用户名: 密码: 验证码:
物理发泡微胶囊的研制及其在立体印花中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物理发泡微胶囊最早应用于立体印花,近年来,在其它领域的应用也不断被开发,因而很有市场前景,然而在国内仍无同类产品工业化的报道。本研究是在此背景下受深圳好利精细化工有限公司委托对物理发泡微胶囊制备进行了研究,并将其工业化。
     本篇论文围绕物理发泡微胶囊研制及其在立体印花中应用而展开。采用原位聚合(有限凝集法)制备物理发泡微胶囊,借助该胶囊的特点研究胶囊的成囊、造壁工艺与发泡性能的关系以及该胶囊在立体印花中的应用。
     文中通过酸碱滴定法测定了不同缩合反应条件下所得的缩聚物酸值,并对缩聚物酸值与分散性能进行分析;采用UV-M图像分析系统对所制备的物理发泡微胶囊粒径大小、粒径分布进行分析;采用光学显微镜、扫描电子显微镜、扫描探针显微镜对物理发泡微胶囊的微观表面形态进行了观察;采用Pyris-1型热分析仪对不同工艺制得物理发泡微胶囊进行了DSC热分析;采用WRX-1S显微热分析仪对物理发泡微胶囊的发泡性能测定,获得不同制各工艺所得到的微胶囊结构与发泡性能的相关关系。
     研究结果表明:
     1.在众多影响缩聚反应的因素中,对缩聚物酸值影响程度强弱依次为温度、时间、抽真空方式和酸催化剂用量。缩聚产物的酸值随着反应温度的提高而提高。120℃缩聚反应,产物的酸值随反应时间的增长而缓慢地变小,有趋向平衡值的倾向;160℃缩聚反应,产物的酸值随反应时间的增长而很快地变小直至凝胶。在160℃反应条件下,对甲苯磺酸对缩聚反应显示负催化;在120℃和140℃反应条件下,对甲苯磺酸对缩聚反应无明显催化作用。缩聚反应抽真空有利于缩聚反应的进行,加快缩聚产物酸值的下降。
     2.具有适宜酸值的缩聚物具有较好的分散性,酸值为75.7mgKOH/g的缩聚物的分散力和乳化能力明显好于其它酸值的缩聚物,并好于PVP K-17。酸值为75.7mgKOH/g的缩聚物在制备物理发泡微胶囊原位聚合中显示较好的分散性,制备小粒径和单核物理发泡微胶囊时,作分散剂的缩聚物酸值应选择在75.7-104.0mgKOH/g之间。
     3.在制备物理发泡微胶囊过程中加入固体粉末分散剂白碳黑和适合的水溶性聚合物分散剂是必要的。白碳黑作为分散剂对物理发泡微胶囊粒径大小和分布影响较为明显。白碳黑配制的水相体系制得的物理发泡微胶囊粒径分布优于氢氧化镁粉末配制的水相体系。K17的PVP、酸值75.7mgEOH/g的缩聚物均可用作物理发泡微胶囊制备时的分散剂。用PVP条件下制得的物理发泡微胶囊的粒径分布与PVP的K值有关,K17条件下制得的物理发泡微胶囊的粒径分布较窄。用缩聚物条件下制得的物理发泡微胶囊的粒径分布与缩聚物的酸值有关,酸值在75.7-104.0mgKOH/g之间,制得的物理发泡微胶囊粒径分布较窄,满足单核胶囊要求。扫描电镜图显示PVP K-17、缩聚物酸值为75.7mgKOH/g条件下制得的物理发泡微胶囊均为单核规整球形。
     4.在制备物理发泡微胶囊工艺中,不管是连续式均化机还是间歇式均化机均化,胶囊粒径随均化速度的提高而变小,胶囊粒径分布随均化次数或均化时间的延长而变窄。考虑到物理发泡微胶囊制备要尽可能避免油相挥发,应该采用连续均化机均化。食盐的加入有助于微胶囊粒径均匀。水溶性阻聚剂能有效地降低单体水相聚合,因而有利微胶囊粒径均匀。分散体系的pH也是影响微胶囊粒径重要因
    
    摘要
    素,物理发泡微胶囊适宜于酸性条件下制备。油/水比对胶囊粒径分布有影响,
    油/水比大,胶囊粒度不均匀:油/水比小,胶囊粒径分布集中,但油/水比太小,
    设备效率太低,也不是合理的工艺。制备微胶囊时,聚合搅拌速度不宜过快,也
    不宜过慢,在我们实验设备条件下350一4O0rmp较为适宜。在制备物理发泡微胶
    囊时,宜采用低温型的引发剂,其半衰期在10h左右。聚合反应时升温速度不宜
    过快。
    5.发泡微胶囊的芯材的沸点对物理发泡微胶囊的发泡温度有影响,在芯材与囊
    膜聚合物相匹配时,沸点越低,发泡温度越低。微胶囊芯材的包含量对发泡温度
    影响不大,但对胶囊的发泡倍率有明显影响,随着包含量的增加,胶囊的发泡倍
    率会增加。形成微胶囊囊膜聚合单体组分对胶囊发泡性能影响较大,以丙烯睛为
    主的丙烯睛和甲基丙烯酸甲酷二元共聚物作囊膜材料的胶囊发泡温度高,胶囊为
    高温型发泡微胶囊;以偏氯乙烯为主的偏氯乙烯、丙烯睛和甲基丙烯酸甲酷三元
    共聚物作囊膜材料的胶囊发泡温度较低,胶囊为低温型发泡微胶囊。胶囊气密性
    会影响胶囊发泡效果,气密性好,存放时间长仍保持较好发泡效果。微胶囊粒径
    和粒径分布均会影响胶囊发泡性能,胶囊粒径小,发泡温度高,胶囊粒径分布宽,
    发泡效果差。引发剂ABIN用量通过影响囊膜聚合物分子量来影响胶囊发泡温
    度,引发剂用量增加,胶囊发泡温度降低。加入交联剂会影响胶囊发泡温度。交
    联剂用量增加,发泡温度随之增加。微胶囊含湿量对胶囊发泡温度影响较大,能
    降低胶囊的发泡温度。高温型发泡微胶囊具有较好的耐有机溶剂性能,有机溶剂
    对其短时间处理表现增塑作用;低温型发泡微胶囊不具有耐有机溶剂性能。
    6.制备物理发泡微胶囊悬浮聚合中,分散剂对微胶囊的形态影响较大,利用酸
    值低
