用户名: 密码: 验证码:
疏水缔合型聚丙烯酰胺的合成与性能及其与离子型表面活性剂的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了新型芳烷基丙烯酰胺疏水单体,并采用自由基胶束共聚合方法制备新型非离子型(PBAM系列)、离子型(PBAMS)疏水缔合水溶液性共聚物。通过PBAM系列共聚物的聚合反应的研究发现,丙烯酰胺水相聚合反应动力学仍然适用于胶束共聚合过程;在聚合过程中由于胶束的存在,疏水单体在反应初期的嵌入率很高,而后期主要以丙烯酰胺均聚物为主,导致严重的微观结构非均匀性,而这种非均匀性对共聚物的增粘性能有很大的影响;首次采用正交试验多指标综合评价方法考察了AMPS、BAAM、SDS及引发剂的用量对产物增粘性能的影响,得到了同时满足多指标要求的PBAMS共聚物;IR谱图证明所合成的共聚物为目标共聚物;TG测试表明共聚物均具有较好的热稳定性,且PBAMS的热稳定性高于PBAM系列。
     疏水单体BAAM的用量对PBAM系列共聚物溶液粘度的影响存在一个最佳值,而对PBAMS溶液粘度的影响较为复杂,过高的用量将使共聚物无法溶解;随AMPS用量的增加,PBAMS去离子水、盐水溶液的粘度均先有所增加,然后基本保持不变。
     当共聚物浓度大于临界缔合浓度(C_p~*)后,两种溶液的表观粘度急剧增加,加入NaCl或在分子链中引入离子性基团都将使C_p~*降低:部分PBAM试样与PBAMS的溶液具有盐增稠性质;pH值对PBAMS溶液粘度的影响呈“鞍形”变化;PBAM系列共聚物可在一定温度范围内表现出增稠性质,但高温使得溶液的表观粘度下降,并且升温会引起共聚物增粘性能的降低。
     在剪切作用下,共聚物的去离子水溶液表现出剪切稀释性质与触变性,通过Oswald模型拟合证明溶液为假塑性流体,PBAMS共聚物溶液还表现出屈
    
     摘 要
    服点特征,并且共聚物浓度越高,假塑性越强,触变性越强,PBAMS溶液的
    屈服应力越大:多次剪切使共聚物的增粘性能降低,且粘度的恢复需要一定的
    时间;适量NaCI加量的共聚物溶液的增粘性能及触变性均有所增强,共聚物
    NaCI溶液在低剪速下具有剪切增稠性能,在较高剪切速率下均呈现假塑性流
    体特征;研究发现剪切作用可在一定程度上抵消由盐引起的分子链收缩。
     线性粘弹性研究表明,PBAM系列共聚物的去离子水溶液在一定频率之后
    表现为以弹性行为主的流体,且共聚物浓度越高,粘弹性特征越明显,松弛时
    间越长;较低浓度的PBAMS溶液仅在一定频率之后表现出以弹性为主,而浓
    度较高的PBAMS的去离于水溶液及不同PBAMS浓度的NaCI溶液均表现为
    以弹性行为主的流体;PBAM与PBAMS共聚物的NaCI溶液的损耗角正切值
    均随频率增加逐渐减小,溶液的弹性特征逐步增强。
     本文首次以实验证明Fedors方程对疏水缔合共聚物稀溶液适用程度最高,
    而Schulz-Blaschke方程中的参数k可以描述体系中分子间的相互作用;随共
    聚物浓度的增加,M增加,表现出反聚电解质效应,NaCI的加入对PBAMS
    溶液的影响强于对PBAM系列的影响;随着表面活性剂加量的增加,W先下
    降,然后上升并在较高表面活性剂浓度时基本保持不变,可利用“拖手”模型
    较好的描述稀溶液中共聚物与表面活性剂的相互作用;共聚物稀溶液为牛顿流
    体,并且随剪切速率增加,PBAMS溶液的表观粘度有微小增加。
     不同表面活性剂对共聚物溶液粘度的影响与共聚物结构、浓度及溶液中微
    观缔合形式密切相关。对于 PBAM系列共聚物溶液,随着 SDS、SDBS和 CTAB
    加量的增加,PBAM与PBA*3溶液的表观粘度均出现大幅增加,然后迅速
    减小,在较高表面活性剂浓度时基本保持不变;对于PBAM3,表面活性剂的
    影响顺序为:**BS>*TA B>**S,而对于***MI,三者的影响情况基本一致;
    对于阴离于型PBAMS共聚物溶液,CTAB与PBAMS的作用非常明显,表现
    为粘度的陡升陡降,并且伴随着白色不溶物质的出现,而SDS、SDBS的加入
    对分子间疏水缔合有一定抑制作用。
     两种共聚物与SDBS的混合溶液的流变行为随剪切速率增加由牛顿流体转
    变为具有屈服点的假塑性流体,在较高S*BS浓度时又转变为牛顿流体:少量
    SDBS的加入体系有利于在溶液中形成强度较高的网络结构,表现出较高的剪
    切屈服应力,并且触变性增强;本文发现一定的剪切作用可以使被活性剂胶束
    且且
    
     四川大学工学博士学位论文
     拆散的网络结构重新恢复,表现为剪切增稠,但过强的剪切作用将仍使粘度下
     降;混合体系中的结构经历剪切作用后需要较长的时间才能恢复,PBAMS与
     S*BS混合溶液的粘度具有时间依赖性:适当S*BS加量的共聚物溶液表现为
     以弹性行为主的流体,较低和较高SDBS加量的溶液则在一定频率之后才可表
     现出以弹性行为为主的流体。
     PBAMI和 PBAMS与 SDS混合去离于水溶液的表面张力随 SDS浓度增加
     均出现双转折点,而加入NaCI后,溶液的表面张力曲线仅出现单转折点;随
     共聚物浓度的增加,C。逐渐增大;PBAMS用DBS混合溶液的表面张力曲线上
     仅出现单转折点;首次研究了温度对混合溶液表面张力的影响,结果表明
     PBAMS溶液及其与低浓度SDS混合溶液
