用户名: 密码: 验证码:
CIMMYT小麦品种Chapio条锈病成株抗性QTL定位及卷叶材料CMH83分子细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上分布最广、种植面积最大的粮食作物。由小麦条锈病菌(Puccinia striiformis f. sp. Tritici)引发的条锈病,是我国小麦最严重的病害之一,中国占有世界上最大的小麦条锈病流行区,约2.0千万公顷以上。选育抗病品种是防治小麦条锈病最为经济、安全、有效的措施,而成株抗性基因的合理利用是培育持久抗性品种的有效途径。因此,研究小麦条锈病成株抗性基因的遗传、发掘成株抗性基因及其紧密连锁的分子标记,能加快培育持久抗性品种,控制条锈病危害。小黑麦(X Triticosecale Wittmack)是人工杂交合成的新物种。小黑麦具有优良特性,穗大、粒多、抗逆性强、抗病性好等优点,是高产饲料作物,也是改良小麦品种的重要种质资源。植物叶片卷曲是叶片性状中的一个重要组成部分,是与植物抗旱相关的、对逆境刺激的一种反应,研究卷叶性状可以为抗旱机制及抗旱育种提供信息。
     本研究对Avocet-YrA/Chapio的277个F6重组自交系(RILs)及亲本进行苗期及成株期条锈病抗性鉴定,田间表型鉴定放在4个试验点,再根据严重度进行抗性基因遗传分析,及利用完备区间作图法(ICIM)对Avocet-YrA/Chapio群体进行QTL定位及上位性分析;同时对小黑麦卷叶材料CMH83进行了分子细胞学特性研究、醇溶蛋白研究、叶片相对含水量(RWC)、失水率(WLR)及卷叶特性初步遗传研究。主要研究结果如下:
     1、Chapio对条锈病表现为成株抗性,遗传分析表明其抗性由4对不完全显性基因控制。
     供试材料Chapio苗期对条锈菌生理小种条中32(CYR32)表现为感病;在成株期,表现为高抗(HR)条锈病,严重度不大于5%;感病亲本Avocet-YrA在苗期和成株期感病;Avocet-YrA/Chapio的277个F6重组自交系(RILs)在苗期全部感病,成株期表现为抗感分离。对4个试验点间的相关性分析表明,在4个试验点间的条锈病严重度相关性达极显著水平(P<0.001)。次数分布图显示,严重度呈连续变异,但峰值略偏向成株抗性亲本一边呈偏正态分布,表明Chapio可能含有主效成株抗性基因。将RILs在墨西哥CIMMYT的严重度与在四川3个点锈病严重度的平均值相比较,发现有较多的品系差异较大,其中有22个品系的严重度差值超过了40%,最高达到了78.3%,说明Chapio有1个或几个成株抗性基因能鉴别墨西哥对锈菌小种YRMV09与中国小种CYR32。
     根据4个试验点条锈病感病严重度调查数据,利用孟德尔遗传模型分别对4个试验点的277个F6重组自交系(RILs)分别进行遗传分析,经χ2测验表明,Chapio在每个试验点的条锈病成株抗性都表现为由4对基因控制(P>0.05)。结合Avocet-YrA x Chapio的正反交F1锈病严重度表现为40-50%,说明Chapio的成株抗性是由4对不完全显性基因控制。
     2、发现4个加性成株抗性QTL和1对上位性QTL(QYr.saas-3BS x QYr.saas-7DS),其中QYr.saas-3DL是一个新QTL
     在4个试验点上共检测到4个条锈病成株抗性QTL,都具有加性效应且都是由抗病亲本Chapio提供,它们位于3BS.3BL.5BL.7DS染色体上,分别命名为Qyr.saas-5BL、QYr.saas-3BS、Qyr.saas-7DS、Qyr.saas-3DL。QYr.saas-7DS最稳定地存在于所有试验点中,它介于SSR标记CSL V34-Xgwm295之间,且与这两个标记紧密连锁,平均加性效应为17.35,在各试验点可解释的表型变异分别为28.18-48.93%;QYr.saas-3BS、QYr.saas-3DL、QYr.saas-5BL分别介于SSR标记Xbarc147-Xwms533,Xgdm8-GDM128、Xgwm46-Xbarc267之间,连锁距离分别为2cM、10cM、38cM,平均加性效应分别为8.40、6.55、4.88,在各试验点可解释的表型变异分别为7.30-17.00%、3.84-12.44%和2.64-4.76%。其中QYr.saas-3DL是新QTL,其余还需进一步研究确定。该群体还检测到1对上位性QTL(QYr.saas-3BS x QYr.saas-7DS),并稳定地存在于3个环境及总平均值中,分别为可解释表现型变异的2.59-7.79%。
     3、发现一个具有卷叶特性的次级小黑麦材料CMH83,其卷叶是显性性状。
     卷叶现象是作物对干旱的一种反应。通过表型观察、细胞学和生理学研究,我们发现了一个卷叶六倍体次级小黑麦(X Triticosecale Wittmack)材料CMH83,它具有矮杆、卷叶以及叶片窄的表型特征。种子醇溶蛋白电泳研究表明,CMH83是一个遗传稳定材料。顺序Giemsa-C带和基因组原位杂交研究发现,CMH83具有12条黑麦染色体,其中两条黑麦染色体的异染色质端带丢失。在干旱胁迫下,CMH83的叶片相对含水量(RWC)和失水率(WLR)比小麦品种失水快,这种现象与卷叶特性相关。初步遗传研究表明,CMH83的卷叶特性由显性基因控制。次级小黑麦品系CMH83可被用于研究小黑麦的抗旱机理,以及干旱胁迫相关基因及其遗传机制。
Wheat(Triticum spp.) was the largest area crop in the world. Stripe rust, caused by the fungus Puccinia striiformis tritici is a widespread disease of wheat that caused significant yield losses annually in many wheat-growing regions of the world. It also was one of the most important wheat diseases in China, its epidemic area can reach above 2.0×107 hm2. Breeding resistant varieties are more effective, economic and safe method to control it, particularly for cultivars with adult-plant resistance (APR). Therefore, one of the aims of this study were to genetic analysis and identify the quantitative trait loci(QTLs) for APR to stripe rust in wheat, and to assess the stability of the QTL effects detected across 4 environments. This knowledge could lead to a more efficient strategy in wheat breeding for durable resistance against stripe rust. Triticale (X Triticosecale Wittmack) is a man-made species with a short history of just over 100 years since the first attempt was made to produce an artificial hybrid. Triticale have good agronomic traits such as large head, more grains, resistance to biotic and abiotic stresses. Leaf rolling may be associated with improved grain yield in some drought situations. Identification of different kinds of rolling leaf types provides a theoretical basis and technical support for leaf shape improvement and also for crop drought tolerance.
