用户名: 密码: 验证码:
丙烯酰胺在聚乙二醇水溶液中的双水相聚合成滴机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以偶氮二异丁咪唑啉盐酸盐(AIBI)或过硫酸铵(APS)为引发剂,在聚乙二醇(PEG)水溶液中进行丙烯酰胺(AM)的双水相聚合,制备了稳定的聚丙烯酰胺(PAM)水分散液。该水分散液不含任何有机溶剂,可直接使用,具有无二次污染、快溶水的特点,可广泛应用于污水处理、造纸及印染等行业。本论文研究了PAM与PEG间的相互作用及AM在该双水相(聚合)体系中的分配;研究了AM在PEG水溶液双水相聚合中PAM液滴演变及各因素对其的影响,提出了液滴形成、生长、稳定机理;分别建立了AIBI与APS引发AM在PEG水溶液中双水相聚合动力学模型,成功地对其聚合动力学进行了预测。
     表征了PAM与PEG分别在固体共混物与水溶液中的相互作用,发现PEG链上的部分-O-与PAM链上的部分-NH2发生了氢键缔合。考察了聚合物分子量、温度及小分子物质的加入对PAM与PEG相互作用的影响。分子量较大的PAM易自身卷曲成线团,PEG通过氢键缠结在PAM线团周围。升高温度可削弱其氢键缔合。
     研究了聚合物浓度、分子量、温度对AM在PAM-PEG-H20双水相体系中分配的影响,发现水是影响其分配的重要因素。AM分配系数随PEG浓度或分子量的增加而减小,随PAM浓度或分子量的增加而增大。随温度的升高,分配系数先减小后升高,最低值在50℃附近。研究了AM在PEG水溶液双水相聚合过程中的单体分配系数。
     采用动态光散射(DLS)在线检测了双水相聚合初期液滴形成、生长规律,发现液滴在经历初期短暂的稳定后进入了聚并期,其滴径分布先变宽后变窄。采用透射电镜(TEM)及激光粒度仪观察了反应各阶段液滴形态与尺寸,发现PAM液滴不断从连续相析出,在聚合中前期液滴聚并明显,而在聚合中后期由于体系粘度较大,液滴聚并受限,最终得到了大小液滴、球状与条状液滴共存的多分散体系。提出了AM在PEG水溶液中双水相聚合的液滴形成、生长机理。
     详细研究了各聚合因素对最终双水相聚合产品PAM液滴形态与尺寸的影响,发现其液滴形态及尺寸与聚合速率与单体分配有关。随引发剂、单体浓度的增加,成滴速率加快,液滴聚并增多,使液滴形态趋于条状。而聚合温度同时影响聚合速率与单体分配,对液滴形态与尺寸的影响较为复杂。PEG浓度的增加,使液滴尺寸变大,液滴形态先由条状变为球状,然后变为爆米花状,说明PEG不仅有稳定液滴的作用,还有促进液滴形成,加剧液滴聚并的作用。特丁醇的加入使液滴聚并增多,而乙二醇的加入使液滴变得更加稳定。
     考察了聚合速率以及体系粘度对AM在PEG水溶液中双水相聚合过程稳定性影响。发现当聚合速率过快时,在聚合初期液滴聚并过度,容易产生絮凝物(Coagulum)。在线检测了聚合过程中的体系粘度演变,发现其粘度演变与相分离有关。当体系粘度较大时,PAM从连续相析出的速率减慢,容易形成凝胶块状产品。控制适当的聚合速率与体系粘度是制备稳定产品的关键。
     采用Flory-Huggins理论预测了AM在PEG水溶液双水相聚合过程中各相物质组成及各相体积的变化,发现其与实验值能很好地吻合。分别建立了AIBI与APS引发AM在PEG水溶液中双水相聚合的聚合动力学模型,准确地预测了双水相聚合动力学;同时,计算结果显示,引发剂在两相的分配、自由基吸附与脱吸对聚合动力学的影响很小。
A stable poly(acrylamide) (PAM) aqueous dispersion has been prepared via the aqueous two-phase polymerization of acrylamide (AM) in aqueous poly(ethylene glycol) (PEG) solution with 2,2'-azobis[2-(2-imidazolin-2-yl)propane]-dihydrochloride (AIBI) or ammonium persulfate (APS) as the initiator. This kind of product without containing any organic solvent has rapid dissolution rate in water, and can be used directly without any pollution, and therefore, it can be applied in many fields such as waste water treatment, paper making, spinning and printing industries. In this thesis, the interaction between PAM and PEG blend and in water, the partition of AM in the aqueous two-phase (polymerization) system, the evolution of droplet size and morphology during polymerization and the effects of various factors on the final droplet size and morphology were investigated systemically, as well as the droplet formation mechanism, and polymerization system stability for the aqueous two-phase polymerization of AM in aqueous PEG solution. Based on these studies, a kinetic model was proposed which could well predict the aqueous two-phase polymerization kinetics.
     IR,1H NMR and viscosity experiments were carried out to analyze the interaction between PAM and PEG in their solid blends and aqueous solution. It was confirmed that part of-O-groups of PEG molecular chain interacted with part of-NH2 groups of PAM molecular chain through hydrogen bonding in their relatively concentrated aqueous solution. The effects of the polymer molecular weight, temperature, and the addition of some compound with low molecular weight on the interaction between PAM and PEG in water were studied. The PAM molecular chains, especially having high molecular weights, preferred to form spherical clews in aqueous PEG solution, and these clews are surrounded with the PEG molecular chains through hydrogen bonding. Moreover, this kind of hydrogen bonding could be broken by raising the temperature.
     The effects of polymer concentration and molecular weight as well as the temperature on the AM partition in the aqueous two phase system of PAM-PEG-H2O were investigated. It was shown that the water content in each phase is vital to determine the AM partition. The AM partition coefficient decreased with the increase of PEG concentration or molecular weight, and with the decrease of PAM concentration or molecular weight. With temperature rising, the partition coefficient decreased until the temperature reached about 50℃, and then increased again while raising the temperature sequentially. Thereafter, the monomer partitioning behaviors during the aqueous two-phase polymerization process were investigated systemically.
     The droplet appearance and growth in the initial stage of the aqueous two-phase polymerization was followed by dynamic light scattering (DLS). Results show that the PAM droplet aggregates with each other significantly after a temporary period in which the droplet can exist stably. Therefore, the droplet size distribution become wide at first, and then become narrow again with the polymerization proceeding. The size and morphology of aqueous PAM droplet at every stage were observed by laser particle size analyzer and transmission electron microscopy (TEM). It was found that the small droplets are separated continuously from the continuous phase in the whole polymerization. At the relatively low conversion stage of polymerization, the droplet aggregation is significant. However, the droplet coalescence was restrained at high conversion stage because of the high viscosity. Finally, polydisperse droplets with both spherical and stripe shape were obtained. Based on these results, a mechanism of droplet formation and growth was proposed for the aqueous two-phase polymerization of AM in aqueous PEG solution.
     The influences of various polymerization conditions on the droplet size and morphology were studied systemically. It was found that the size and morphology of the droplets are closely dependent on the polymerization rate and monomer partition. The morphology of the droplets inclined to become stripe shape because of more droplet aggregation with increasing initiator or monomer concentration. Besides the polymerization rate, the polymerization temperature could also affect the droplet size and morphology in the hand of monomer partition. The increase of PEG concentration leads to generate bigger and round droplets at first, and then inclined to form popcorn droplets. This result strongly indicates that increasing the PEG concentration not only restrained the aggregation of the droplets, but also shortened the critical length of PAM radical chain to accelerate the droplet formation which does not favor the droplet stabilization. The addition of TBA and glycol to the polymerization system both decreased the droplet size; the former caused lots of aggregation to form many stripe shape droplets; however, the latter made the droplets become more stable.