In this paper, the novel hydrophobic monomer, arylalkylacrylamide (BAAM), was synthesized. And then the nonionic (PBAM series) and ionic (PBAMS) hydrophobically associating water-soluble copolymers were synthesized by micellar free radical copolymerization method. After the study on the synthesis reaction of PBAM series copolymers, it was found that the polymerization kinetics of acrylamide in water system could still be used in micellar polymerization process, and that the initial incorporation of BAAM into polymer was higher and the acrylamide homopolymerization was dominant at the higher conversion period of monomer, which resulted serious micro-structure heterogeneity of copolymer and had a very important effect to the viscosity properties. It's the first time to
    use multi-indexes comprehensive evaluation method of orthogonal test to study the effect of the amount of AMPS, BAAM, SDS and initiator on the viscosity behavior of tripolymers. Then PBAMS copolymer was prepared. Polymer structure was characterized by IR. From the TG analysis, two kinds of polymers have good thermal stability, and that of PBAMS is better than that of PBAM series.
    For PBAM series copolymers, there had an optimum amount of BAAM, and the relationship between the amount of BAAM and the viscosity behavior was different to monotone increasing or "saddle shape" variation. The same influence to the solution viscosity of PBAMS was complicated, and higher dosage of BAAM resulted the insolubility of copolymers. With the increasing of the amount of AMPS, the viscosity of both aqueous and NaCl solution of PBAMS was firstly increased
    * Sponsored by the Major State Basic Research Project of China (G199022502).
    IV
    
    
    
    and then kept unchanged.
    When polymer concentration was higher than the critical association concentration (CP*), the viscosities of two kinds of copolymers increased abruptly. The addition of NaCl and the copolymerization with ionic monomer (AMPS) would decrease CP*. The solution of PBAMS and certain PBAM samples exhibited salt-thickening behavior. The influence of pH value on the viscosity of PBAMS was "saddle shape" variation. In some low temperature range, the solution of PBAM copolymers exhibited temperature-thickening behavior. However, high temperature would decrease the viscosity, and the temperature-rising process would decrease the viscositying ability of copolymers.