     277 RILs F6 developed from Avocet-YrA/Chapio were used to genetic analysis and QTL mapping with Inclusive Composite Interval Mapping Method (IciMapping, ICIM, V3.0)according to rust severity at adult plant stage at 4 environments. At same time, Rolling leaf material CMH83 from CIMMYT was studied by phenotypic, cytological and physiological analysis. The results are as follow:
     1. Chapio were controlled by four pairs incomplete dominance adult-plant resistance (APR) genes against stripe rust
     Chapio was susceptible to stripe rust race (CYR32) at seedling stage, and high resistance at adult-plant resistance(APR), all of 277 RILs F6 developed from Avocet-YrA/Chapio were susceptible to stripe rust race (CYR32), and segregated at adult plant stage. Correlation analysis showed that correlation coefficients were significant among 4 environments(P<0.001). Frequency distribution was a littler skew distribution which suggested that Chapio probably contained larger effect gene for APR. Stripe rust severity in some lines showed different value between CIMMYT and China, particularly for 22 lines which difference reached 40-78.3%. It showed that one or several genes in Chapio can identify the races between Chinese race CYR32 and Mexican race YRMV09.
     Genetic analysis suggested that Chapio contained 4 APR genes by Chi-squared analyses (P>0.05). Rust severity were 40-50% in Avocet-TrA x Chapio F1 and Chapio x Avocet-YrA F1. Therefore, those result suggested that there were four pairs incomplete dominance adult-plant resistance(APR) genes against stripe rust in CIMMYT variety Chapio.
     2. Four additive APR QTLs and one pair epistatic interactions QTL had been detected, QYr.saas-3DL should be a new QTL
     Four QTLs for APR against stripe rust have been detected by Inclusive Composite Interval Mapping Method on chromosomes 3BS,3DL,5BL and 7DS in 4 environments, designated QYr.saas-3BS, QYr,saas-3DL, QYr.saas-5BL and QYr.saas-7DS, respectively, explaining from 2.64 to 48.93% of the phenotypic variance. All QTLs were from Chapio. The QTL QYr.saas-3DL, different from all QTLs reported previously, was flanked by SSR markers Xgdm8 and GDM128, with a genetic distance of 10 cM, which accounted for 3.84-12.44% of phenotypic variance. The QTL QYr.caas-7DS flanked by markers csLV34 and Xgwm295, which were closely linked to QYr.caas-7DS which showed the largest effect for resistance to stripe rust and accounted for 28.18-48.93% of phenotypic variance. The QTLs QYr.saas-3BS and QYr.saas-5BL flanked by markers Xbarc147 and Xwms533, Xgwm46 and Xbarc267, with a genetic distance of 2.0 cM and 38 cM, which accounted for 7.30-17.00% and 2.64-4.76% of phenotypic variance, respectively. QYr.saas-3DL should be a new QTL, others needed to further confirm. One pair epistatic interactions QTLs (QYr.saas-3BS x QYr.saas-7DS) had been detected, which accounted for 2.59-7.79% of the phenotypic variance in 3 environments and average value. QTLs QYr.saas-3BS, QYr.saas-3DL, and QYr.saas-7DS could be used in marker-assisted selection for APR to striper rust in wheat breeding programs.
     3. Leaf rolling occurs in some cereal genotypes in response to drought. In the present study, we identified a rolling leaf genotype CMH83 of hexaploid Triticale (X Triticosecale Wittmack), that exhibited reduced plant height, rolling and narrow leaves, by phenotypic, cytological and physiological analysis. Gliadin electrophoresis of seeds protein showed that CMH83 was genetically stable. The sequential Giemsa-C banding and genomic in situ hybridization showed that the CMH83 contained 12 rye chromosomes, of which two pairs of chromosomes had reduced telomeric heterochromatin bands. The test of leaf relative water content (RWC) and water loss rate (WLR) of CMH83 compared with those of wheat cultivars indicated that rapid water loss after drought stress in CMH83 could be associated with the leaf rolling phenotypes. Leaf rolling phenotype of CMH83 was a dominant trait in our preliminary inheritance studies. The triticale line CMH83 can be used to study the mechanism of triticale for drought resistances.