     The effects of polymerization rate and system viscosity on the process stability of the aqueous two-phase polymerization were explored. A droplet aggregation period was found in the initial stage, in which the PAM coagulum is easy to be generated due to the high polymerization rate. Moreover, the viscosity evolution during the polymerization under various reaction conditions was determined on line. It was found that the viscosity was relevant to the phase separation. When the system viscosity is too high, the phase separation is very slow. If the polymerization rate is too rapid at this time, massive gel would be produced. All these results demonstrate that controlling appropriate polymerization rate is a key factor to keep the stability of the aqueous two-phase polymerization system.
     Flory-Huggins (FH) theory was applied to predict the composition of each phase during the whole polymerization. The prediction of monomer concentration, PAM and PEG mass fraction in each phase under various polymerization conditions agreed well with the experimental data. Based on FH theory, a model was established for simulating the polymerization kinetics of the aqueous two phase polymerization of AM in aqueous PEG solution. The theoretical calculation by the kinetic model showed that the partition of initiator, radical absorption from continuous phase and radical desorption from the dispersion phase have neglectable effect on the polymerization kinetics. The effects of initiator, monomer and PEG concentration on the polymerization kinetics were also studied systemically. It was found that the proposed kinetic model can predict well the polymerization kinetics over a wide range of various polymerization conditions.
引文
[1]严瑞瑄.水溶性高分子,北京:化学工业出版社,1998,159-167
    [2]方道斌,郭睿威,哈润华.丙烯酰胺聚合物,北京:化学工业出版社,2006,310-502
    [3]郑幼松.聚丙烯酰胺类絮凝剂的现状与进展,山东化工,2009,38,24-27
    [4]Ray B, Mandal B M. Dispersion polymerization of acrylamide, Langmuir,1997,13,2191-2196
    [5]Ye Q, Zhang Z C, Jia H T, He W D, Ge X W. Formation of monodisperse polyacrylamide particles by radiation-induced dispersion polymerization:particle size and size distribution, J Colloid Interf Sci, 2002,253,279-284
    [6]Hosoda Y, Ueshima T, Ishihara S, Imamura K. In:Bailey W J, Tsuruta T. New emulsion system-polymeric "water in water" emulsion. Contemp Topics Polym Sci,1980,4,575-586
    [7]Albertsson P A. Partition of cell particles and macromolecules:separation and purification of biomolecules cell organelles membrances, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology,3rd edn. New York, Wiley-Interscience,1986,4-95
    [8]曹志海.丙烯酰胺双水相聚合[硕士学位论文],中国杭州,浙江大学,2003,1-2
    [1]Bailey F E, JR, Lundberg R D, Callard R W. Some factors afferting the molecular association of poly(ethylene oxide) and poly(acrylic acid) in aqueous solution, J Polym Sci Part A:Polym Chem, 1964,2,845-851
    [2]Oyama H T, Tang W T, Frank C W. Complex formation between poly(acrylic acid) and pyrene-labeled poly(ethylene glycol) in aqueous solution, Macromolecules,1987,20,474-480
    [3]Oyama H T, Tang W T, Frank C W. Effect of hydrophobic interaction in the poly(methacrylic acid)/pyrene end-labeled poly(ethylene glycol) complex, Macromolecules,1987,20,1839-1847
    [4]Oyama H T, Hemker D J, Frank C W. Effect of the degree of ionization of poly(methacrylic acid) on the complex formed with pyrene end-labeled poly(ethylene glycol), Macromolecules,1989,22, 1255-1260
    [5]Bednar B, Li Z M, Huang Y H, Chang L-C P, Morawetz H. Fluorescence study of factors affecting the complexation of poly(acrylic acid) with poly(oxyethylene), Macromolecules,1985,18,1829-1833
    [6]Bpkias G, Staikos G, Iliopoulos 1, Audebert R. Interpolymer association between acrylic acid copolymers and poly(ethylene glycol):effects of the copolymer nature, Macromolecules,1994,27, 427-431
    [7]Staikos G, Bokias G, Karayanni K. Interpolymer complexes of poly(acrylamide) and poly(N-isopropylacrylamide) with poly(acrylic acid):a comparative study, Polym Int,1996,41, 345-350
    [8]Vasile C, Bumbu G G, Mylonas Y, Cojocaru 1, Staikos G. Hydrogen-bonding interaction of an alternating maleic acid-vinyl acetate copolymer with poly(ethylene glycol), polyacrylamide and poly(N-isopropylacrylamide):a comparative study, Polym Int,2003,52,1887-1891
    [9]Karayanni K, Staikos G. Study of the lower critical solution temperature behavior of poly(vinyl methyl ether) aqueous solutions in the presence of poly(acrylic acid):the role of interpolymer hydrogen bonding interaction, Eur Polym J,2000,36,2645-2650
    [10]Wang Y C, Morawetz H. Fluorescence study of the complexation of poly(acrylic acid) with poly(N,N-dimethylacrylamide-co-acrylamide), Macromolecules,1989,22,164-167
    [11]Koussathana M, Lianos P. Staikos G. Investigation of hydrophobic interactions in dilute aqueous solutions of hydrogen-bonding interpolymer complexes by steady-state and time-resolved fluorescence measurements. Macromolecules,1997,30,7798-7802
    [12]Lu X H, Hu Z B, Schwarz J. Phase transition behavior of hydroxypropylcellulose under interpolymer complexation with poly(acrylic acid), Macromolecules,2002,35,9164-9168
    [13]Daoust H, Darveau R, Laberge F. Microcalorimetric investigation on interaction between poly(acrylic acid) and oxyethylene oligomers in water, Polymer,1990,31,1945-1949
    [14]Chatterjee S K, Chhabra M, Johri S. Thermodynamic studies of some complexation systems involving methacrylic acid-acrylamide copolymer, poly(vinyl pyrrolidone) and poly(ethylene oxide), J Polym Sci Part A:Polym Chem,1994,32,1169-1174
    [15]Maltesh C, Somasundaran P, Pradip, Kulkarni R A, Gundiah S. Effect of the degree of hydrolysis of polyacrylamide on its interactions with poly(ethylene oxide) and poly(vinylpyrrolidone), Macromolecules,1991,24,5775-5778
    [16]Sivadasan K, Somasundaran P, Turro N J. Fluorescence and viscosity study of complexation of poly(acrylic acid) with poly(acrylamide) and hydrolyzed poly (acrylamide), Colloid Polym Sci,1991, 269,131-137
    [17]Iliopoulos I, Audebert R. Complexation of acrylic acid copolymers with polybases:importance of cooperative effects, Macromolecules,1991,24,2566-2575
    [18]Ravichandran S, Ramanathan K. Ultrasonic velocity studies and allied parameters of polyacrylamide/polyethyleneglycol (600) and polyacrylamide/polyvinylalcohol blend solution at low concentrations, Polym-Plast Technol Eng,2008,47,164-168
    [19]Lu X Y, Weiss R A. Phase-behavior of blends of poly(ethylene glycol) and partially neutralized poly(acrylic acid), Macromolecules,1995,28,3022-3029