    The aqueous solution of two kinds of copolymers exhibited shear-thinning and thixotropy behavior. The Oswald model fitting revealed that the solution of two kinds of copolymer was pseudopalstic, especially the PBAMS solution was characteristic of yield point. The higher the polymer concentration, the stronger the pseudoplastic and the thixotropy behavior, and the higher the yield stress. The viscosity of aqueous polymer solution exhibited obvious time-dependent properties. Several times of shearing would decrease the viscosifying ability of copolymers, and the viscosity restoring needed some time. Appropriate addition of NaCl would increase the viscosifying ability and the thixotropy behavior. The NaCl solution of copolymers exhibited shear-thickening behavior at lower shear rate, and the pseudoplastic behavior under higher shear rate. It was found in this paper that to some extent the shearing could offset the molecular contraction introduced by NaCl.
    The linear viscoelastic measurement results showed that for PBAM copolymer solutions the elastic behavior was dominant after certain frequency. The higher the polymer concentration, the stronger the viscoelastic behavior, and the longer the relaxation time of molecular. The elastic behavior was dominant only after certain angular frequency for lower PBAMS concentration solution, but dominant at all test frequency range for higher PBAMS concentration solution. With the increase of frequency, the loss tangent value of copolymer NaCl solution decreased slowly, which meant that the elastic feature of salt solution was stronger gradually.
    
    
    Furthermore, the PBAMS NaCl solutions were all dominant by e
引文
1.国家经贸委行业规划司,国家经贸委工业行业十五规划—石油工业“十五规划
    2.“十五”期间我国采油用化学剂行业重点研发产品,中经网(www.cei.gov.cn)2001-09-05
    3.何勤功,古大治.油田开发用高分子材料.北京:石油工业出版社,1990
    4.Van Pollen H K.提高石油采收率的原理.唐养吾,杨贵珍译.北京:石油工业出版社,1984,p1-28
    5.杨普华.美国提高采收率方法发展动向分析.北京石油勘探开发研究院采收率所,1986,10
    6.绳德强.油田化学,1992,1(1),86-93
    7.朱怀江.油田化学,1987,4(4),284-292
    8.严瑞碹.水溶性高分子.北京:化学工业出版社,1998
    9.何华.广西化纤通讯,1996,1,61-64
    10.陈立滇.油田化学,1984,1(1),39-52
    11.“大庆油田采收率的研究方向及主攻方向”,大庆石油管理局科学研究设计院,1983.1
    12.“克拉玛依油田三试验区聚合物驱油矿场试验”,新疆石油管理局,1983.8
    13.田根林.聚合物驱油技术及其发展,三次采油用聚合物和原油开采集输降凝剂技术交流会论文,北京,1997.11
    14.韩大匡.聚合物水驱提高石油采收率与国外技术使用论证会的总结报告,石油部石油勘探开发研究院,1983.9
    15.“中国注水油田提高原油采收率研究”,石油勘探开发研究院,大庆石油管理局等,1991
    16. Moradi-Aroghi Ahmad, Doe P H. Soc. Petrol. Eng. Reservoir Eng, May 1987, p189-198
    17. Lambert F, Dinaudo M, Polymer, 1985,26,594-602
    18. Ryles R G,SPE12008,1983
    19. Philips J C, at al. Soc. Petrol. Eng. J., 1985,25,594-602
    20.韩明等.油田化学,1990,7(3),284—288
    21. Holzwarth G, Biochemistry, 1976,15,4333-4339
    22. Wellington S L, Soc. Petrol. Eng. J., 1983, 12, 901-906
    23. Lindblom M J. US 3305016,1967
    24. Chatter J I, Borchard J K, SPE9288, 1980
    
    
    25.陈立滇.油田化学,1993,10(3),283-290