引文
1.何聪芬,周春江,王翠亭,等.异细胞质在八倍体小黑麦育种中的利用研究[J].麦类作物学报,2002,22(2):6—9.
    2.何中虎,兰彩霞,陈新民,邹裕春,庄巧生,夏先春.小麦条锈病和白粉病成株抗性研究进展与展望.中国农业科学.2011,44(11):2193-2215.
    3.兰彩霞.普通小麦条锈病和白粉病成株抗性QTL定位.[博士学位论文].北京:中国农业科学院.2010.
    4.李焰焰,聂传朋,董召荣.模拟酸雨对小黑麦种子萌发及幼苗生理特性的影响.生物学杂志,2005,24(4):395-397.
    5.李振岐,曾士迈.中国小麦锈病[M].北京:中国农业出版社,2002.
    6.林凤,徐世昌,张立军等.小麦抗条锈病基因Yr2的SSR标记.麦类作物学报,2005 25(1):17—19
    7.刘红彦.小麦抗条锈病基因分子标记的建立.陕西杨凌,1999,西北农林科技大学博士论文
    8.马渐新,周荣华,董玉琛等.来自长穗偃麦草(Lophopyrum elongatum)的抗小麦条锈病基因的定位.科学通报,1999,44(1):65-69
    9.邵应田,牛永春,朱立煌等.小麦抗条锈病基因Yr10的AFLP标记,科学通报,2001,48(8):669-672
    10.沈年伟,钱前,张光恒.水稻卷叶性状的研究进展及在育种中的应用分予植物育种,2009,7(5):852-860.
    11.万安民,牛永春,徐世昌,吴立仁.持久抗条锈病小麦品种抗性特点及其在我国的利用价值.作物学报.2000,26(6):751-755.
    12.万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾.植物保护,2003,29(2):5-8
    13.王金玲,董心久,田成军,等.水分胁迫对小黑麦生理特殊化特征和可溶性蛋白质的影响.麦类作物学报,2006,26(5):137-139.
    14.魏亦农,孔广超.六倍体小黑麦与普通小麦对干旱胁迫反应的比较研究.石河子大学学报(自然科学版),2002,6(1):8-10.
    15.吴立人,牛永春.我国小麦条锈病控制的策略.中国农业科学,2000,33(5): 46-54.
    16.夏先全,姚革,蒋文平.2010.不同小麦材料成株期抗条锈病评价及变异分析.西南农业学报.2010年23卷4期:1111-1115
    17.许庆方.小黑麦的特性及应用研究进展.草原与草坪,2008,4:80-86.
    18.杨作民,解超杰,孙其信.后CYR32时我国小麦条锈抗源之现状,作物学报,
    2003,29(2):161-168
    19.姚占军,廉瑞明,徐世昌等.小麦条锈菌鉴别寄主Lee中抗性基因Yr7的微卫星标记.中国农业科学,2006,39(6):1146-1152
    20.余玲,田增荣,朱建峰,等.小麦、黑麦及小黑麦的耐盐性研究.西北农业学报,1996,5(3):39-42.
    21.张跃进,王建强,姜玉英,等.2007年全国农作物重大病虫发生趋势预报[J].中国植保导刊,2007,2:32-35.
    22.张跃进,王建强,姜玉英等.2005年全国农作物重大病虫发生趋势预报[J].中国植保导刊,2005,4:28-30.
    23.张跃进,王建强,姜玉英等.2006年全国农作物重大病虫发生趋势预报[J].中国植保导刊,2006,4:5-8.
    24.赵开军,鲍文奎.八倍体小黑麦体细胞耐盐变异体发生机制初步研究.中国农业科,1993,26(5):25-31.
    25.赵中华.2003年全国小麦条锈病的流行特点及治理策略[J].中国植保导刊,2004,2:16-18.
    26.钟鸣,牛永春.DNA分子标记技术在小麦抗锈病基因研究中的应用.植物保护,2000,26(3):32-35.
    27. Amiour N., Bouguennec A., Marcoz C., Sourdille P., Bourgoin M. Khelifi D.& Branlard G.2002b. Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe. Euphytica 123: 295-305.
    28. Amiour N., Dardevet M., Khelifi D., Bouguennec A., Branlard G.2002a. Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale. Euphytica 123:179-186.
    29. Annick M, Elisabeth P, Gerard T. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid t riticale and it s parental species under salt st ress. Journal of Plant Physiology,2004,161 (1):25-33.
    30. Baczek-Kwinta R, Filek, W., Grzesiak, S., Hura,T. The effect of soil drought and rehydration on growth and antioxidative activity in flag leaves of Triticale. Biologia Plantarum,2006,50:55-60.
    31. Bansal U et al.2010. Manuscript in preparation.
    32. Bansal UK, Hayden MJ & Bariana HS.2010. Chromosomal location of an uncharacterized stripe rust resistance gene in wheat. Euphytica 171: 121-127.
