用户名: 密码: 验证码:
杂交水稻对生态环境和弱光胁迫的适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2006至2009年在生态条件差异较大的四个生态点进行,生态点分别是温江、雅安、汉源、西昌,海拔高度分别约为530m、550m、1055m、1500m,在杂交水稻生育期间和生殖生长关键时期,各生态点的温度、光照和降水条件差异明显。试验主要从杂交水稻的形态学变化、功能与代谢变化、激素含量和蛋白表达差异、物质生产能力和产量等多个方面对杂交水稻的适应性及其机理进行了研究,试验由以下三个部分组成:第一部分是杂交水稻生态适应性的研究,于2006年进行,比较研究了18个杂交水稻品种在温江、汉源、西昌三个生态点的生态适应性,并进行综合评价,从中筛选综合适应能力和对光照的适应能力有差异的品种进行下一年的试验;第二部分是两类生态条件下不同类型杂交水稻始穗期的遮光试验,于2007年分别在温江和进行,研究了弱光胁迫下3种同类型的6个杂交水稻品种在两类生态条件下的适应性和适应机理;第三部分为不同类型水稻秧田期遮光试验,于2009年在雅安四川农业大学农场进行,研究了在2007年研究基础上确定的不同类型的4个杂交水稻品种的适应性和适应机理。主要研究结果如下:
     1.在不同生态条件下,杂交水稻齐穗期的单株叶面积和剑叶面积差异极显著,杂交水稻的叶面积调节能力较强;杂交水稻的叶绿素含量、叶绿素a/b比值、类胡萝卜素含量、光合速率差异显著,杂交水稻品种在汉源生态点能形成优良的光合性能;杂交水稻可以通过合成叶绿素和类胡萝卜素、降低叶绿素a/b比值、防止叶绿素被强光氧化等生理变化,增强生态适应能力,尤其是对强光或弱光的适应能力,不同生态环境的不同光照刺激,可使杂交水稻启动不同的适应方式。不同生态条件下杂交水稻的干物质积累、茎鞘物质输出率、产量构成因素和产量也差异显著,其中对产量影响较大的因素是单株干重、结实率、千粒重。对所有15项测试指标进行主成分分析表明,与杂交水稻生态适应性关系密切的指标有:光合速率、相对电导率、剑叶面积、有效穗、单株叶面积、叶绿素含量、光氧化率、单株干重、产量、输出率、类胡萝卜素含量,说明在试验生态环境下,应重点改善杂交水稻的光合性能和增强抗逆性,才能达到提高产量的目的。
     2.不同品种的光合速率、电导率、千粒重、单株干物质重、光氧化率、输出率等有明显的差异,不同的杂交水稻品种可能有共同的生态适应方式,也各自有不同的特殊生态适应方式,改变叶面积是杂交水稻的共同适应方式,特殊的适应方式有:增加叶绿素、叶绿素b和类胡萝卜素含量、降低光氧化率、减少叶片的物质输出、增强抗逆性。采用主成分分析对各品种的生态适应性进行了综合评价,将18个品种分为广适品种、普适品种、特适品种三种类型,生态适应性较强的品种有:壹丰8号、红优2009、D优7511、金优188、川江优3号、C优725、汕优63、Ⅱ优363、冈优725、协优9308
     3.在杂交水稻始穗期遮光(遮光率约85%),在两生态点均表现一致的结果是:杂交水稻可以通过增加叶绿素含量和叶绿素a/b比值,来抵御弱光对光合作用的影响,维持光合速率的相对稳定;遮光使叶绿素光氧化率有增加的趋势,遮光是以促进叶绿素合成而非阻止其分解的方式来增加叶绿素含量的,尤其使其合成更多的叶绿素b。遮光对水稻上三叶和单株叶面积无显著影响,但能增加剑叶着生角度,显著减少倒3叶的鲜重。遮光可以改变杂交水稻的有机物质分配规律,尽管遮光提高了茎鞘物质的输出率和转换率,但却因减少了叶片有机物质的输出,导致杂交水稻的结实率和千粒重的显著降低,产量也大幅降低,说明杂交水稻始穗期以后的光合生产能力对产量形成具有重要作用。总体而言,遮光对不同抗逆特性品种的形态特征、光合生理特性、抗逆性、物质生产与运输分配和产量构成因素及其构成因素的影响不同。广适性品种壹丰8号和红优2009、耐荫品种倍丰3号和冈优527,在弱光下能保持光合特性、生物膜结构、SOD酶活性、物质生产与分配特性、产量形成能力的稳定,甚至可以启动弱光抵御机制,如改变剑叶着生角度、增强SOD活性、增加叶绿素b含量、减少叶片有机物质输出、甚至大幅降低产量来维持叶片正常的生理功能和生长。
     4.在秧田期对杂交水稻进行不同程度的遮光(遮光67%和86%)处理,显著影响不同耐荫性品种秧苗的分蘖数,随着弱光胁迫强度的增大,分蘖数呈显著降低趋势;适当的遮光强度能促进耐荫性水稻品种秧苗增高、叶面积增大,过度遮光使秧苗苗高及叶面积显著降低。耐荫性强的品种在高强度遮光条件下,可溶性糖含量及C/N比呈明显升高,随着遮荫强度的增加叶绿素a、b和叶绿素总量均呈不同程度的增加趋势,叶绿素b增幅高于叶绿素a,使Chl a/b比值降低,而耐荫性较弱的品种则无这样的变化趋势。秧田期遮光可以诱导抗逆激素ABA增加,对生长促进类玉米素(ZT)和赤霉素(GA)含量的影响,则因品种不同有差异。遮光可诱导杂交水稻在分子量为33kD左右的位置产生新的蛋白质谱带,耐荫性较强的品种倍丰3号在蛋白谱e(26-33kD)的表达明显增强于其它品种。耐荫性较强的品种相对电导率变幅较小,MDA含量增大的比例也相对较小,SOD酶活性随遮光强度的增加增幅加大,但脯氨酸(Pro)含量变化显著。
     5.作者根据本研究结果和前人的相关研究,对杂交水稻生态适应性的概念和评价体系进行了新的考量,初步提出:杂交水稻的生态适应性评价至少应该考虑生存需要的适应性和生产需要的适应性两个重要方面。在评价指标中,应重点选择针对性强的指标,回避一些具有共同性和瞬时变化的生理指标;应进行多年多点试验;还应采用合理的生物统计方法,对试验结果进行综合评定。
The experiment was carried out from 2006 to 2009 year, in quite different conditions of the four ecological sites. The altitude is approximately 530m,550m, 1055m and 1500m. During the critical period in the growth and reproductive growth of hybrid rice, there are significant differences of temperature, light and precipitation. In this paper, we conducted some studies on the adaptability and mechanism of hybrid rice such as morphological