    26. Johansen R T, Berg R L, ed. Chemistry of oil recovery, ACS Symposium Series,91, American Chemcal Society, Washington DC, 1979
    27.Stahl G A,Schulz D B 著,师树义 译.采油用水溶性聚合物.北京:石油工业出版社,1994
    28. Ryles R G. SPE 9299,1980
    29. Knight B L. J.Petrol. Technol., May 1973,618-626
    30. Glass J E et al, SPE 11691,1983
    31. Welliongton S L. US 4199491,1978
    32.梁凤来.油田化学,1990,7(2),198-202
    33. Mack J C, Smith J E. SPE27780,1994
    34.韩大匡,韩冬,杨普华等.油田化学,1996,13(3),273-276
    35.林梅钦,李建阁,康燕.油田化学,1998,15(2),160—163
    36. Smith J E. SPE 28989,1995
    37.陈铁龙,吴晓玲,肖磊等.油田化学,1998,15(2),164-167,159
    38.张熙,黄荣华,徐僖.高分子学报,2001,1,8-12
    39.张熙,黄荣华.耐温抗盐聚合物驱油剂研究进展.提高石油采收率驱油剂研讨会,北京,1998,5
    40.张熙,黄荣华,代华等.油田化学,1997,14(2),97-101,114
    41.张黎明.油田化学,1997,14(2),166-174
    42. Audibert A, Argillier J F. SPE 28953,1995
    43.马自俊,罗健辉,刘继德.油田化学,1996,13(4),381—384
    44.梁兵,代华,黄荣华.油田化学,1997,14(4),357-360
    45. Christine N, Annie A, Phillipe D. SPE/DOE 27769,1994
    46. Bhattachaya, Apurba, Davenport, et al. US 5232995,1993
    47. Schiling, Peter, Brown, et al. US 4775744,1988
    48. McCormick C L, Blackmon K P. US 4584356,1986
    49. McCormick C L, Blackmon K P, Elloitt D L. J.Polym. Sci., A.Polym. Chem., 1986,24, 2619-2634
    50. Szabo M T, Guilbault L J, Sherwood N S. US 3948783,1974
    
    
    51.景峰,黄荣华,高分子材料科学与工程.1997,13(6),109-113
    52. Rabatin J G. US 4578211, 1985
    53. Herzog G, Starick D, Tews W, et al. US 4793944, 1987
    54. McCormick C L, Tanaka T, Johnson C B. Polymer, 1988,29(7), 731-739
    55.淡宜,王琪.高等学校化学学报,1997,18(5),818-822
    56.蒋锡夔,张劲涛.有机分子的簇集与自卷.上海,上海科学技术出版社,1996,chapter 1
    57.赵国玺.表面活性剂物理化学.北京,北京大学出版社,1995,chapter 5
    58. Taylor K C, Nasr-E1-Din H A. J.Petrol. Sci. Eng., 1998,19,265-280
    59. Dong Lijian, Wang Biao. SPE 29007, 1995
    60. Uh1 J T, Ching T Y, Bae J H. SPE 26400, 1993
    61. Schulz D N, Kaladas J J, Maurer J J, et al. Polymer, 1987,28,2110-2115
    62. Turner S R, Siano D B, Bock J. US 4520182, 1985
    63.周晖,黄荣华.油田化学,1997,14(3),252-256
    64. Kobayashi A, Matsuzaki F, Yanaki T, et al. J.Appl. Polym. Sci. 1999,73,2447-2453
    65. Chang Y, McCormick C L. Polym. Prep., 1992, 2,202-203
    66. Chang Y, Lochhhed R Y, McCormick C L. Macromolecules, 1994,27,2145-2150
    67.罗开富,叶林,黄荣华.1999,15(1),145-148
    68.罗开富,叶林,黄荣华.1999,16(3),261-264
    69. Kathmann E E, McCormick C L. J.Polym. Sci.: A.Polym.Chem., 1997,,35,243-253
    70. Glass J E, Editor. Water-soluble polymers, beauty with performance. Advances in chemical series, vol.213. Washington DC, American Chemical Society, 1986, ①Glass J E, p375; ②Schwab F G, p369; ③Thibeault J C, Sperry P R, Schaller E J, p495
    71. Zhang L.-M. Carbohydrate Polymers, 2001,45,1-10
    72. Klein J, Kunz M, Guderjahn L. Can. J. Chem., 1995,73,1941-1947
    73. Nystrom B, Kjoniksen A-L, Iversen C. Adv. in Colloid and Interface Sci., 1999,79,81-103
    74. Ezzell S A, McCormick C L. Macromolecules, 1992,25(7), 1881-1886