Physical blowing microcapsules, because of their expandable property, have been used in the three-dimensional pigment printing, and their applications have been extending widely into other special fields since recent years. There are good prospects of market for the physical blowing microcapsules. But there is not any factory which could manufacture the microcapsule in industry scale in our country. Under this circumstance SHENZHEN HAOLI chemical Co., Ltd. entrusted us with the research for preparing microcapsules.
    This paper dealt with the preparation of the physical blowing microcapsule and its application in the three-dimensional pigment printing. Physical blowing microcapsules were prepared by means of In-situ polymerization method. Relationship between the microencapsulation process and blowing performance of the product prepared was investigated accordingly.
    In the meanwhile, the acid values of the polycondensates which were intended to be the dispersants obtained under different reaction conditions were measured by titrimetric method, the relationship between acid value and dispersion performance was studied; The particle size and size distributions of the physical blowing microcapsules were analyzed by UV-M image analysis system; the surface morphology of the microcapsules was observed by optical microscope, SEM and scan probe microscope; DSC thermo-analysis was carried out by Pyrisl DSC for the physical blowing microcapsules prepared with different conditions; The blowing performance of the physical blowing microcapsule was observed by WRX-IS thermo-optical analysis; the relationships between microcapsule structure and blowing performance were obtained.
    From the results the following conclusions could be drown:
    1. Factors affecting the acid value of polycondensate from strong to weak were the temperature, time, vacuum supply and the quantity of p-toluene sulfonic acid; the acid value of polycondensate decreased as the reaction temperature was raised; at 120℃, the acid value of polycondensate decreased very slowly as the reaction time prolonged, while at 160℃, the acid value of polycondensate decreased fast and finally the system came to gelation; it seemed to us that the catalytic effect of the p-toluene sulfonic acid was rather negative than positive at 160℃ ; while at 120℃ and 140℃ the p-toluene sulfonic showed hardly any catalytic effect; Vacuum supply promoted the polycondensation obviously and the acid value of polycondensate fell quick down under a vacuum supply.