    33. Barary, M (2005). An investigation of drought tolerance mechanisms in triticale (X Triticosecale Wittmack) with particular reference to osmotic adjustment. Ph.D Thesis, University of New England, Armidale, Australia, p 125
    34. Bariana HS, McIntosh RA. Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar 'Hybride-de-Bersee'. [J]. Plant Breed,1995,114:485-491.
    35. Bariana HS and McIntosh RA. Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their gentic linkage with other disease resistance in chromosome 2A. Genome,1993,36:476-482.
    36. Bariana HS, Hayden MJ, Ahmed NU et al. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust. J. Agric. Res.,2001,52:1247-1255
    37. Bariana HS, Parry N, Barclay IR et al. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet,2006,112:1143-1148
    38. Bennett F.Resistance to powdery mildew in wheat:a review of its use in agriculture and breeding programmes[J]. Plant Pathology 1984,33:297-300.
    39. Borlaug NE (1972) A cereal breeder and ex-forester's evaluation of the progress and problems involved in breeding rust resistant forest trees:"Moderator's Summary". Biology of Rust Resistance in Forest Trees. Proc. of a NATO-IUFRO Advanced Study Institute. Aug.17-24,1969. USDA Forest Service Misc. Publ.1221, pp.615-642.
    40. Borner A, Roder MS,Unger O,Meinel A. The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust(Puccinia striiformis)in wheat[J]. Theoretical and Applied Genetics 2000,100:1095~1099.
    41. Boukhatem N, Baret PV, Mingeot D, Jacquemin JM. Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations[J]. Theoretical and Applied Genetics 2002,104:111~118.
    42. Caldwell RM (1968) Breeding for general and/or specific plant disease resistance. In Proc.3rd Int. Wheat Genetics Symp. (Ed. K. W. Finlay and K. W. Shephard) pp.263-272. (Aust. Acad. Sci., Canberra, Australia).
    43. Caldwell RM. Breeding ror general and/or specific plant disease resistance. In Proc.3Rd Int.Wheat Genetics SymP. (Eds. K. W. F inley, K. W ShePherd):263-272.
    44. Cao ZJ, Jing JX, Wang MN et al. Analysis of stripe rust resistance inherence of wheat cultivar Guinong 22. Acta Botanica Boreali-Occidentalia Sinica,2004,6(24):991-996
    45. Chague V, Fahima T, Dahan A et al. Isolation of microsatellite and RAPD markers flanking the Yr15 of wheat using NILs bulked segregant analysis. Genome,1999,42:1050-1056
    46. Chen G, Komatsuda T, Pourkheirandish M, Sameri M, Sato K, Krugman T, Fahima T, Korol AB and Nevo E.2009. Mapping of the eibil gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breeding Science 59:21-26
    47. Chen XM, Line RF, Shi ZX et al. Genetics of wheat resistance to stripe rust. In Proceedings of the 9th International Wheat Genetics Symposium. Sask. Edited by A. E. Slinkard. University Extension Press, University of Saskatchewan, Saskatoon, Sask.2-7 August 1998, Vol.3. pp. 237-239.
    48. Chen XM, Marcelo AS, Yan GP et al. Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop Sci,2003,43:2058-2064.
    49. Chen, G. X., M.S. Sagi, W.N. Song, T. Krugman, T. Fahima, A. B. Korol and E. Nevo (2004) Wild barley eibil mutation identifies a gene essential for leaf water conservation. Planta 219:684-693.
    50. Chen, X. M.& R. F. Line,1992a. Genes for resistance to stripe rust in'Tres'wheat. Crop Sci.32:692-696.
    51. Cheng P & Chen XM 2009 Molecular mapping of a gene for resistance to stripe rust in spring wheat cultivar ID0377s. Manuscript Aug 2009.
    52. ChenXM, Line RF, Jones SS. Chromosomal location of genes for stripe rust in spring wheat cultivars Compair, Fielder, Lee, and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology,1995b,85:375-381
    53. Chhuneja P, Kaur S, Garg T,Ghai M, Kaur S, Prashar M, et al. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat[J]. Theoretical and Applied Genetics 2008,116:313~324.
    54. Christiansen MJ, Feenstra B, Skovgaard IM, Andersen SB. Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses[J]. Theoretical and Applied Genetics,2006 112:581~591.
    55. Das, M. K., S. Rajaram, W. E. Kronstad, C. C. Mundt, and R. P. Singh.1993. Association and genetics of three components of slow rusting in leaf rust of wheat. Euphytica 68:99-109.
    56. Dou, Q. W., Tanaka, H., Nakata, N., Tsujimoto, H.2006. Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid triticale. Theor. Appl. Genet.114:41-47.
    57. Dyck, P.L.1991. Genetics of adult plant leaf rust resistance in 'Chinese Spring'and'Sturdy'wheats. Crop Sci.24:309-311.
    58. Dyck, P.L., and D. J. Samborski.1982. The inheritance of resistance to Puccinia recondita in a group of common wheat cultivars. Can J. Genet. Cytol.24:273-283.
    59. Eriksen L, Afshari F, Christiansen MJ et al. Yr32 for resistance to stripe rust present in the wheat cultivar Carstens V. Theor Appl Genet, 2004,108:567-575
    60. Fahima T, Roder MS, Grama A et al. Microsatellite DNA polymorphism divergence in triticum dicoccoides accessions highly resistance to yellow rust. Theor Appl Genet,1998,96:187-195.