    [20]Moharram M A, Balloomal L S, El-Gendy H M. Infrared study of the complexation of poly(acrylic acid) with poly(acrylamide), J Appl Polym Sci,1996,59,987-990
    [21]Flory P J. Principles of polymer chemistry, Ithaca and London, Cornell university press,1953, 497-520
    [22]Albertsson P A. Partition of cell particles and macromolecules:separation and purification of biomolecules cell organelles membrances, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology,3rd edn. New York, Wiley-Interscience,1986,4-95
    [23]Kishida A, Nakano S, Kikunaga Y, Akashi M. Synthesis and functionalities of poly(N-vinylalkylamide) 7. a novel aqueous two-phase systems based on poly(N-vinylacetamide) and dextran, J Appl Polym Sci,1998,67,255-258
    [24]Kishida A, Nakano S, Kikunaga Y, Akashi M. Synthesis and functionality of poly(N-vinylalkylamide) X. a novel aqueous two-phase system based on thermosensitive polymers and dextran, J Appl Polym Sci,1999,73,2545-2548
    [25]Iliopoulos I, Frugier D, Audebert R. Phase separation in mixtures of two polymers in water, Polym Preprints.1989.30,371-372
    [26]Luiza H M. Silva D, Antonio J A Meirelles. Phase equilibrium and protein partitioning in aqueous mixture of maltodextrin with poly(propylene glycol), Carbohyd Polym,2000,42,273-278
    [27]Bergfeldt K. Piculell L, Tjerneld F. Phases separation phenomena and viscosity enhancements in aqueous mixture of poly(styrene sulfonate) with poly(acrylic acid) at differene neutralization, Macromolecules,1995,28,3360-3370
    [28]Johansson H O, Karlstrom G, Mattiasson B, Tjerneld F. Experimental and theoretical study of phase separation in aqueous solution of clouding polymers and carboxylic acid, Macromolecules,1993,26, 4478-4483
    [29]Groβmann C, Tintinger R, Zhu J D, Maurer G. Partitioning of some amino acids and low molecular peptides in aqueous two-phase system of poly(ethylene col) and dipotassium hydrogen phosphate, Fluid Phase Equilib,1997,137,209-228
    [30]Groβmann C, Tintinger R, Zhu J D, Maurer G. Partitioning of low molecular combination peptides in aqueous two-phase systems of poly(ethylene glycol) and dextran in the presence of small amounts of K2HPO4/KH2PO4 buffer at 293 K:experimental results and predictions, Biotechnol Bioeng,1998,60, 699-711
    [31]Kenkare P U, Hall C K. Modeling of phase separation in PEG-salt aqueous two-phase systems, AIChE J,1996,42,3508-3522
    [32]Zafarani-Moattar M T, Sadeghi R, Hamidi A A. Liquid-liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate:experiment and correlation, Fluid Phase Equilib,2004,219,149-155
    [33]Ryden J, Albertsson P A. Interfacial tension of dextran-poly(ethylene glycol)-water 2-phase systems, J Colloid Interf Sci,1971,37,219-222
    [34]Schurch S, Gerson D F, Malver D J L. Determination of cell/medium interfacial tensions from contact angles in aqueous polymer systems, Biochim Biophys Acta,1981,640,557-571
    [35]Bamberger S, Seaman G V F, Sharp K A, Brooks D E, The effects of salts on the interfacial-tension of aqueous dextran poly(ethylene glycol) phase systems, J Colloid Interf Sci,1984,99,194-200
    [36]Nan Y Q, Liu H L, Hu Y. Interfacial tension in phase-separated aqueous cationic/anionic surfactant mixture, J Colloid Interf Sci,2006,293,464-474
    [37]Ding P, Pacek A W, Frith W J, Norton I T, Wolf B. The effect of temperature and composition on the interfacial tension and rheology of separated phase in gelatin/pullulan mixture, Food Hydrocolloids, 2005,19,567-574
    [38]Ding P, Wolf B, Frith W J, Clark A H, Norton I T, Pacek A W. Interfacial tension in phase-separated gelatin/dextran aqueous mixtures, J Colloid Interf Sci,2002,253,367-376
    [39]Johansson H O, Karlstrom G, Tjerneld F, Haynes C A. Driving forces for phase separation and partitioning in aqueous two-phase systems, J Chromatogr B,1998,711,3-17
    [40]Sousa R C S, Coimbra J S R, Da-Silva L H M, Da-Silva M C H, Rojas E E G, Vicente A A A. Thermodynamic studies of partitioning behavior of lysozyme and conalbumin in aqueous two-phase systems, J Chromatogr B,2009,877,2579-2584
    [41]Shao Z H, Cao X J. Model simulation of BSA partitioning in recycling aqueous two-phase systems composed of light-sensitive polymer PNBC-dextran, J Chem Eng Data,2008,53,2755-2757
    [42]Mohamed R S, Filho P A P. Thermodynamic modeling of the partitiong of biomolecules in aqueous two-phase systems using a modified Flory-Huggins equation, Process Biochem,2004,39,2075-2083
    [43]Lin D Q, Wu Y T, Mei L H, Zhu Z Q, Yao S J. Modeling the protein partitioning in aqueous polymer two-phase systems:influence of polymer concentration and molecular weight, Chem Eng Sci,2003, 58,2963-2972
    [44]Khederlou K, Pazuki G R, Taghikhani V, Vossoughi M, Ghotbi C. Measurement and modeling process partitioning of cephalexin antibiotic in aqueous two-phase systems containing poly(ethylene glycol) 4000,10000 and K2HPO4, Na3Citrate, J Chem Eng Data,2009,54,2239-2244
    [45]Peng Q, Li Z, Li Y. Experiments, correlation and prediction of protein partition coefficient in aqueous two-phase systems containing PEG and K2HPO4-KH2PO4, Fluid Phase Equilib,1995,107,303-315
    [46]Kawaguchi S. Ito K. Dispersion polymerization. Adv Polym Sci.2005,175,299-328
    [47]Lacroix-Desmazes P. Guillot J. Dispersion polymerization of styrene in ethnol-water media:monomer partitioning behavior and locus of polymerization, J Polym Sci Part B:Polym Phys,1998,36, 325-335
    [48]Almog Y, Reich S, Levy M. Monodisperse polymeric spheres in the micron size range by a single step process, Brit Polym J,1982,14,131-136
    [49]Shaffer K A, Jones T A, Canelas D A, Desimone J M, Wilkinson S P. Dispersion polymerizations in carbon dioxide using siloxane-based stabilizers, Macromolecules,1996,29,2704-2706
    [50]Ober C K, Lok K P, Hair M L. Monodispersed, micron-sized polystryrene particles by dispersion polymerization, J Polym Sci Part C:Polym Lett,1985,23,103-108
    [51]Ober C K, Hair M L. The effect of temperature and initiator levels on the dispersion polymerization of polystryrene, J Polym Sci Part A:Polym Chem,1987,25,1395-1407
    [52]Ober C K, Lok K P. Formation of large monodisperse copolymer particles by dispersion polymerization, Macromolecules,1987,20,268-273
    [53]Tseng C M, Lu Y Y, El-Aasser M S, Vanderhoff J W. Uniform polymer particles by dispersion polymerization in alcohol, J Polym Sci Part A:Polym Chem,198624,2995-3007
    [54]Okubo M, Ikegami K, Yamamoto Y, Studies on suspension and emulsion 106. preparation of macrospheres having chloromethyl group, Colloid Polym Sci,1989,267,193-200
    [55]Okubo M, Katayama Y, Yamamoto Y. Studies on suspension and emulsion 121. preparation of macrospheres having cross-linked structures and vinyl group. Colloid Polym Sci,1991,269,217-221