changes, function and metabolism, hormone levels and the differences of protein expression, matter production and yield. The study consisted of three parts, the first part was the ecological adaptability of hybrid rice. In 2006, we comparative studied on the ecological adaptability of the 18 hybrid rice varieties in Wenjiang, Hanyuan and Xichang. Meanwhile, we conducted a comprehensive evaluation and screened some varieties which had differences on the comprehensive adaptive capacity and ability to adapt to light for the next year trial. The second part was the shading test at initial stage of panicle emerging of hybrid rice varieties in two different types of ecological conditions. In 2007, we studied the adaptability and adaptation mechanism in the two types of ecological prerequisites of 6 hybrid rice varieties under low light stress at Wenjiang and Hanyuan. The third part was the shading test about different types seedling rice, in 2009, Yaan, the farm of Sichuan Agricultural University. Based on the study in 2007, we investigated the adaptability and adaptation mechanism of 4 hybrid rice varieties which had different types. The main results were following.
     1. In the different ecological conditions, there were significantly differences in leaf area and flag leaf area of hybrid rice full heading stage, hybrid rice had a strong ability for regulating leaf area; there were significantly differences in chlorophyll content, ratio of chlorophyll a/b, carotenoid content and photosynthetic rate of hybrid rice, hybrid rice varieties could form an excellent photosynthetic performance in Hanyuan ecological site; hybrid rice could reduce some physiological hanges such as synthesizing chlorophyll and carotenoid, reducing chlorophyll a/b ratio for increasing the capacity of ecological adaptation, especially it could increase the adaptability about glare and low light. Because of different light stimuli in different ecological environments, hybrid rice could start to adapt in different ways. In the different ecological conditions, there were significantly differences in dry matter accumulation, output rate of stem and sheath, yield components and yield of hybrid rice, the factors which had greater impact on yield were dry weight per plant, seed setting rate and thousand-grain weight. The 15 indicators of principal component analysis showed that the indexes which had larger contribution on ecological adaptability of hybrid rice were photosynthetic rate, relative conductivity, flag area, leaf area per plant, dry weight per plant, effective panicle, chlorophyll content, photo-oxidation rate, carotenoid content, grain yield and output rate, these phenomena showed that we should focus on improving photosynthetic performance and enhancing resistance of hybrid rice for increasing production in the test environment.