    61. Fahima, Tzion, Genlou et al. Identification of molecular marker linked to the Yr15 stripe rust resistance gene of wheat introgressed from wild emmer wheat, Triticum dicoccoides. Plant & Animal Genome V Conference, Town & Country Hotel, San Diego, CA, January 12-16,1997,p163
    62. Fang TL, Cheng Y, Li GQ, Xu SC, Xie CJ, You MS, Yang ZM, Sun QX & Liu ZY 2008 Molecular characterization of a stripe rust resistance gene from wheat line S2199 and its allelism with Yr5. Acta Agronomica Sinica 34: 355-360. In Chinese.
    63. Fernandez-Figaresa I,Marinettoa J,Royob C, et al. Amino-Acid composition and protein and carbohydrate accumulation in the grain of Triticale grown under terminal water st ress simulated by a senescing agent. Journal of Cereal Science,2000,32 (3):249-258.
    64. Gerechter-Amitai ZK, Silfhout CH, Grama A et al. Yr15-a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica,1989,43:187-190.
    65. Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y. Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars[J]. Phytopathology 2008,98:803~809.
    66. Gustafson GD, Shaner G. Influence of plant age on the expression of slow-mildewing resistance in wheat [J]. Phytopathology,1982,72:746-749.
    67. Hautea R,Coffman W, Sorrels M, Bergstrom G. Inheritance of partial resistance to powdery mildew in spring wheat [J]. Theoretical and Applied Genetics 1987,73:609~615.
    68. Herrera-Foessel SA, Lagudah ES, Huerta-Epino J, Hayden M, Bariana H &Singh RP 2009 An adult plant resistance gene in common wheat line RL6077 effective against both stripe rust and leaf rust. Manuscript in preparation.
    69. Hsiao TC,0'Toole JC, Yambao EB, and Turner NC. Influence of osmotic adjustment on leaf rolling and tissue death in rice(Oryza sativa L.). Plant Physiology,1984,75(2):328-341.
    70. Imtiaz M, Ahmad M, Cromey MG,Griffin WB, Hampton JG. Detection of molecular markers linked to the durable adult plant stripe rust resistance gene Yr18 in bread wheat(Triticum aestivum L.)[J]. Plant Breeding 2004,123:401~104.
    71. Johnson R. The concept of durable resistance[J]. Phytopath,1979,69:198-199.
    72. Juarez MT, Kui JS, Thomas J, Heller BA, and Timmermans MC. MicroRNA-mediated repression of rolled leaf specifies maize leafpolarity. Nature,2004,428(6978):84-88.
    73. Kadioglu A and Terzi R. A.2007. Dehydration Avoidance Mechanism:Leaf Rolling. The Botanical Review 73(4):290-302
    74. Khlestkina EK, Roder MS, Unger 0, Meinel A, Borner A. More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust(Puccinia striiformis)in wheat[J].Euphytica 2007,153:1 ~10.
    75. Kilpatrick, R. A.1975. New wheat cultivars and longevity of rust resistance. ARS-NE-4. ARS-USDA, Beltsville, MD.
    76. Knott, D. R., and M. Padidam.1988. Inheritance of resistance to stem rust in six wheat lines having adult plant resistance. Genome 30:283-288.
    77. Kumar A, Sharma SC.2007. Genetics of Excised-Leaf Water Loss and Relative Water Content in Bread Wheat (Triticum aestivum L.). Cereal Research Communications 35:43-52.
    78. Kuraparthy, Chhuneja, Harcharan et al. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet.,2007, DOI 10.1007/s00122-007-0524-2
    79. Lamb C,Dixon RA. The oxidative burst in plant disease resistance[J]. Annual Review-Plant Physiology Plant Molecular Biology 1997,48:251~275.
    80. Lan CX, Liang SS, Wang ZL, Yan J, Zhang Y, Xia XC, et al.. Quantitative trait loci mapping for adult-plant resistance against powdery mildew in Chinese wheat cultivar Bainong 64[J]. Phytopathology 2009,99:1121~ 1126.
    81. Lan CX, Liang SS, Zhou XC, Liu D, Zhou G, Lu QL, et al. Quantitative trait loci mapping for adult-plant resistance against stripe rust in Chinese wheat cultivar Pingyuan 50[J]. Phytopathology 2010a,100:313~318.
    82. Lee SC, Hwang BK. Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum[J]. Planta 2005,221(6):790~800.
    83. Li GQ,Li ZF, Yang WY, Zhang Y, He ZH, Xu SC,et al. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26[J]. Theoretical and Applied Genetics 2006a,112:1434~1440.
    84. Li HH, Ye GY, Wang JK. A modified algorithm for the improvement of composite interval Mapping [J]. Genetics.2007,175:361~374.
    85. Li Q, Chen XM, Wang MN & Jing JX 2010 Yr45, a new gene for stripe rust resistance on the long arm of wheat chromosome 3D. Volume 122, Number 1,189-197, DOI:10.1007/s00122-010-1435-1
    86. Li Y, Niu YC & Chen XM 2009 Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theoretical and Applied Genetics 118:339-346.
    87. Liang SS, Suenaga K, He ZH, Wang ZL, Liu HY, Wang DS,et al. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat [J]. Phytopathology 2006,96:784~789.