    [56]Paine A J, McNulty J. Uniform polymer particles by dispersion polymerization in alcohol comment, J Polym Sci Part A:Polym Chem,1990,28,2569-2574
    [57]Paine A J. Dispersion polymerization of styrene polar-solvents 1. grafting mechanism of stabilization by hydroxypropyl cellulose, J Colloid Interf Sci,1990,138,157-169
    [58]Paine A J. Dispersion polymerization of stryrene in polar-solvents 4. solvency control of particle-size from hydroxypropyl cellulose stabilized polymerizations, J Polym Sci Part A:Polym Chem,1990,28, 2485-2500
    [59]Paine A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar-solvents 6. influence of reaction parameters on particle-size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions, Macromolecules,1990.23,3104-3109
    [60]Paine A J. Dispersion polymerization of styrene in polar-solvents 7. a simple mechanistic model to predict particle-size, Macromolecules,1990,23,3109-3117
    [61]Tuncel A. Electron microscopic observation of uniform macroporous particles. Ⅱ. effect of DVB concentration, J Appl Polym Sci,1999,71,2291-2302
    [62]Okubo M, Konishi Y, Minami H. Production of hollow polymer particles by suspension polymerizations for divinylbenzene/toluene droplets dissolving various polymers, Colloid Polym Sci, 2000.278,659-664
    [63]Watanabe S, Ueno K, Kudoh K, Murata M, Masuda Y. Preparation of core-shell polystyrene-polyimide particles by dispersion polymerization of styrene using poly(amic acid) as a stabilizer, Macromol Rapid Commun,2000,21,1323-1326
    [64]Horak D. Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization, J Polym Sci Part A:Polym Chem,2001,39,3707-3715
    [65]Bourgeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media 1. silica nanoparticles encapsulated by polystyrene, J Colloid Interf Sci,1998,197,293-308
    [66]Chen M Q, Kishida A, Akashi M. Graft copolymers having hydrophobic backbone and hydrophilic branches 11. preparation and thermosensitive properties of polystyrene microspheres having poly(N-isopropylacrylamide) branches on their surfaces, J Polym Sci Part A:Polym Chem,1996,34, 2213-2220
    [67]Sosnowski S. Poly(L-lactide) microspheres with controlled crystallinity, Polymer,2001,42,637-643
    [68]Shen S, Sudol E D, El-Aasser M S. Dispersion polymerization of methyl methacrylate:mechanism of particle formation, J Polym Sci Part A:Polym Chem,1994,32,1087-1100
    [69]Kim O H, Lee K, Kim K, Lee B H, Choe S. Effect of PVA in dispersion polymerization of MMA, Polymer,2006,47,1953-1959
    [70]Ray B, Mandal B M. Dispersion polymerization of acrylamide, Langmuir,1997,13,2191-2196
    [71]Okaya T, Kikuchi K, Suzuki A, Ikeda N. Dispersion polymerization of vinyl acetate in a mixture of ethanol and water, Polym Int,2005,54,143-148
    [72]Lee J M, Lee B H, Choe S. The effect of polystyrene-block-poly(4-vinylpyridine) prepared by a RAFT method in the dispersion polymerization of MMA, Polymer,2006,47,3838-3844
    [73]Guha S, Mandal B M. Dispersion polymerization of acrylamide III. partial isopropyl ester of poly(vinyl methyl ether-alt-maleicanhydride) as a stabilizer, J Colloid Interf Sci,2004,271,55-59
    [74]Furuhashi H, Kawaguchi S, Itsuno S, Ito K. Synthesis, polymerization, and dispersion copolymerization of poly(ethylene oxide) macromonomers carrying methacryloyloxyalkyl end groups, Colloid Polym Sci,1997,275,227-233
    [75]Akashi M, Chao D,Yashima E, Miyauchi N. Graft-copolymers having hydrophobic backbone and hydrophilic branches 5. microspheres obtained by the copolymerization of poly(ethylene glycol) macromonomer with methyl-methacrylate, J Appl Polym Sci,1990,39,2027-2030
    [76]Capek I, Riza M, Akashi M. Effects of the initiator type on the dispersion copolymerization of poly(ethylene glycol) macromonomer and styrene, Polym J,1992,24,959-970
    [77]Shen R, Senyo T, Akiyana C, Atago Y, Ito K. One-step synthesis of alpha-p-vinylphenylalkyl-omega-hydroxy poly(ethylene oxide) macromonomers by anionic polymerization initiated from p-vinylphenylalkanols, Polymer,2003,44,3221-3228
    [78]Capek I, Riza M, Akashi M. On the kinetics of polymerization and copolymerization of poly(oxyethylene) macromonomers and styrene, Makromol Chem,1992,193,2843-2860
    [79]Riza M, Capek I, Kishida A, Akashi M. Graft-copolymers having hydrophobic and hydrophilic brabches 8. effect of temperature on the dispersion copolymerization of poly(ethylene glycol) macromonomer with styrene, Angew Makromol Chem,1993,206,69-75
    [80]Capek I, Riza M, Akashi M. Dispersion copolymerization of poly(oxyethylene) macromonomers and styrene, J Polym Sci Part A:Polym Chem,1997,35,3131-3139
    [81]Capek I, Nguyen S H, Berek D. Polystyrene-graft-poly (ethylene oxide) copolymers prepared by macromonomer technique in dispersion 2. mechanism of dispersion copolymerization, Polymer,2000, 41,7011-7016
    [82]Kawaguchi S,Winnik M A, Ito K. Dispersion copolymerization of N-butyl methacrylate with poly(ethylene oxide) macromonomers in methanol-water-comparison of experiment with theory, Macromolecules,1995,28,1159-1166
    [83]Liu J, Gan L M, Chew C H, Quek C H, Gan L H. The particle size of latexes from dispersion polymerization of styrene using poly(ethylene oxide) macromonomer as a polymerizable stabilizer, J Polym Sci Part A:Polym Chem,1997,35,3575-3583
    [84]Liu J, Chew C H,Wong S Y,Gan L M, Lin J, Tan K L. Dispersion polymerization of styrene in aqueous ethanol media using poly(ethylene oxide) macromonomer as a polymerizable stabilizer, Polymer,1998. 39.283-289
    [85]Imai H. Kawaguchi S, Ito K. Syntheses of poly(ethylene oxide-b-styrene oxide) macromonomers and their application to emulsion and dispersion copolymerizations with styrene, Polym J,2003,35, 528-534
    [86]Lacroix-Desmages P, Guyot A. Reactive surfactants in heterophase polymerization 2. maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media, Macromolecules,1996,29,4508-4515
    [87]Lacroix-Desmages P, Guyot A. Reactive surfactants in heterophase polymerization 4. dispersion polymerization of styrene and methyl methacrylate:particle formation and prediction of final size, Colloid Polym Sci,1996,274,1129-1136
    [88]Akashi M,Yanagi T,Yashima E, Miyauchi N. Graft-copolymers having hydrophobic and hydrophilic brabches 4. a copolymerization study of water-soluble oligovinylpyrrolidone macromonomers, J Polym Sci Part A:Polym Chem.1989,27,3521-3530
    [89]Serizawa T, Takehara S, Akashi M. Transmission electron microscopic study of cross-sectional morphologies of core-corona polymeric nanospheres, Macromolecules,2000,33,1759-1764