    75. Effing J J, McLennan I J, Van Os N M, et al. J.Phy. Chem., 1994,98,12397-
    76. Hill A, Candau F, Selb J. Macromolecules, 1993,26,4521-4532
    77. Evani S. US 4432881,1984
    78. Tturner S R, Siano D B. US 4528348,1985
    
    
    79.赵勇,何炳林,哈润华.高分子学报,2000,5,550-553
    80. Candau F, Selb J. Adv. in Colloid and Interface Sci., 1999,79,149-172
    81. Stahler K, Selb J, Candau F. Langmuir, 1999, 15(22), 7565-7576
    82. Stahler K, Selb J, Barthelemy P, et al. Langmuir, 1998, 14(17), 4765-4775
    83. McCormick C L, Middleton J C, Cummins D F. Macromolecules, 1992,25(3), 1201-1206
    84. Branham K D, Shafer G S, Hoyle C E, et al. Macromolecules, 1995,28(18), 6175-6182
    85. Zhang Y X, Da A H, Hogen-Esch T E, et al. In Shalaby S W, McCormick C L, Butler G B, Eds., Water-soluble polymers: synthesis, solution properties and applications. ACS Symposium Series No.467, American Chemical Society, Washington, DC
    86. Peer W J. Polym. Mater. Sci. Eng., 1987,57,492-
    87. Peer W J, in Glass J E ed. Polymers in aqueous media, Performance through association,chapter 20, Advance in Chemistry 223. Washington DC, American Chemical Society, 1989, p381
    88. Dawling K C, Thomas J K. Macromolecules, 1990,23(4), 1059-1064
    89. Branham K D, Middleton J C, McCormick C L. Polym. Prepr., 1991,32(1),106-107
    90. Chang Y, McCormick C L. Polym. Prepr., 1992,33(2),202-203
    91.崔平,马俊涛,黄荣华.化学研究与应用,(待印)
    92.罗开富,叶林,黄荣华.油田化学,1999,16(3),286-290
    93.张健,张黎明,李卓美.功能高分子学报,1999,12(1),88-96
    94. Miguel M da G. Adv. in Colloid and Interface Sci., 2001,89-90,1-23
    95. Goddard E D. JAOCS, 1994,71(1), 1-16
    96. Karlstrom G, Carlsson A, Lindman B. J.Phy. Chem., 1990,94,5005-5015
    97.李干佐.日用化学工业,1995,(5),1-5
    98. Zana R, Linaos P, Lange J. J.Phy. Chem, 1985, 89, 41-44
    99. Junji K. J. Colloid Interface Sci,, 1991, 142, 326-330
    100. Witte F M. Colloid and Polymer Sci., 1987, 265,42-44
    101.方培基,施燕支,王尔铿.物理化学学报,1994,10(10),936-940
    102. Jones M N. J. Colloid Interface Sci., 1967,23,36-41
    103. Goddard E D. Colloids and Surfaces, 1986, 19, 255-300
    104. Nagarajan R. J Phy. Chem., 1989,90,1980-1988
    
    
    105. Ruckenstein E, Hubber G, Hoffmann H. Langmuir, 1987,3,382-394
    106. Witte F M, Engberg J B F N. Colloids Surf., 1989,36,417-423
    107. Cabane B. J Phys Chem., 1977,81,1639-1647
    108. Arai H. J.Colloid and Interface Sci., 1971,37,223-229
    109. Nagarajan R. Polym.Prepr, 1981,22,2,33-41
    110. Robb I D. Surfactant Science Series, 1981,11,109-142
    111. Schuruger M J, J.Colloid and Interface Sci., 1973,43,491-499
    112. Harada A, Nozakara, Polym. Bull., 1984,11,175-182
    113. 李干佐,隋卫平,徐桂英等.日用化学工业,1996,5,27-31
    114. Saito S. J.Colloid and Interface Sci., 1974,46,528-533
    115. Turro N J. Macromolecules, 1984,17,1321-1328
    116. Zana R, Lang J, Lianos P. Polym. Prepr., 1982,23,39-40
    117. Cabane B, Duplessix R. J Phys., 1987,48,651-657