    88. Lin F & Chen XM 2008 Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express. Theoretical and Applied Genetics 116:797-806.
    89. Lin F, Chen XM.Genetics and molecular mapping of genes for race specific and all-stageresistance and non-specific high temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa[J]. Theoretical and Applied Genetics 2007,114:1277~1287.
    90. Lin F, Chen XM.Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express[J]. Theoretical and Applied Genetics 2008,116:797~806.
    91. Line F, Chen X. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor. Appl. Genet.,2007,114:1277-1287.
    92. Line R F, Chen X M. Success in breeding for and managing durable resistance to wheat rusts. Plant Disease,1995,79:1254-1255.
    93. Lu YM, Lan CX, Liang SS,Zhou XC, Liu D,Zhou G, et al. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli[J]. Theoretical and Applied Genetics 2009,119:1349~1359.
    94. Lukaszewski AJ, Gustafson JP (1987) Cytogenetics of triticale. In: Janick J (ed) Plant Breeding Reviews, vol 5. AVI Publishing, NY, pp 41-93
    95. Luo PG, Hu XY, Ren ZL, Zhang HY, Shu K, Yang ZJ.Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome.2008 Nov;51(11):922-7.
    96. Luo PG, Zhang HY, Shu K, Zhang HQ, Luo HY & Ren ZL 2007 Stripe rust (Puccinia striiformis f. sp. tritici) resistance in wheat with the wheat-rye 1BL/1RS chromosomal translocation. Canadian Journal of Plant Pathology 30:1-6.
    97. Lupton FGH, Macer RFC. Inheritance of resistance to yellow rust (puccinia glumarum Erikss and Henn) in seven varieties of wheat. Trans. Brit. Mycol. Soc.,1962,45:21-45
    98. Ma JX, Zhou RH, Dong YS et al. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from triticum turgidum L. using microsatellite markers. Euphytica,2001, 120:219-226.
    99. Ma, H., and R. P. Singh.1996. Contribution of adult plant resistance gene Yr18 in protecting wheat from yellow rust. Plant Dis.80:66-69
    100. Macer RFC. Plant pathology in a changing world. Trans. Br. Mycol. Soc.1975,65:351-374.
    101. Macer RFC. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In:Proceedings of the 2nd International Wheat Genetics Symposium.1966,285-290
    102. Mahajan, S. and N. Tuteja,2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics,444:139-158.
    103. Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, et al. Genetic analysis of durable resistance to yellow rust in bread wheat [J]. Theoretical and Applied Genetics 2005,110:1401~1409.
    104. Marais GF, McCallum B, Marais AS. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica,2006,149:373-380
    105. Marais GF, Pretorius ZA, Wellings CR et al. Leaf and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica,2005,143:115-123
    106. Marasas, CN, Smale M, Singh RP (2002) The impact of agricultural maintenance research:the case of leaf rust resistance breeding in CIMMYT-related spring bread wheat. CD-ROM Proc. Int. Conf. on Impacts of Agricultural Research and Development, San Jose, Costa Rica,4-7 Feb. 2002 (CIMMYT, Mexico).
    107. Mccaig TN, Romagosa I (1991). Water status measurements of excised wheat leaves:position and age effects. Crop Sci.31:1583-1588.
    108. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, and Barton MK. Role Of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature,2001,411:709-713.
    109. McDonald DB, McIntosh RA, Wellings CR et al. Cytogenetical studies in wheat. XIX. Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust. Euphytica,2004,136:239-248
    110. McIntosh RA (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol.41,523-527.
    111. McIntosh RA, Devos KM, Dubcovsky J et al. Catalogue of gene symbols for wheat:2004 Supplement. (Zahravi M, Banks P & Bariana HS 2003 Personal communication).
    112. McIntosh RA, Devos KM, Dubcovsky J et al. Catalogue of gene symbols for wheat:2001 supplement [online]. Available from http://grain.jouy.inra.fr/ggpages/wgc/2001upd.html
    113. McIntosh RA, Devos KM., Dubcovsky J, et al. Catalogue of gene symbols for wheat:2004 supplement [online]. Available from http://grain.jouy.inra.fr/ggpages/wgc/2004upd.html
    114. McIntosh RA, Hart GE, Devos KM et al. Catalogue of gene symbols for wheat. In Proceedings of the 9th International Wheat Genetics Symposium. Edited by A.E. Slinkard. University Extension Press, University of Saskatchewan, Saskatoon, Sask.2-7 August 1998, Vol.5. pp.1-235
    115. McIntosh RA, Wellings CR, Parker. Wheat Rust:An ATLAS OF RESISTANCE GENES. CSIRO Publications, Australia,1995,1-12
    116. McIntosh RA, Yamazaki Y, Devos KM et al. Catalogue of genes symbol for wheat,10th international wheat genetics symposium,1-6 Sept.2003, Paestum, Italy, Preceding
    117. McIntosh RA. Catalogue of gene symbols for wheat. In Proceedings of the 7th International Wheat Genetics Symposium. Edited by T. E. Miller and R. M.D. Koebner. Institute of Plant Science Research, Cambridge, 14-19 July 1988, Cambridge, Vol.2. pp.1225-1323.