    2. Polycondensate with an acid value of 75.7 mgKOH/g performed an outstanding emulsifying performance, even better than that of PVP K-17. The range of acid values of polycondensates suitable for dispersants in preparing physical blowing microcapsule should be 75 to 104 mgKOH/g.
    3. As necessary powdered dispersants for preparing the physical blowing microcapsule the colloidal silica was much better than the magnesium hydrate; both the PVP K-17 and the polycondensate with an acid value of 75.7mgKOH/g could be used as the necessary water-soluble polymeric dispersants in preparing
    
    
    
    
    
    physical blowing microcapsule; the K-values of PVP possessed evident effect on the particle size and size distribution of physical blowing microcapsules, the particle size distribution of microcapsules prepared with PVP K-17 appeared narrower, the physical blowing microcapsules prepared with both polycondensate of 75.7 mgKOH/g and PVP K-17 as dispersants showed clearly a single-cored spherical shape.
    4. Regardless of the continuous or batch mixer, the particle size of microcapsule became smaller as the homogenization speed was raised, the particle size distribution of microcapsules became sharper as the homogenization times increased or the homogenization time prolonged. The continuous mixer was preferred in preparing the physical blowing microcapsule considering the volatility of the oil phase. The common salt was beneficial to ensure the uniformity of microcapsules. A water-soluble polymeriza
引文
[1] 邵悠笛等,微胶囊技术及其在染整上的应用介绍,中国纺织大学学报,1997,23(3):79-84
    [2] Simon Benita,MICROENCAPSULATION, 1996, Marcel Dekker Inc., NewYork, 1-93
    [3] 梁治齐,微胶囊技术及其应用,1999,中国轻工出版社,北京
    [4] 管蓉,高分子材料在微胶囊技术中的应用,高分子材料科学与工程,1997,13(5):134-138
    [5] Wurster D. E, U. S. P., 2 648 609 (1953)
    [6] Wurster D. E, U. S. P., 2 799 241 (1957)
    [7] J. Am., Pharm. Assoc. Sci. Ed., 1959, 48: 451
    [8] Green BK, U. S. P., 2 800 458 (1953)
    [9] Green BK, Schleicher L, U. S. P., 2 800 457 (1953)
    [10] Orsino J. A., Fr. P., 2 648 609(1960)
    [11] Somerville G. R., U.S.P., 3 015 128(1962)
    [12] Baer C. W., U. S. P., 2 864 971 (1958)
    [13] Micheal F., Chem. Eng. New, 1996, (12): 62-66
    [14] Munshi N, Colloid Polymer Science, 1995, 273(5): 464-472
    [15] F.P.Regas, Polymer, 1984, 25:245-249
    [16] G Nelson, Microencapsulates in textile coloration and finishing, Review
    
    of Progress in Coloration, 1991, 21: 72-85
    [17] 王春梅,微胶囊的制备及应用,印染助剂,1998,15(2):33-36
    [18] D Aitken, Textile application of thermochromic systems, Review of Progress in Coloration, 1996, 26:1-8
    [19] R Arshady, Microspheres and microcapsules, a survey of manufacturing techniques: Part Ⅰ: suspension cross-linking, Polymer Engineering and Science, 1989, 29: 1746-1758
    [20] C Thies, Encyclopaedia of Polymer Science and Engineering, 1987, 9: 724