    118. Shirahama K, Tohdo M, Murahashi M. J Colloid and Interface Sci., 1982,86,282-288
    119. Shirahama K. Colloid Polym. Sci., 1984,253,978-986
    120. Bloor D M, Jones E W. J Chem. Soc. Faraday Trans. 2, 1982,78,657-658
    121. Hall D J. J Chem. Soc. Faraday Trans.1, 1985,81,885-889
    122. Anthony O, Zana R. Langmuir, 1996,8,1967-1975
    123. Ruckenstein E. Langmuir, 1999,15,8086-8094
    124. Schwarz G. Eur. J Biochem., 1970,12(3) ,442-453
    125. Stake I, Yang J T. Biopolymers, 1976,15(11) , 2263-2275
    126. Okuzaki H, Eguchi Y, Osada Y. Chem Mater. 1994,6(10) , 1651-1653
    127. Hayakawa K, Kwak J C T. J Phys.Chem, 1982,86(19) , 3866-3870
    128. Hayakawa K, Kwak J C T. J Phys.Chem, 1983,87(3) , 506-509
    129. Hayakawa K, Santerre J, Kwak J C T. Macromolecules, 1983,16(10) , 1642-1645
    130. Chu D, Thomas J K. J Am. Chem. Soc., 1986,108(20) , 6270-6276
    131. Hansson P, Almgren M. J Phys. Chem., 1995,99(45) , 16684-16693
    132. Hansson P, Almgren M. J Phys. Chem., 1995,99(45) , 16694-16703
    133. Chandar P, Somasundaran P, Turro N J. Macromolecules, 1988,21(4) , 950-953
    134. Abum E B, Scaiano J C. J Am. Chem. Soc., 1984,106(21) , 6274-6283
    
    
    135. Winnik F M.Chem.Rev., 1993,93(2) , 587-614
    136. Cao Z, Washylishen R E, Kwak J C. J Phys.Chem., 1990,94(2) ,773-776
    137. Okuzaki H, Osada Y. Macromolecules, 1995,28(1) , 380-382
    138. Ghoreishi S M, Fox G A, Bloor D M, et al. Langmuir, 1999,15,5474-5482
    139. Gilanyi T. J.Phys.Chem. B, 1997,103,2085-2091
    140. Sakamoto K. J.Phys. Chem.B, 1997,101,7520-7528
    141. Lianos P. Langmuir, 1998,14,6320-6327
    142. Proietti N. Langmuir, 1997,13,6612-6620
    143. Varga I. Langmuir, 1998,14,7397-7404
    144. Anthony O, Zana R. Langmuir, 1996, 15, 3590-3597
    145. Biggs S, Selb J, Candau F. Langmuir, 1992,3,838-845
    146. Wang Y L, Lu D H, Long C F, et al. Langmuir, 1998,8,2050-2054
    147. Volpert E, Selb J, Candau F. Polymer, 1998,39,1025-1030
    148. Volpert E, Selb J, Candau F, et al. Langmuir, 1998,7,1870-1874
    149. Winnik F M. Macromolecules, 1989,22,734-740
    150. Yekta A, Duhamel J, Adiwidjaja H. Langmuir, 1993,9,881-886
    151. Tanaka F. Macromolecules, 1998, 31(2) , 384-393
    152. Nilsson S, Thursson K, Hansson P, et al. J Phys.Chem.B., 1998, 102(37) , 7099-7105
    153. Kulicke W M, Arendt O, Berger M. Colloid Polym. Sci., 1998,276(7) , 617-626
    154. Bokias G, Hourder D, Iliopoulos I, et al. Macromolecules, 1997,30,8293-8299
    155. Holmberg, Christina, Nilsson, et al. J Phys.Chem., 1992,96,871-876
    156. Hammarstrom A, Sundelof L O. Colloid Polym.Sci., 1993,271,1129-1134
    157. Aubry T, Francois J A, Moan M, et al. Macromolecules, 1998, 31(25) , 9072-9074
    158. Peiffer D G. Polymer, 1990,31,2353-2362
    159. Tom A, Richard B, Rammile E, et al. Langmuir, 1994,10,1060-1065
    160. Nilsson S. Macromolecules, 1995,28,7837-7844