    [90]Chen M Q, Serizawa T, Kishida A, Akashi M. Graft copolymers having hydrophobic backbone and hydrophilic branches XXIII. particle size control of poly(ethylene glycol)-coated polystyrene nanoparticles prepared by macromonomer method, J Polym Sci Part A:Polym Chem,1999,37, 2155-2166
    [91]Shay J S, English R J, Spontak R J, Balik C M, Khan S A. Dispersion polymerization of polystyrene latex stabilized with novel grafted poly(ethylene glycol) macromers in 1-propanol/water, Macromolecules,2000,33.6664-6671
    [92]Li K, Stover H D H. Highly cross-linked micron-range polymer microspheres by dispersion polymerization of divinylbenzene, J Polym Sci Part A:Polym Chem,1993,31,2473-2479
    [93]Li K, Stover H D H. Synthesis of monodisperse poly(divinylbenzene) microspheres, J Polym Sci Part A:Polym Chem,1993,31,3257-3263
    [94]Downey J S, Frank R S, Li W H, Stover H D H. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization, Macromolecules,1999,32,2838-2844
    [95]Li W H. Stover H D H. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization. Macromolecules,2000,33,4354-4360
    [96]Li W H, Li L K, Stover H D H. Monodisperse poly(chloromethylstyrene-co-divinylbenzene) microspheres by precipitation polymerization, J Polym Sci Part A:Polym Chem,1999,37,2295-2303
    [97]Ni H M, Kawaguchi H. Mechanism of Preparing monodisperse poly(acrylamide/methacrylic acid) microspheres in ethanol I, J Polym Sci Part A:Polym Chem,2004,42.2823-2832
    [98]Ni H M, Kawaguchi H. Mechanism of Preparing monodisperse poly(acrylamide/methacrylic acid) microspheres in ethanol Ⅱ, J Polym Sci Part A:Polym Chem.2004,42,2833-2844
    [99]Xing C M, Yang W T. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. I. effects of principal factors on microspheres, J Polym Sci Part A:Polym Chem,2005,43, 3760-3770
    [100]Xing C M, Yang W T. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. Ⅱ. polymerization features, Macromol Chem Phys,2006,207,621-626
    [101]Shen S, Sudol E D, El-Aasser M S. Control of particle size in dispersion polymerization of methyl methacrylate, J Polym Sci Part A:Polym Chem,1993,31,1393-1402
    [102]Cao K, Yu J, Li B G, Li B F, Pan Z R. Micron-size uniform poly(methyl methacrylate) particles by dispersion polymerization in polar media 1. particle size and particle size distribution, Chem Eng J, 2000,78,211-215
    [103]Corner T. Poly-electrolyte stabilized lattices 1. preparation, Colloids Surface,1981,3,119-129
    [104]Yasuda M, Seki H, Hokoyama H, Ogino H, Ishimi K, Ishikawa H. Simulation of a particle formation stage in the dispersion polymerization of styrene, Macromolecules 2001,34,3261-3270
    [105]Ober C K, Lok K P. Formation of large monodisperse copolymer particles by dispersion polymerization, Macromolecules,1987,20,268-273
    [106]Uyama H, Kobayashi S. Dispersion polymerization of styrene in aqueous alcohol solution:effects of reaction parameters on the polymer particle formation, Polym Int,1994,34,339-344
    [107]Ye Q, Zhang Z C, Jia H T, He W D, Ge X W. Formation of monodisperse polyacrylamide particles by radiation-induced dispersion polymerization:particle size and size distribution, J Colloid Interf Sci, 2002,253,279-284
    [108]Hosoda Y, Ueshima T, Ishihara S, Imamura K. In:Bailey W J, Tsuruta T. New emulsion system-polymeric "water in water" emulsion. Contemp Topics Polym Sci,1980,4,575-586
    [109]武田久雄.水溶性阳离子聚合物分散体的制备方法,中华人民共和国,发明专利,CN1084859A,1994,04,06
    [110]武田久雄.两性水溶性聚合物的水分散体及其制备和应用,中华人民共和国,发明专利,CN1133302A,1996,10,16
    [111]武田久雄,大原工,铃木美香,镜健自.产生水溶性聚合物分散系的方法,中华人民共和国,发明专利,CN1248265A,2000,03,22
    [112]松岛尚司,久保胜寿,村野正幸,岛田聪子.制取水溶性阳离子聚合物的水分散液的方法,中华人民共和国,发明专利,CN1173511A,1998,02,18
    [113]丹尼斯.坦博.恩祖戴,戴迪尔.范霍耶.基于水溶性聚合物分散体,中华人民共和国,发明专利,CN1190100A,1998,08,12
    [114]克里斯琴.科利特,丹尼斯.坦博.恩祖戴.基于含有疏水单元的阳离子分散剂的水溶性聚合物的水稳定分散体,中华人民共和国,发明专利,CN1224727A,1999,08,04
    [115]丹尼斯.坦博.恩祖戴,克里斯琴.科利特.基于含有疏水单元的阳离子聚合物的两亲分散剂水溶性聚合物的盐水分散体,中华人民共和国,发明专利,CN1226564A,1999,08,25
    [116]A.里安德尔,D.特姆鲍恩朱蒂,Y.勒格兰德,D.范霍耶.基于阳离子单体的水溶性共聚物的盐水分散液,其制造方法及其应用,中华人民共和国,发明专利,CN1419571A,2003,05,21
    [117]A.里安德尔,D.坦布恩朱迪伊,D.范霍耶.基于阳离子单体的水溶性(共)聚和物的无盐水分散液,其制造方法及其应用,中华人民共和国,发明专利,CN1419572A,2003,05,21
    [118]A.里安德尔,D.坦布恩朱迪伊,D.范霍耶.基于阳离子单体的水溶性(共)聚和物盐水分散体,其制备方法及其应用,中华人民共和国,发明专利,CN1395584A,2003,02,05
    [119]O.斯特拉克,C.福里兹彼拉,W.雅格尔,M.哈恩,D.鲁佩尔特.水溶性聚合物分散体和制备水溶性聚合物分散体的方法,中华人民共和国,发明专利,CN1653090A,2005,08,10
    [120]王丕新.阴离子和非离子型水溶性高分子分散体的合成方法,中华人民共和国,发明专利,CN1519259A,2004,08,11
    [121]王丕新,张文德,陈冬年,刘晓光,项盛.一种阳离子型水溶性高分子分散体,中华人民共和国,发明专利,CN1709945A,2005,12,21
    [122]毕树平,胡涌东.交流示波极谱在高分子溶液中的应用-水包水乳液连续相与分散相的确定,高分子材料科学与工程,1990,2,83-84
    [123]金正中,朱永,胡涌东.水包水乳液的合成及其相组成的研究,高等学校化学学报,1991,12, 942-945
    [124]Shan G R. Cao Z H. A new polymerization method and kinetics for acrylamide:aqueous two-phase polymerization. J Appl Polym Sci.2009,111,1409-1416
    [125]单国荣,曹志海,黄志明,翁志学.丙烯酰胺双水相聚合体系稳定性研究,高分子学报,2005,(5),769-773
    [126]单国荣,曹志海,黄志明,翁志学.聚丙烯酰胺-聚乙二醇-水体系相图及丙烯酰胺单体在两相的分配,高等学校化学学报,2005,26,1348-1351
    [127]赵亮,丙烯酰胺与阳离子单体的双水相共聚合[硕士学位论文],中国杭州,浙江大学,2006.50-55
    [128]Song B K, Cho M S, Yoon K J, Lee D C. Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution, J Appl Polym Sci,2003,87,1101-1108
    [129]Cho M S, Yoon K J, Song B K. Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate:synthesis and characterization, J Appl Polym Sci,2002,83,1397-1405
    [130]Liu X G, Chen Q, Xu K, Zhang W D, Wang P X. Preparation of polyacrylamide aqueous dispersions using poly(sodium acrylic acid) as stabilizer, J Appl Polym Sci,2009,113,2693-2701
    [131]Chen D N, Liu X G, Yue Y M, Zhang W D, Wang P X. Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution, Eur Polym J,2006,42, 1284-1297
    [132]Liu X G, Chen D N, Yue Y M, Zhang W D, Wang P X. Dispersion copolymerization of acrylamide with acrylic acid in an aqueous solution of ammonium sulfate:synthesis and characterization. J Appl Polym Sci,2006,102,3685-3690
    [133]Liu X G, Xiang S, Yue Y M, Su X F, Zhang W D, Song C L, Wang P X. Preparation of poly(acrylamide-co-acrylic acid) aqueous latex dispersions using anionic polyelectrolyte as stabilizer, Colloids Surf A,2007,311,131-139
    [134]Wu Y M, Wang Y P, Yu Y Q, Xu J, Chen Q F. Dispersion polymerization of acrylamide with 2-acrylamido-2-methyl-l-propane sulfonate in aqueous solution, J Appl Polym Sci,2006,102, 2379-2385
    [135]Wu Y M, Chen Q F, Xu J, Bi j M. Aqueous dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer, J Appl Polym Sci,2008,108,134-139
    [136]Wu Y M, Wang C X, Xu J. Aqueous dispersion polymerization of amphoteric polyacrylamide, J Appl Polym Sci,2010,115,1131-1137