    [21] R. Arshady, Microspheres and microcapsules, a survey of manufacturing techniques: Part Ⅱ: coacervation, Polymer Engineering and Science, 1990, 30(15): 905-914
    [22] R. Arshady, Microspheres and microcapsules, a survey of manufacturing techniques: Part Ⅲ: solvent evaporation, Polymer Engineering and Science, 1990, 30(15): 915-924
    [23] R Arshady, Biomaterials, 1993, 14: 5
    [24] 陈水林,染整科技,1995,(1):43
    [25] 王春梅,立体印花物理发泡微胶囊研制[A],中国纺织大学纺化系硕士学位论文[C],1993
    [26] Aggarwal A.K., Microencapsulation processes and applications in textile processing, Colourage, 1998, August: 15-24
    [27] 董炎明,微胶囊化及用作壁材的聚合物,塑料开发,1991,18(3):134-143
    [28] 宋健等,微胶囊及微胶囊化技术的研究进展,化工进展,1999,(1):42-44
    [29] 何曼君.高分子物理[M].上海:复旦大学出版社,1999,114—120
    [30] 木田 末男.热膨胀性制法[P].日本专利:JP05285376,1993
    [31] 许戈文等,化学与粘合,1991,(4):239-241
    [32] J. L.Gardon, High Polymers, 1977, 29:143
    [33] K. E. J. Barret, Dispersion Polymerization in Organic Media, 1975, John Wiley, London
    [34] 常致成,微胶囊技术开发应用进展,精细与应用化学品,1999,(17):19-20,22
    [35] C.Chemtob, Labo-Pharma-Probl. Tech., 1984, 32: 702
    [36] Cf.J. R. Nixon, Endeavour, New Series, 1985, 9(3): 123
    [37] S.Benita, J. Pharm. Sci., 1984, 73:1721
    [38] 丁建新,微胶囊技术,黎明化工,1993,3:31-34
    [39] 王东晖,微胶囊的应用及研究进展,化工新型材料,1999,(7):11-14
    [40] A.G., Ward, The Science and Technology of Gelatin, Academic Press, London
    [41] J.Okada, J.Microencaps, 1985,2:163
    [42] Y.Koida, Chem. Pharm. Bull., 1986, 34:3354
    [43] H.Jizomoto, J.Pharm. Sci., 1984, 73:879
    [44] H.Jizomoto, J.Pharm. Sci., 1985, 74:769
    [45] E.Edomonod, J.Biochem., 1968,109:569
    [46] W.M.Holiday, U.S.P., 3 484 418(1960)
    [47] G.O.Fanger, U.S.P., 3 531 418(1970)
    [48] S.Benita, Int. J.Pharm., 1982 12:251
    
    
    [49] S. Benita, J. Pharm. Sci., 1982, 71:205
    [50] R. Arshady, J. Microencapsulation, 1989, 6:13
    [51] M. Munzer, High Polymers, 1977, 29:106
    [52] R. Arshady, Reactive Polymers, 1985, 1:159
    [53] T. Ishizaka, J. Pharm. Sci., 1981, 70:358
    [54] J. K. Widder, J. Pharm. Sci., 1982, 71:383
    [55] J. J. Buger, Int. J. Pharm., 1985, 23:333
    [56] AICHE Journal, 1996, 42:2616-2626
    [57] Polymer Commmunication, 1985, 26:185-192
    [58] Acta Polymerica, 1989, 40:243-251
    [59] Morehouse, Jr. Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same[P]. 美国专利:US 3615957, 1971
    [60] 刘大鑫,林小枫,吴兆强,董亦森.微胶囊发泡剂的合成[J].广州化工,1988,(3):14-21
    [61] 岛澤 俊行.热膨胀性制造方法及利用方法[P].世界专利:WO9943758,1999
    [62] 增山 俊明.热膨胀性利用方法[P].世界专利:WO9946320,1999
    [63] 横溝 辉正.热膨胀性制造方法[P].日本专利:JP昭62-286534,1987
    [64] 林小枫.微胶囊发泡剂的制备方法[P].中国专利:CA1088849A,1994
    [65] H. Determan, Makromol. Chem., 1968, 114:263
    [66] M. N. Vranken, U.S.P.: 3 523 907(1970)
    [67] H. Takenaka, Chem. Pharm. Bull., 1982, 30:695
    [68] Y. Kawashima, Proced Int. Pharm. Technol., 1986:161-167
    [69] T.R.Tice, J Controlled Releas, 1985, 2:343
    [70] S.Kuga, M.Chromatogr., 1980, 195:221