    118. McIntosh, R. A.1992. Close linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol.41:523-527.
    119. McIntosh, RA; Wellings, CR; Park, RF. Wheat Rusts:An Atlas of Resistance Genes. Published By:CSIRO Publishing, Melbourne, Australia, 1995.
    120. McIntosh. R. A., J. Dubcovsky, W. J. Rogers, C. Morris, R. Appels, X. C. Xia. CATALOGUE OF GENE SYMBOLS FOR WHEAT:2010 SUPPLEMENT (Bansal U et al.2010. Manuscript in preparation.)
    121. McIntosh. R. A., J. Dubcovsky, W. J. Rogers, C. Morris, R. Appels, X. C. Xia. CATALOGUE OF GENE SYMBOLS FOR WHEAT:2010 SUPPLEMENT (Dubcovsky J 2010 Personal communication.)
    122. McIntosh. R. A., J. Dubcovsky, W. J. Rogers, C. Morris, R. Appels5, X. C. Xia. CATALOGUE OF GENE SYMBOLS FOR WHEAT:2009 SUPPLEMENT(Marais F et al.2008 Manuscript in preparation.)
    123. Melichar JPE, Berry S,Newell C,MacCormack R,Boyd LA. QTL identification and microphenotype characterization of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian[J]. Theoretical and Applied Genetics 2008,117:391~ 399.
    124. Michelmore RW, Paran I.Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis:A rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of USA 1991,88:9828~9832.
    125. Moore, G., M. Roberts, L. Aragon-Alcaide & T. Foote.1997. Centromeric sites and cereal chromosome evolution. Chromsoma 105:321-323.
    126. Navabi A, Tewari JP,Singh RP, McCallum B,Laroche A,Briggs KG. Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum Cook[J]. Genome 2005,48:97~107.
    127. Peng JH, Fahima T, Roder MS et al. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica,2000, 109:199-210
    128. Price, A. H., J. Townsend, M. P. Jones, A. Audebert & B. Courtois.2002. Mapping QTL associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol. Biol.48:683-695.
    129. Pu ZJ, Chen GY, Wei YM, Han ZH & Zheng YL.2010. Identification and molecular tagging of a stripe rust resistance gene in wheat line P81. Plant Breeding 129:53-57.
    130. R. P. Singh, J. C. Nelson, and M. E. Sorrells 2000. Mapping Yr28 and Other Genes for Resistance to Stripe Rust in Wheat. Crop Sci.40:1148-1155.
    131. R. P. Singh, J. Huerta-Espino and M. William,2002. Slow rusting genes based resistance to leaf and yellow rusts in whest:genetic and breeding at CIMMYT. In:Proceeding of Breeding Wheat with Stripe Rust Resistance. Chengdu, China.
    132. Ramburan VP, Pretorius ZA, Louw JH et al. Resistance to stripe rust in the wheat cultivar kariega. Theor Appl Genet,2004,108:1426-1433.
    133. Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, et al. A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega[J]. Theoretical and Applied Genetics 2004,108:1426~ 1433.
    134. Rampino, P., S. Pataleo, C. Gerardi, G. Mita & C. Perrotta.2006. Drought stress response in wheat:physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ.29:2143-2152.
    135. Rebetzke GJ, Morrison AD, Richards RA, Bonnett DG, Moore C (2001). Genotypic variation for leaf rolling in wheat. Proceedings of the 10th assembly, Wheat Breeding Society of Australia, Mildura
    136. Ren TH, Yang ZJ, Yan BJ, Zhang HQ, Fu SL & Ren ZL 2009 Development and characterization of a new 1BL. 1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169: 207-313.
    137. Richards RA, Rebetzke GJ, Watt M, Condon MG, Spielmeyer W and Dolferus R. Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology,2010,37,85-97.
    138. Riley R, Chapman V, Johnson R. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res.1968,12:713-715
    139. Robert O, Dedryver F, Leconte M et al. Combination of resistance tests and molecular tests to postulate the yellow rust resistance gene Yrl7 in bread wheat lines. Plant Breed.2000,119:467-472
    140. Roberts J, Caldwell R. General resistance(slow mildewing)to Erysiphe graminis f.sp.tritici in Knox Wheat[J]. Molecular Genetics 1970,60:1310.
    141. Rosewarne GM, Singh RP, Huerta-Espino J,Rebetzke GJ. Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis[J]. Theoretical and Applied Genetics 2008,116:1027~1034.
    142. Santra DK, Chen XM, Santra M, Campbell KG,Kidwell KK. Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat(Triticum aestivum L.) cultivar Stephens[J].Theoretical and Applied Genetics 2008,117:793~802.
    143. Sharp PJ, Kreis M, Shewry PR, Gale MD. Location of β-amylase sequence in wheat and its relatives[J]. Theoretical and Applied Genetics 1988,75:286~290.
    144. Shi ZX, Chen XM, Line RF et al. Development of resistance gene analog polymorphism marker for the Yr9 gene resistance to wheat stripe rust. Genome,2001,44 (4):509-516.
    145. Singh R P, William H M, Huerta-Espino J, Rosewarne G. Wheat rust in Asia:meeting the challenges with old and new technologies. In:New directions for a diverse planet. Proceedings of the 4th international crop science congress,26 September-1-October 2004, Brisbane, Australia,2004.
    146. Singh RP (1992b) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance tostripe rust in bread wheat. Phytopathology 82,835-838.