    [137]Wang L J, Wang J P, Yuan S J, Zhang S J, Tang Y, Yu H Q. Gamma radiation-induced dispersion polymerization in aqueous salts solution for manufacturing a cationic flocculant, Chem Eng J,2009, 149,118-122
    [138]Ye Q, Zhang Z C, Ge X X. Highly efficient flocculant synthesized through the dispersion copolymerization of water-soluble monomers induced by gamma-ray irradiation:synthesis and polymerization kinetics, J Appl Polym Sci,2003.89,2108-2115
    [139]Li G, Yang C, He Y G, Yang F, Yu X Q. Studies of precipitated polymerization of acrylamide with quaternary ammonium cationic comonomer in potassium citrate solution, J Appl Polym Sci,2007,106, 2479-2484
    [140]He Y G, Li G, Yang F, Yu X Q, Cui Y J, Ren F X. Precipitation polymerization of acrylamide with quaternary ammonium cationic monomer in potassium carbonate solution initiated by plasma, J Appl Polym Sci,2007,104,4060-4067
    [141]Collinson E, Dainton F S, McNaughto G. S. The polymerization of acrylamide in aqueous solution 1. the X-ray and gamma-ray initiated reaction, Trans Faraday Soc,1957,53,476-488
    [142]Collinson E, Dainton F S, McNaughton G. S. The polymerization of acrylamide in aqueous solution 2. the effect of ferric perchlorate on the X-ray and gamma-ray initiated reaction, Trans Faraday Soc, 1957,53,489-498
    [143]Riggs J P, Rodriguez F. Persulfate-initiated polymerization of acrylamide, J Polym Sci Part A:Polym Chem,1967,5,3151-3167
    [144]Hunkeler D. Mechanism and kinetics of the perfulfate-initiated polymerization of acrylamide, Macromolecules,1991,24,2160-2171
    [145]Riggs J P, Rodriguez F. Polymerization of acrylamide initiated by the persulfate-thiosulfate redox couple, J Polym Sci Part A:Polym Chem,1967,5,3167-3181
    [146]Jenkins A D. The mechanism of initiation in vinyl polymerization, J Polym Sci,1958,29,245-255
    [147]Noyes R M. Kinetics of competitive processes when reactive fragments are produced in pairs, J Am Chem Soc,1955,77,2042-2045
    [148]Kim C J, Hamielec A E. Polymerization of acrylamide with diffusion controlled termination, Polymer, 1984,25,845-849
    [149]Suen T J, Sen Y, Lockwood J V. The polymerization of acrylamide with chlorate-sulfite initiator, J Polym Sci,1958,31,481-497
    [150]Pohl K, Rodriguez F. Adiabatic polymerization of acrylamide using a persulfate-bisulfite redox couple, J Appl Polym Sci,1980,26,611-618
    [151]Rodriguez F, Givey R D. Polymerization of acrylamide with persulfate-metabissulfite initiator, J Polym Sci,1961,55,713-719
    [152]Mino G, Kaizerman S, Rasmussen E. The polymerization of acrylamide initiated by ceric nitrate-3-chloro-1-propanol redox systems, J Polym Sci,1959,38,393-401
    [153]Okaya T, Kikuchi K, Morii Y. Polymerization of acrylamide in aqueous medium initiated with a redox system of cysteine and ammonium persulfate, Polym J,1997,29,545-549
    [154]Guo X Q, Qiu K Y, Feng X D. Studies on the peroxydisulfate-aliphatic amine initiation systems, Scientia sinica B,1987,30,897-906
    [155]Feng X D, Guo X Q, Qiu K Y. Study of the initiation mechanism of the vinyl polymerization with the system persulfate-N,N,N',N'-tetramethylethylenediamine, Makromol Chem,1988,189,77-83
    [156]Ishige T, Hamielec A E. Solution polymerization of acrylamide to high conversion, J Appl Polym Sci, 1973,17,1479-1506
    [157]Shawki S M, Hamielec A E. Estimation of transfer constants in the aqueous solution polymerization of acrylamide with potassium persulfate initiator, J Appl Polym Sci,1979,23,3341-3354
    [158]Currie D J, Dainton F S, Watt W S. The effects of pH on the polymerization of acrylamide in water, polymer,1965,6,451-453
    [159]Lin H R. Solution polymerization of acrylamide using potassium persulfate as an initiator:kinetics studies, temperature and pH dependence, Eur Polym J,2001,37,1507-1510
    [160]Neamtu I, Chiriac A P. Some properties in solution of poly(acrylamide) synthesized in a magnetic field, Polym Test,2001,20,585-589
    [161]Rintoul I, Wandrey C. Magnetic field effects on the free radical solution polymerization of acrylamide, polymer,2007,48,1903-1914
    [162]Hunkeler D, Hamielec A E, Baade W. Mechanism, kinetics and modelling of the inverse-microsuspension homopolymerization of acrylamide, Polymer,1989,30,127-142
    [163]Hernandez-Barajas J, Hunkeler D. Inverse-emulsion polymerization of acrylamide using block copolymeric surfactants:mechanism, kinetics and modelling. Polymer,1997,38,437-447
    [164]Hunkeler D. Hamielec A E. Mechanism, kinetics and modelling of inverse-microsuspension polymerization:2. copolymerization of acrylamide with quaternary ammonium cationic monomers, Polymer,1991,32,2626-2640
    [165]Capek I. Inverse emulsion polymerization of acrylamide initiated by oil-and water-soluble initiators: effect of emulsifier concentration, Polym J,2004,36,793-803
    [166]Capek I, Fialova L, Berek D. On the kinetics of inverse emulsion polymerization of acrylamide, Des Monomers Polym,2008,11,123-137
    [167]Platkowski K, Pross A, Reichert K H. The inverse emulsion polymerization of acrylamide with pentaerythritolmyristate as emulsifier 2. mathematical modelling, Polym Int,1998,45,229-238
    [168]Lezovic M, Ogino K, Sato H, Capek I, Barton J. Inverse micro-emulsion polymerization of acrylamide in the presence of a mixture of oleophilic/hydrophilic surfactants, Polym Int,1998,46, 269-274
    [169]Xu Z S, Chen Y C, Zhang G J, Chen S Y, Feng L X. The inverse emulsion polymerization of acrylamide using polystyrene-graft-polyoxyethylene as the stabilizer, J Polym Sci Part A:Polym Chem,1999,37,2719-2725
    [170]Xu Z S, Yi C F, Chen S Y, Feng L X. The inverse emulsion polymerization of acrylamide using poly(methyl methacrylate)-graft-polyoxyethylene as the Stabilizer, J Appl Polym Sci,2001,79, 528-534
    [171]狄超,胡涌东,金正中.用水相凝胶色谱研究水包水乳液的合成动力学,涂料工业,1994,(2),1-4
    [1]Albertsson P A. Partition of cell particles and macromolecules:separation and purification of biomolecules cell organelles membrances, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology,3rd edn. New York, Wiley-Interscience,1986,4-95
    [2]Johansson H O, Karlstrom G, Tjerneld F, Haynes C A. Driving forces for phase separation and partitioning in aqueous two-phase systems, J Chromatogr B,1998,711,3-17
    [3]Sousa R C S, Coimbra J S R, Da-Silva L H M, Da-Silva M C H, Rojas E E G, Vicente A A A. Thermodynamic studies of partitioning behavior of lysozyme and conalbumin in aqueous two-phase systems, J Chromatogr B,2009,877,2579-2584
    [4]Shao Z H, Cao X J. Model simulation of BSA partitioning in recycling aqueous two-phase systems composed of light-sensitive polymer PNBC-dextran, J Chem Eng Data,2008,53,2755-2757