    [71] H.Takenaka, Chem. Pharm. Bull., 1982,30:695
    [72] G.Spenlehauer, J. Pharm. Sci., 1986, 75:750
    [73] P.Linko, Meth. Enzymol., 1987, 135:269
    [74] D.K.Gilding, Polymer, 1979,20:1459
    [75] R.Bodmeier, J.Microcaps., 1987, 4:297
    [76] J.W.Fong, J.Controlled Release, 1986, 3:119
    [77] 染色工业,日本,1989,607-611
    [78] 王洪记,控制释放技术及其应用进展,四川化工,1997,(1):50-53
    [79] 谢宇,现代化工,1994,14(9):3
    [80] 孙秀廷,化肥工业,1992,19(1):22
    [81] G Kemo, Japan Text. News, 1974, April: 40
    [82] Microencapsulation as a new approach to dyeing, Textile Manufacturer, 1975, March: 32-34
    [83] H.Sakaoka, U.S.P., 3 948 597(1976)
    [84] J. R. Bartlett, B. P., 1 480 328(1977)
    [85] S. Midgley, Independent, 1990, June
    [86] Sekar N., Colourage, 1998, 45(7): 39-43
    
    
    [87] Shirley Institute, New finishes using microencapsulation, Textile Month, 1988, May: 49
    [88] A scent of the unusual, International Dyer, 2000, 185(6): 26
    [89] I. De Felice, B. P., 1 401 143(1975)
    [90] H. G. Bunningen, U.S.P., 3 782 895 (1974)
    [91] 宋心远,新型染整技术,1999,中国纺织出版社,北京:130-152
    [92] M. C. Genovez, Controlling exhaustion of reative dyes on wool by microencapsulation with liposomes, Textile Research Journal, 1997, 67(7): 537-541
    [93] Dr. N. Sekar, Liposomes in the coloration of wool: An update, Colourage, 1999, April: 37-38
    [94] A dela Maza, Phosphatidylcholine/cholesterol liposomes as vehicles for anthraquinone disperse dyes in wool dyeing, JSDC, 1995, 11(1): 30-35
    [95] F.J.Micale, European P., 0 249 685(1987)
    [96] Fuji, B. P.: 1 503 333(1974)
    [97] C. P. Marabella, European P.: 0 232 001(1987)
    [98] Y. K. Woo, U.S.P., 4 514 461 (1985)
    [99] S. I. Nara, U.S.P., 3 870 542 (1975)
    [100] O. Akira, E. P., 0 328 937(1989)
    [101] Fiber World, 1987, Sept.: 164
    [102] Kyoshin Sangyo, B.P., 1 409 206(1975)
    [103] 微胶囊及其在粘粘剂中的应用,化学与粘合,1991,(4):239-241
    [104] 日本公开特许公报,平 4-66122,1992
    [105] 日本公开特许公报,平 8-52939,1996
    [106] 日本公开特许公报,平 10-000853,1998
    [107] 日本公开特许公报,平 09-052440,1997
    [108] 日本公开特许公报,平 09-052439,1997
    [109] Lewis, U.S.P.: 5 741 592 (1998)
    [110] Dr. Hans, Cosmetics & Toiletries, 1990, 105(5)
    [111] Monfe Megill, Cosmetics & Toiletries, 1990, 105(6)
    [112] Fragrance Journal, 1993, (4): 70-85
    [113] 苏建强,包覆技术在化妆品中的应用,日用化学工业,1994,24(5):24-28
    [114] 陈水林.微胶囊技术及其对织物印花之应用[J].印染,1998,(9):28-31
    [115] 陈邦伟.微胶囊印花[J].纺织装饰科技,1996,(4):35-36
    [116] 梁治齐.微胶囊技术极其应用[M].北京:中国轻工出版社,1999
    [117] 薛迪庚.新颖印花[M].北京:纺织工业出版社,1987,59
    [118] 孙静.发泡立体印花工艺[J].印染,1999,(1):31-33
    [119] 易显屏.立体发泡印花工艺探讨[J].印染,1999,(4):27-29;35
    [120] 何中琴[译].发泡印花和珠光印花[J].国外纺织品动态,1989,(1):48-51
    [121] 张玮.发泡印花在针织产品上的应用[J].江苏纺织科技,1988,(2):12-15
    [122] 王红卫.针织物发泡印花[J].针织工业,1996,(1):19-20
    [123] 北川 陽介.点描着色用着色粒子[P].日本专利:JP11286645,1999
    [124] 上原口 広美.发泡体粒子含有纸制造方法[P].日本专利:JP05339898,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700