     2. The photosynthetic rate, conductivity, thousand-grain weight dry matter weight, photo-oxidation rate, output rate of different hybrid rice was different distinctly. Different varieties of hybrid rice might have a common way of ecological adaptation, also might have their own different special way of ecological adaptation. such as the common way:changing the leaf area of hybrid rice, the special way: increasing the chlorophyll, chlorophyll b and carotenoid content, reducing photo-oxidation rate, decreasing the material output of leaf and enhance stress resistance. The 18 varieties of hybrid rice was divided into wide suitable varieties, pervasive varieties, especially suitable varieties using comprehensive evaluation method of principal component analysis. The varieties of ecological adaptability strongly were Yifeng8, Hongyou2009, Dyou7511, Jinyou188, Chuanjiangyou3, Cyou725, Xianyou63,Ⅱyou363, Gangyou725 and Xieyou9308.
     3. Hybrid rice showed the same result by shading (about 85%) in initial heading stage in two ecological sites. Hybrid rice could resist the effects of low light on photosynthesis and maintain the relative stability of photosynthetic rate by adding more chlorophyll content and chlorophyll a/b ratio. Chlorophyll photo-oxidation rate tended to increase by shading, shading was promoting the chlorophyll synthetic rather than stopping the decomposition to increase the chlorophyll content, especially chlorophyll b. Shading on rice could increase the angle of flag leaf and reduce the fresh weight of upper 3 leaves significantly, but had no significant effect on trilobites and leaf area. Shading on hybrid rice could change its distribution rule of organic matter, although increase transformation rate and export rate of the matter in stem-sheath, but reduce the leaf decomposition of organic material, which lead to reduction of the seed-setting percentage and thousand-grain weight significantly and production was greatly reduced, and it showed that Photosynthetic capability after initial heading stage of hybrid rice was important to yield formation. Overall, the effect of shading on the morphological characteristics, characteristics of photosynthetic characteristics, resistant, material production and transport distribution yield and its formation factors of different varieties of resistance were different. In low light, Wide adaptability varieties of yifeng8 and hongyou2009, low light resistance varieties of beifeng3 and gangyou527 could keep stable of the photosynthetic characteristics, bio-membrane structure, SOD activity, material production and distribution characteristics and the ability of yield formation, they could even start against mechanism of low light, such as changing the flag leaf Angle, enhancing SOD activity, increasing the chlorophyll b content, reducing the organic material output and even dramatically reducing production to maintain normal physiological function and leaves growth. Low light intolerance varieties of gangyou527 could not keep stable.
     4. The different degree of shading (about 67% and 86%) on hybrid rice in seeding period could significantly influenced tiller number of different varieties of Low light resistance. Tiller number tended to reduce significantly along with the increase of low light stress. The result shows that proper degree of shading on hybrid rice in seeding period could increase the plant height and the leaf area, but excessive degree of shading could significantly decrease the plant height and the leaf area of low light resistance. The high degree of shading is good for improving the content of soluble sugar and the ratio of C and N on the strong varieties of low light resistance. The degree of shading is good for improving the chlorophyll a, b and content of chlorophyll on the strong varieties of low light resistance, the content of chlorophyll b more than chlorophyll a, the ratio of chlorophyll a and chlorophyll b decreased. The shading treatment is good for improving the content of ABA, ZT and GA in nursery period, the result shows that different degree of effecting on different varieties. The shading treatment could produce new protein spectral bands on 33 kD position of hybrid rice, the protein spectral bands e (26-33kD) expressed the strongest variety is 3 number of Bei-Feng on the strong varieties of low light resistance. The result shows that increasing degree of shading can improve the active of SOD on the strong varieties of low light resistance.
     5. The author according to the test results combine with other research results suggested that:Ecological adaptability evaluation should consider the adaptability of survival and the adaptability of production; Evaluation index should choose important indexes or exclude intercommunity and instantaneous of physiological indexes; Comprehensive evaluation should use suitable the method of statistical analysis for all indexes of test result of years.