    147. Singh RP and Rajaram S. Genes of adult plant resistance to stripe rust in ten sring bread wheats. Euphytica,1994,71:1-7
    148. Singh RP, Nelson JC, Sorrells ME. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci.2000,40:1148-1155
    149. Singh RP, Huerta-Espino J, Rajaram S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes[J]. Acta Phytopathologica et Entomologica Hungarica. 2000a,35:133-139.
    150. Singh RP, Nelson JC, Sorrells ME. Mapping Yr28 and other genes for resistance to stripe rust in wheat[J]. Crop Sscienc,2000b,40:1148~ 1155.
    151. Singh RP. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology, 1992,82:835-838.
    152. Singh, R. P.1992a. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci.32:874-878.
    153. Singh, R. P., and J. Huerta-Espino.1997. Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. 70:520-528. Crop Sci.37:390-395.
    154. Singh, R. P., and S. Rajaram.1992. Genetics of adult-plant resistance to leaf rust in'Frontana'and three CIMMYT wheats. Genome 35:24-31.
    155. Singh, R. P., and S. Rajaram.1994. Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica 72:1-7
    156. Sirault XRR (2007). Leaf rolling in wheat. PhD thesis ANU, Canberra, Australia
    157. Stubbs R W. Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in a global context. In'Breeding strategies for resistance to the rusts of wheat'. (Eds NW Simmonds, S Rajaram) 1988, pp.23-38. (CIMMYT:Mexico, D. F.)
    158. Suenaga K, Singh RP, Huerta-Espino J, William HM. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat[J]. Phytopathology 2003,93:881-890.
    159. Sui XX, Wang MN & Chen XM 2009 Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology 99: 1209-1215.
    160. Sun GL. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild wheat, triticum dicoccocoides. Theor. Apple. Genet,1995:622-628.
    161. Sun Q, Wei Y, Ni Z, et al. Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breeding,2002,121(6):539-542
    162. Taketa S, Nakazaki T, Schwarzacher T, Heslop-Harrison JS. Detection of a 4DL chromosome segment translocated to rye chromosome 5R in an advanced hexaploid triticale line Bronco 90. Euphytica 97:91-96,1997
    163. Teulat, B., N. Zoumarou-Wallia, B. Rotter, M. Ben Salem, H. Bahri & D. This.2003. QRL fro relative water content in field-grown barley and their stability across Mediterranean environments. Theor. Appl. Genet.108:181-188.
    164. Turner, N.C.,1981. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil,58:339-366.
    165. Uauy C, Brevis JC, Chen XM, Khan I, Jackson L, Chicaiza 0, et al. High-temperature adult-plant (HTAP)stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1[J]. Theoretical and Applied Genetics 2005,112:97~105.
    166. Van der Plank, J. E..1963. Plant diseases:epidemics and control. New. York:Academic Press (New York)
    167. Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease,2004,88:896-904.
    168. Wang CM, Zhang YP, Han DJ, Kang ZS, Li GP, Cao AH & Chen PD 2008 SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159:359-366.
    169. William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K. Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat [J]. Genome 2006,49:977-990.
    170. Wilson, A. S.1876. Wheat and rye hybrids. Edinburgh Bat. Sac. Trans. 12:286-288.
    171. Worland AJ, Law CN. Genetic analysis of chromosome 2D of wheat I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow rust resistance. Zeitschrift fur Pflanzenzuchtung,1986,96:331-345
    172. Yan GP, Chen XM, Line RF et al. Resistance gene-analog polymorphsim marker co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet.,2003,106(4):636-643.
    173. Yang ZJ, Li GR, Jiang HR, Ren ZL (2001) Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119:317-321.
    174. Zadoks JC. Yellow rust on wheat studies in epidemiology and physiologic specialization[J]. T PI Ziekten,1961,67:249-256.
    175. Zhang JY, Xu SC, Zhang SS et al. Monosomic analysis of resistance to stripe rust for source wheat line Jinghe 8811. Acta Agronomica Sinica, 2001,27:273-277
    176. Zhang X, Jessop R S. Analysis of genetic variability of aluminium tolerance response in Triticale. Euphytica,1998,102:177-182.
    177. Zhao WS, Xu SC, Zhang JY et al. Inheritance of stripe rust resistance in wheat cultivar Jubilejna. II. Acta Phytophylacica Sinica,2004,31: 127-133.
    178. Zhou J P, Yang Z J, Feng J, Zhang X Z and Ren Z L. Production and identification of a new Triticale with branched-spike. Cereal Research Communication 2007,35(3):1385-1395.
    179. Zhou J P, Yang Z J, Li G R, Liu C, Ren Z L. Discrimination of repetitive sequences polymorphism in Secale cereale by genomic in situ hybridization-banding. Journal of Integrative Plant Biology.2008,50 (4):452-456.
    180. Zhou Y, Fang Y X, Zhu J Y, Li SQ, Gu F, Gu MH, Liang GH. Genetic analysis and gene fine mapping of a rolling leaf mutant (r111 (t)) in rice (Oryza sativa L.). Chinese Sci Bull,2010,55:1763-1769.
    181. Zwer PM and Qualset CO. Genes for resistance to stripe rust in four spring wheat varieties.2. Adult plant responses. Euphytica,1994,74: 109-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700