    [5]Mohamed R S, Filho P A P. Thermodynamic modeling of the partitiong of biomolecules in aqueous two-phase systems using a modified Flory-Huggins equation, Process Biochem,2004,39,2075-2083
    [6]Lin D Q, Wu Y T, Mei L H, Zhu Z Q, Yao S J. Modeling the protein partitioning in aqueous polymer two-phase systems:influence of polymer concentration and molecular weight, Chem Eng Sci,2003, 58.2963-2972
    [7]Khederlou K, Pazuki G R, Taghikhani V, Vossoughi M, Ghotbi C. Measurement and modeling process partitioning of cephalexin antibiotic in aqueous two-phase systems containing poly(ethylene glycol) 4000.10000 and K2HPO4, Na3Citrate, J Chem Eng Data,2009,54,2239-2244
    [8]Peng Q. Li Z, Li Y. Experiments, correlation and prediction of protein partition coefficient in aqueous two-phase systems containing PEG and K2HPO4-KH2PO4, Fluid Phase Equilib,1995,107,303-315
    [9]Furuya T. Yamada S, Zhu J, Yamaguchi Y, Iwai Y, Arai Y. Measurement and correlation of liquid-liquid equilibria and partition coefficients of hydrolytic enzymes for Dex T500+PEG20000+water aqueous two-phase system at 20℃, Fluid Phase Equilib,1996,125,89-102
    [10]Hosoda Y, Ueshima T, Ishihara S, Imamura K. In:Bailey W J, Tsuruta T. New emulsion system-polymeric "water in water" emulsion. Contemp Topics Polym Sci,1980,4,575-586
    [11]Song B K, Cho M S, Yoon K J, Lee D C. Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution, J Appl Polym Sci,2003,87,1101-1108
    [12]Cho M S, Yoon K J, Song B K. Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate:synthesis and characterization, J Appl Polym Sci,2002,83,1397-1405
    [13]Liu X G, Chen Q, Xu K, Zhang W D, Wang P X. Preparation of polyacrylamide aqueous dispersions using poly(sodium acrylic acid) as stabilizer, J Appl Polym Sci,2009,113,2693-2701
    [14]Chen D N, Liu X G, Yue Y M, Zhang W D, Wang P X. Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution, Eur Polym J,2006,42, 1284-1297
    [15]Liu X G, Xiang S, Yue Y M, Su X F, Zhang W D, Song C L, Wang P X. Preparation of poly(acrylamide-co-acrylic acid) aqueous latex dispersions using anionic polyelectrolyte as stabilizer, Colloids Surf A,2007,311,131-139
    [16]Bednar B, Li Z M, Huang Y H, Chang L-C P, Morawetz H. Fluorescence study of factors affecting the complexation of poly(acrylic acid) with poly(oxyethylene), Macromolecules,1985,18,1829-1833
    [17]Maltesh C, Somasundaran P, Pradip, Kulkarni R A, Gundiah S. Effect of the degree of hydolysis of polyacrylamide on its interaction with poly(ethylene glycol) and poly(vinyl pyrrolidone), Macromolecules,1991,24,5775-5778
    [18]严瑞瑄,水溶性高分子,北京:化学工业出版社,1998,225-228
    [19]Day J C, Robb I D. Thermodynamic parameters of polyacrylamide in water, Polymer,1981,22, 1530-1533
    [20]Bovey F A, Tiers G V D. Polymer NMR spectroscopy 9. polyacrylamide and polymethacrylamide in aqueous solution, J Polym Sci Part A:Polym Chem,1963,1,849-861
    [21]Oyama H T, Tang W T, Frank C W. Complex formation between poly(acrylic acid) and pyrene-labeled poly(ethylene glycol) in aqueous solution, Macromolecules,1987,20,474-480
    [22]Iliopoulos I, Audebert R. Complexation of acrylic acid copolymers with polybases:importance of cooperative effects, Macromolecules,1991,24,2566-2575
    [23]Bailey F E, JR, Lundberg R D, Callard R W. Some factors afferting the molecular association of poly(ethylene oxide) and poly(acrylic acid) in aqueous solution, J Polym Sci Part A:Polym Chem, 1964,2,845-851
    [24]Silberberg A, Eliassaf J, Katchalsky A. Temperature-dependence of light scattering and intrinsic viscosity of hydrogen bonding polymers, J Polym Sci,1957,23,259-284
    [25]Garcia R, Melad O, Gomez C M, Figueruelo J E, Campos A. Viscometric study on the compatibility of polymer-polymer mixture in solution, Eur Polym J,1999,35,47-55
    [26]单国荣,曹志海,黄志明,翁志学.聚丙烯酰胺-聚乙二醇-水体系相图及丙烯酰胺单体在两相的分配,高等学校化学学报,2005,26,1348-1351
    [27]Iliopoulos I, Frugier D, Audebert R. Phase separation in mixtures of two polymers in water, Polym Preprints,1989; 30,371-372
    [28]Haghtalab A, Asadollahi M A. An excess Gibbs energy model to study the phase behavior of aqueous two-phase systems of polyethylene glycol plus dextran, Fluid Phase Equilib,2000,171,77-90
    [29]Lu X H, Hu Z B, Schwarz J. Phase transition behavior of hydroxypropylcellulose under interpolymer complexation with poly(acrylic acid), Macromolecules.2002.35,9164-9168
    [30]Bednar B. Li ZM. Huang YH, Chang L-CP, Morawetz H. Fluorescence study of factors affecting the complexation of poly(acrylie acid) with poly(oxyethylene), Macromolecules,1985,18,1829-1833
    [31]Johansson H O, Karlstrom G Tjerneld F, Haynes C A. Driving forces for phase separation and partitioning in aqueous two-phase systems, J Chromatogr B,1998,711.3-17
    [32]Shao Z H, Cao X J. Model simulation of BSA partitioning in recycling aqueous two-phase systems composed of light-sensitive polymer PNBC-dextran, J Chem Eng Data,2008,53,2755-2757
    [33]Lacroix-Desmazes P, Guillot J. Dispersion polymerization of styrene in ethnol-water media:monomer partitioning behavior and locus of polymerization, J Polym Sci Part B:Polym Phys,1998,36, 325-335
    [1]Song B K, Cho M S, Yoon K. J, Lee D C. Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution, J Appl Polym Sci,2003,87,1101-1108
    [2]Cho M S, Yoon K J, Song B K. Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate:synthesis and characterization, J Appl Polym Sci,2002,83,1397-1405
    [3]Wu Y M, Wang Y P, Yu Y Q, Xu J, Chen Q F. Dispersion polymerization of acrylamide with 2-acrylamido-2-methy1-1-propane sulfonate in aqueous solution, J Appl Polym Sci,2006,102, 2379-2385
    [4]Wu Y M, Chen Q F, Xu J, Bi j M. Aqueous dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer. J Appl Polym Sci,2008,108,134-139
    [5]Wu Y M, Wang C X, Xu J. Aqueous dispersion polymerization of amphoteric polyacrylamide, J Appl Polym Sci,2010,115,1131-1137
    [6]Chen DN, Liu X G, Yue Y M, Zhang W D, Wang P X. Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution, Eur Polym J,2006,42,1284-1297
    [7]Ye Q, Zhang Z C, Ge X X. Highly efficient flocculant synthesized through the dispersion copolymerization of water-soluble monomers induced by gamma-ray irradiation:synthesis and polymerization kinetics, J Appl Polym Sci.2003,89,2108-2115
    [8]单国荣,曹志海,黄志明,翁志学.聚丙烯酰胺-聚乙二醇-水体系相图及丙烯酰胺单体在两相的分配,高等学校化学学报.2005,26,1348-1351
    [9]Shen S, Sudol E D, El-Aasser M S. Control of particle size in dispersion polymerization of methyl methacrylate, J Polym Sci Part A:Polym Chem,1993,31,1393-1402