引文
[1]河南省农牧厅主编.水稻规范化栽培[M].河南科学技术出版社,1991,16-18.
    [2]梁光商主编.水稻生态学[M].农业出版社,1983,114-12].
    [3]张旭,陈友订.水稻光温生态与品种选育利用.中国农业出版社,[M].2000,47-49.
    [4]程侃声.程侃声稻作论文选集[M].云南省农科院,1987,96.
    [5]水稻光温生态研究协作组.中国水稻品种光温生态[M].科学出版社,1978.6:72-76.
    [6]丁颖.中国水稻栽培学[M].农业出版社,1961,21-26.
    [7]Chatterjee, D. Indian Journal of Agricultural science [J].1948,18:185.
    [8]Chang,TE-Tzu. The origin, Evolution, Cultivation, Dissemination, and Diversification of Asian and African Rices, Euphyticavol.25,1976,2:425-441.
    [9]梁光商.1978年全国农业学术讨论会论文摘要选编[M].农业出版社,]980,38-39.
    [10]唐锡华.在控制条件下对不同稻种日长和温度反应发育特性的研究[J].植物生理学报,1978,4(2):153-168.
    [11]朱启升.水稻优质高产栽培实用技术[M].中国农业出版社,2004,51-53.
    [12]梁光商.水稻气候律的研究[M].中国农学会编,一九七八年全国农业学术讨论会论文摘要选编,农业出版社,1978,9:38-39.
    [13]丁颖.中国稻作区域的划分[M].华南农业科学,1957,52-54.
    [14]高亮之.中国水稻气候生态区划的研究[M].全国农业气候资源和农业气候区划研究协作组编,气象出版社,1986,230-236.
    [15]游修岭.中国稻作的起源与栽培[M].北京:中国农业科技出版社,1992,1-19.
    [16]丁颖.中国水稻品种的生态类型及其与生产发展的关系[J].作物学报,1964,3(4):357—364.
    [17]杨持,生态学[M].高等教育出版社,2008:13-21.
    [18]Mohammed M. Buri,Roland N. Iassaka,Hedeto Fuj Ⅱ et al.Comparison of soil nutrient status of some rice growing environments in the major agro-ecological zones of Ghana[J].Journal of Food, Agriculture & Environment,2010.8 (1):384-388.
    [19]夏冰,阳树英,刘清波.生态因子对水稻叶片光合生理功能的影响综述[J].作物研究,2008(2):140-142.
    [20]K. Saito, K. Azoma, Y. Sokei.Genotypic adaptation of rice to lowland hydrology in West Africa[J].Field Crops Research, FIELD-5321:1-9.
    [21]Mande Semon, Rasmus Nielsen, Monty P. Jones.The Population Structure of African Cultivated Rice Oryza glaberrima (Steud.):Evidence for Elevated Levels of Linkage Disequilibrium Caused by Admixture with O. sativa and Ecological Adaptation[J].Genetics Society of American, 2005.3:1639-1647.
    [22]Takayuki Kashiwagi, Naoki Hirotsu, Kazuhiro UjⅡ et al.Lodging resistance locus pr15 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.)[J]-Field Crops Research,2010 (15):107-115.
    [23]Ananda Priya, A. John Joel.Grain Yield Response Of Rice Cultivars Under Upland Condition [J]. Electronic Journal of Plant Breeding,2009(1):6-11.
    [24]Andrew P. Hendary, Patik Nosl, Loren H. Rieseberg. The speed of ecological speciation[J].Funct Ecol, 2007.6,21(3):455-464.
    [25]李贵勇,杨从党,Kwak Kang-Su亚热带和温带生态条件下水稻生长速率和产量的相关性研究[J].生态环境学报,2010,19(3):706-71].
    [26]徐海,刘宏光,杨莉等.不同生态条件下籼粳稻杂交后代亚种特性的比较研究[J].作物学报,2007.33(3):370-377.
    [27]郭咏梅,卢义宣,严洪斌等.不同生态条件下粳型两系杂交稻杂种优势分析[J].西南农业学报,2007,20(3):332-336.
    [28]阮新民,施伏芝,倪金龙等.氮高效水稻品种协优9019在不同生态区适应性分析[J].中国稻米,2008(6):39-42.