    161. McCormick C L, Chang Y. Polymer, 1994,35,3503-3510
    162. Iliopolous I, Wang T K, Audbert R. Langmuir, 1991,7, 617-626
    163. Varadaraj R, Bock J, Brons N. J. Phys. Chem., 1993,97,12991-12994
    164. Effing J J, MclennanI J, Kwar C T. J Phys. Chem., 1994, 98,12397-12400
    
    
    165. Chang Y H, McCormick C L. Macromolecules, 1993,26,6121-6129
    166. Zhang Y X, Da A H, Butler G B, et al. J.Polym. Sci.: A. Polym.Chem., 1992,30,1383-1389
    167. Ma J T, Cui P, Zhao L, Huang R H. Eur. Polym. J, 2002, (in press)
    168.崔平,马俊涛,黄荣华.油田化学,2001,18(2),159-162
    169. Chang Y H, McCormick C L. Polymer, 1994,35,4429-4436
    170. Semchyschyn D J, Carbane M A, Macdonald P M. Langmuir, 1996,12, 253-258
    171. Bakeev V N, Yang M S, Zezin A B, et al. Macromolecules, 1996,29,1320-1326
    172. Thalberg K, Lindman B, Karlstrom G. J Phys. Chem., 1991,95,3370-3376
    173. Thalberg K, Lindman B, Karlstrom G. J Phys. Chem., 1991,95,6004-6010
    174. Philippova O E, Hourdet D, Khokhlov A R, et al. Macromolecules, 1996,29,2822-2829
    175. Anghel D F, Saito S, Alina I, et al. Langmuir, 1998,14,5342-5348
    176.臧庆达,李卓美.物理化学学报,1993,9,21—31
    177.杨江海,朱平平,任峰等.化学通报,1999,5,47-49
    178.薛奇编著.高分子结构研究中的光谱方法.北京,高等教育出版社,1995,p66
    179. McCormick C L, Middleton J C, Grady C E. Polymer, 1992,33(19), 4184-4190
    180. Freid J P, Alexander A E. J Polym. Sci., A- 1.1978,6,1833-1839
    181.李干佐,郝京诚,杜贞伟等.科学通报,1995,40(9),799-802
    182.陈民助,肖淑兴,王茜等.四川大学学报(自然科学版),1998,35(2),245-250
    183.陈民助,王茜,Ashrof等.四川大学学报(自然科学版),1998,35(2),822-827
    184.曾宪诚,李启麟,王茜等.化学研究与应用,1996,8(1),7—13
    185.何曼君,陈维孝,董西侠编.高分子物理.上海,复旦大学出版社,1988
    186. Ballard M J, Buscall R, Waiter F A. Polymer, 1988, 29,1287-1293
    187. Ferry J D. Viscoealstic properties of polymers (2nd ed.). John Wiley & Sons Inc., New York, London, Sydney, Toronto, 1969
    188.白春礼.扫描隧道显微术及其应用.上海,上海科学技术出版社,1992
    189.谭忠印,马金,王琛等.中国科学(B辑),1999,29(2),97-100
    190.肖稳发.湖南化工,2000,30(3),12-13
    191.常志英,彭立芳,聂俊等.高分子材料科学与工程,1997,13(1),16-20
    192.高青雨,王振卫,史先进等.石油化工,2000,29(11),841—844
    193.北京大学数学力学系数学专业概率统计组编.正交设计—一种安排多因素试验的数
    
    学方法.北京,人民教育出版社,1976
    194. Fedors R F. Polymer, 1979,20(2) ,225-228
    195. 虞志光.高聚物分子量及其分布的测定.上海,上海科学技术出版社,1984
    196. Martin A F. Am.Chem.Soc.Meeting, Memphis, April 1942
    197. Dai S, Tam K C, Jenkins R D. Macromolecules, 2000,33(2) , 404-411
    198. Rao M V S. Polymer, 1993, 34(3) , 592-596
    199. Ghimici L, Popescu F. Eur.Polym.J., 1998,34(1) ,13-16
    200. Dragan S, Ghimici L. Polymer, 2001,42(1) , 2887-2891
    201. Dorbyrnin A V, Rubinstein M. Macromolecules, 2000,33(21) ,8097-8105
    202. Potemkin I I, Vasilevskyaya V V, Khokhlov A R. J.Chem.Phys., 1999,111 (6) ,2809-2817
    203. Ma J T, Cui P, Huang R H. International Workshop on Functional Supramoelcular System, Hangzhou, China, Oct, 28-29, 2001, p74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700