    [10]Uyama H, Kobayashi S. Dispersion polymerization of styrene in aqueous alcohol solution:effects of reaction parameters on the polymer particle formation, Polym Int,1994,34,339-344
    [11]Ye Q, Zhang Z C, Jia H T, He W D, Ge X W. Formation of monodisperse polyacrylamide particles by radiation-induced dispersion polymerization:particle size and size distribution, J Colloid Interf Sci, 2002,253,279-284
    [12]Paine A J. Dispersion polymerization of styrene in polar-solvents 7. a simple mechanistic model to predict particle-size, Macromolecules,1990,23,3109-3117
    [13]Liu X G, Chen Q, Xu K, Zhang W D, Wang P X. Preparation of polyacrylamide aqueous dispersions using poly(sodium acrylic acid) as stabilizer. J Appl Polym Sci,2009,113.2693-2701
    [14]Liu X G. Chen D N, Yue Y M, Zhang W D, Wang P X. Dispersion copolymerization of acrylamide with acrylic acid in an aqueous solution of ammonium sulfate:synthesis and characterization, J Appl Polym Sci,2006,102,3685-3690
    [15]Liu X G, Xiang S, Yue Y M, Su X F, Zhang W D, Song C L, Wang P X. Preparation of poly(acrylamide-co-acrylic acid) aqueous latex dispersions using anionic polyelectrolyte as stabilizer, Colloids Surf A,2007,311,131-139
    [16]Hunkeler D. Mechanism and kinetics of the perfulfate-initiated polymerization of acrylamide, Macromolecules,1991,24,2160-2171
    [17]单国荣,曹志海,黄志明,翁志学.丙烯酰胺双水相聚合体系稳定性研究,高分子学报,2005,(5),769-773
    [18]Yasuda M, Seki H, Hokoyama H, Ogino H, Ishimi K, Ishikawa H. Simulation of a particle formation stage in the dispersion polymerization of styrene, Macromolecules,2001,34,3261-3270
    [19]Ray B, Mandal B M. Dispersion polymerization of acrylamide, Langmuir,1997,13,2191-2196
    [1]Ray B, Mandal B M. Dispersion polymerization of acrylamide, Langmuir,1997,13,2191-2196
    [2]Hosoda Y, Ueshima T, Ishihara S, Imamura K. In:Bailey W J, Tsuruta T. New emulsion system-polymeric "water in water" emulsion. Contemp Topics Polym Sci,1980,4,575-586
    [3]单国荣,曹志海,黄志明,翁志学.丙烯酰胺双水相聚合体系稳定性研究,高分子学报,2005,(5),769-773
    [4]蒋秀丽,张红东,张振利,杨玉良.粘度对聚合物共混物相分离动力学的影响研究,高等学校化学学报,2003,24,532-536
    [5]Kubota K, Kuwahara N. Spinodal decomposition in a binary mixture, Phys Rev Lett,1992,68, 197-200
    [6]Kuwahara N, Kubota K. Spinodal decomposition in a polymer solution, Phys Rev A,1992,45, 7385-7394
    [7]Chen D N, Liu X G, Yue Y M, Zhang W D, Wang P X. Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution, Eur Polym J,2006,42,1284-1297
    [1]Riggs J P, Rodriguez F. Persulfate-initiated polymerization of acrylamide, J Polym Sci Part A:Polym Chem,1967,5,3151-3167
    [2]Riggs J P, Rodriguez F. Polymerization of acrylamide initiated by the persulfate-thiosulfate redox couple, J Polym Sci Part A:Polym Chem,1967,5,3167-3181
    [3]Pohl K, Rodriguez F. Adiabatic polymerization of acrylamide using a persulfate-bisulfite redox couple, J Appl Polym Sci,1980,26,611-618
    [4]Rodriguez F, Givey R D. Polymerization of acrylamide with persulfate-metabissulfite initiator, J Polym Sci,1961,55,713-719
    [5]Hunkeler D. Mechanism and kinetics of the perfulfate-initiated polymerization of acrylamide, Macromolecules,1991,24,2160-2171
    [6]Hunkeler D, Hamielec A E, Baade W. Mechanism, kinetics and modelling of the inverse-microsuspension homopolymerization of acrylamide, Polymer,1989,30,127-142
    [7]Hernandez-Barajas J, Hunkeler D. Inverse-emulsion polymerization of acrylamide using block copolymeric surfactants:mechanism, kinetics and modelling, Polymer,1997,38,437-447
    [8]Hunkeler D, Hamielec A E. Mechanism, kinetics and modelling of inverse-microsuspension polymerization:2. copolymerization of acrylamide with quaternary ammonium cationic monomers, Polymer,1991,32,2626-2640
    [9]Cho M S, Yoon K J. Song B K. Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate:synthesis and characterization. J Appl Polym Sci.2002.83,1397-1405
    [10]Hosoda Y, Ueshima T, Ishihara S, Imamura K. In:Bailey W J. Tsuruta T. New emulsion system-polymeric "water in water" emulsion. Contemp Topics Polym Sci.1980.4.575-586
    [11]Shan G R, Cao Z H. A new polymerization method and kinetics for acrylamide:aqueous two-phase polymerization. J Appl Polym Sci.,2009,111,1409-1416
    [12]Flory P J. Principles of polymer chemistry, Ithaca and London, Cornell university press,1953, 549-560
    [13]Morton M, Kaizerman S, Altier M W. Swelling of latex particles, J Colloid Sci,1953,9.300-312
    [14]Chen S A. Polymer miscibility in organic solvents and in plasticizers-a two dimensional approach, J Appl Polym Sci,1971,15,1247-1266
    [15]Brandrup J, Immergut E H, Grulke E A. Polymer Handbook,4th edn, New York, Willey-Interscience, 1999, VII 675-711
    [16]Hansen C M. Hansen solubility parameters, a user's handbook,2nd edn, New York, CRC press,2007, 304-519
    [17]Cao K, Li B G, Pan Z R. Micron-size uniform polymethyl methacrylate/particles by dispersion polymerization in polar media. IV. Monomer partition and locus of polymerization, Colloids Surf A, 1999,153,179-187
    [18]Lacroix-Desmazes P, Guillot J. Dispersion polymerization of styrene in ethnol-water media:monomer partitioning behavior and locus of polymerization, J Polym Sci Part B:Polym Phys,1998,36, 325-335
    [19]Yasuda M, Seki H, Hokoyama H, Ogino H. Ishimi K, Ishikawa H. Simulation of a particle formation stage in the dispersion polymerization of styrene, Macromolecules 2001,34,3261-3270
    [20]Nomura M, Harada M. Rate coefficient for radical desorption in emulsion polymerization, J Appl Polym Sci,1981,26,17-26
    [21]Ahmed S F, Poehlein G W. Kinetics of dispersion polymerization of styrene in ethanol 1. model development, Ind Eng Chem Res,1997,36,2597-2604
    [22]Ahmed S F, Poehlein G W. Kinetics of dispersion polymerization of styrene in ethanol 2. model validation, Ind Eng Chem Res,1997,36,2605-2615
    [23]Ishige T, Hamielec A E. Solution polymerization of acrylamide to high conversion, J Appl Polym Sci, 1973,17,1479-1506
    [24]Fujie H, Shiraki K, Miyagawa T, Minamii N, Yamada B. Otsu T. Preparation and thermal decomposition of cyclic azoamidinium salts as water-soluble radical initiators for polymerization over a wide temperature range, J Macromol Sci Part A:Chem,1992,29,741-751
    [25]Capek I. Inverse emulsion polymerization of acrylamide initiated by oil and water-soluble initiators: effect of emulsifier concentration, Polym J,2004,36,793-803
    [26]Johansson H O. Karlstrom G, Tjerneld F, Haynes C A. Driving forces for phase separation and partitioning in aqueous two-phase systems, J Chromatogr B,1998,711,3-17
    [27]Kim C J, Hamielec A E. Polymerization of acrylamide with diffusion controlled termination, Polymer, 1984.25,845-849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700