烯腈连续水相聚合宏观动力学模型.化工学报,2003,54(6):841-845
    [6]陈忠仁,于在璋,李宝芳.AN-MA-MSS水相沉淀聚合动力学:1.引发体系的影响.化学反应工程与工艺,1987,3(3):23-29;2.单体浓度、温度和搅拌的影响.化学反应工程与工艺,1987,3(3):30-36;3.竞聚率和共聚速率.石油化工,1989,18(2):96-99
    [7]杨明远,张林,毛萍君.丙烯腈的水相沉淀连续聚合反应,中国纺织大学学报,1998,24(2):97-100
    [8]吴林波,曹堃,李宝芳,李伯耿等.高单体进料浓度下丙烯腈连续水相沉淀共聚的研究Ⅰ.转化率和分子量及其分布.化学反应工程与工艺,1999,15(4):364-372;
    [9]洪璋传.丙烯腈连续水相聚合的过程分析及控制.合成纤维工业,1994,17(2):37-41
    [10]洪璋传,尤学业,杨明远,潘才元,张本平.AN-VAc-AMPS三元共聚合研究.合成纤维工业,2002,25(6).13-16
    [11]Chen Zhang,Zhongjie Du,Hangquan Li,Eli Ruckenstein.Acrylonitfile-co-vinyl acetate with uniform composition via adiabatic self-heating copolymerization in a concentrated emulsion.Polymer,2002,43:2945-2951
    [12]John R Ebdon,Thomas N Huckerby,the late Thomas C Hunter.Free-Radical Aqueous Slurry Polymerization of Acrylonitrile:2.End-Groups and other Minor Structure in Polyacrylonitrile initiated by Potassium Persulfate/Sodium Bisulfite.Polymer,1994,35(21):4659-4664
    [1]吴林波.丙烯腈连续水相沉淀聚合工艺及工业装置扩能可行性研究:[硕士学位论文].杭州:浙江大学,1998
    [2]吴林波,李宝芳,曹堃,李伯耿,宋晓东,王桂兰,李惠枫.高单体进料浓度下丙烯腈连续水相沉淀共聚的研究.Ⅱ.聚合物颗粒形态.化学反应工程与工艺,1999,15(4):372-379
    [3]任国强,史子瑾,童克锦.混合对丙烯腈连续水相沉淀共聚的影响:Ⅱ丙烯腈共聚物的颗粒形态.合成树脂及塑料,1993,lO(2):13-18
    [4]袁燕华,陈明清,刘晓亚,倪忠斌.聚合反应条件对颗粒形态与粒径影响的研究.功能材料,2005,1(36):153-156
    [5]伊藤精一.低水/单体比条件下丙烯腈连续水相聚合研究:2.丙烯腈平和醋酸乙烯酯水相连续共聚粒子形成过程.高分子论文集,1984,41(8),445-452
    [6]伊藤精一,吉田完儿.低水/单体比条件下丙烯腈连续水相聚合研究:1.水/单体比和亚硫酸盐/过硫酸盐比对聚合物性质和聚合行为的影响.高分子论文集,1983,40(5),307-315
    [7]唐施华.丙烯腈连续水相沉淀聚合研究.浙江大学硕士学位论文,1987
    [1]毛萍君,张国萍,张林,杨明远,刘菲菲.干湿法PAN纺丝溶液的制备及其性能研究.合成纤维,2001,30(1):21-24
    [2]李正德,陶启平.PAN浆液粘度.温度经验公式的推导及其应用.合成纤维,1987,16(3):1-6
    [3]李静,向国英.聚丙烯腈.二甲基亚砜溶液流变性能.合成纤维,1982,11(3):1-5
    [4]陈方泉,陈惠芳,潘鼎.聚丙烯腈/二甲基亚砜溶液的流变学性质.高分子材料科学与工程,2005,21(3):133-136
    [5]顾雪萍,冯连芳,王嘉骏,王凯,任国强.聚丙烯腈.硫氰酸钠水溶液的流变方程.合成纤维工业,2001,24(6):10-13
    [6]胡玉洁,王新伟,李青山,朱思君.丙烯腈/乙酸乙烯酯二元共聚物流变性能研究.合成纤维工业,2004,27(5):1-3
    [7]王艳芝,朱波,张旺玺,王成国.聚丙烯腈原丝纺丝溶液的合成.合成技术及应用,164).7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700