    [29]S. Das,R. C. Misra,S. K. Sinha et al.Variation in streptomycin-induced bleaching and dark induced senescence of rice (Oryza sativa) genotypes and their relationship with yield and adaptability[J].Journal of Plant Breeding and Crop Science,2010.6,2(6):139-147.
    [30]杨俊霞,郭宝林,鲁韧强等.遮阴对美国黑莓生长及光和特性的影响[J].园艺学报,2005.5(2):108-110.
    [31]王惠哲,庞金安,李淑菊等.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005,20(1):55-58.
    [32]郭凤鸣.弱光条件下黄瓜的生长解析[J].吉林农业大学学报,1990,12(1):32-35.
    [33]李长缨,朱其杰.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报,1997,24(1):97-99.
    [34]Awang, Y. B., J. G. Atherton and A. J. Taylor. Growth and fruiting responses of strawberry plant grown on rockwool to shading and salinity. Scientia Hort,1995,62(1):25-31.
    [35]任万军,杨文钰,徐精文等.始穗弱光对不同基因型水稻叶片特性的影响[J].四川农业大学学报,2002,20(3):205-208.
    [36]DelaTorre WR, Burkey KO. Aeelimation of barley to changes light intensity:chlorophyll organization [J]. Photosynth. Res,1990,24:117-125.
    [37]Lichenihaler H K. Photosynthetic activity, chloroplast ultrastructure and leaf characteristics of light and low light plants leaves [J]. Photosynthesis Research,1981,2:115-141.
    [38]蔡昆争,骆世明.不同生育期遮光对水稻生长发育和产量形成影响应用[J].生态学报,1999,10(2):193-196.
    [39]义鸣放,BerghoefJ小苍兰生长发育与光照强度关系的研究[J].园艺学报,1994,21(4):377-350.
    [40]崔秀明,王朝梁,刘丹.三七荫棚透光度初步研究[J].中药材,1993,16(3):3-6.
    [41]彭建宗,陈兆平.遮阴对多年生花生生长的影响[J].华南师范大学学报,1999,21(2):94-96.
    [42]陈裕,林坤瑞.金线莲生长发育与光照强度关系.福建热作科技[J],1996,21(4):22-23.
    [43]胡文海,师 恺,曹玉林等.低温弱光对黄瓜幼苗地上部和根系生长与呼吸作用的影响[J].江西农业大学学报,2008,30(1):16-19.
    [44]朱萍.孕穗期和抽穗开花期弱光胁迫对杂交水稻生理特性的影响.四川农业大学硕士研究生论文[D],2009.
    [45]王志敏,王树安,苏宝林.小麦穗粒数的调节Ⅱ开花前遮光对穗碳水化合物代谢和内源激素水平的影响[J].华北农学报,1997,12(4):42-47.
    [46]任万军,杨文钰,樊高琼等.始穗后弱光对水稻干物质积累与产量的影响[J].四川农业大学学报,2003,21(4):292-296.
    [47]Naoki Hirotsu, Amane Makino, Satoshi Yokota et al.The photosynthetic properties of rice leaves treated with low temperature and high irradiance[J].Plant Cell Physiology,1995.46(8):1377-1383.
    [48]翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节[J].浙江大学学报(农业与生命科学版),2002.28(4):387-391.
    [49]季本华,朱素琴.低温强光胁迫下籼粳稻的PSⅡ光化学效率和膜脂过氧化表现[J].Acta Botanica Sinica,2002.44(2):139-146.
    [50]孙庆丽,陈志,徐刚等.不同光质对水稻幼苗生长的影响[J].浙江农业学报,2010,22(3):321-325.
    [51]Erik H Murchie, Stella Hubbart, Chen Yizhu et al. Acclimation of rice photosynthesis to irradiance under field condition[J].Plant Physiology,2002.130(2):1999-2020.
    [52]童平,杨世民,马均等.不同水稻品种在不同光照条件下的光合特性及干物质积累[J].应用生态学报,2008.3,19(3):505-511.
    [53]李合生.现代植物生理学[M].高等教育出版社,2002(265).
    [54]A.L.P.Aydin, simten Yesilmen, Aydin Vural. Determination of some agronomical characteristics and Ochratoxin-A level of Karacadag rice (Oryza sativa L.) in Diyarbakir ecological conditions, Turkey[J]. African Journal of Agricultural Research,2010.8.4(15):1965-1972.
    [55]Shantha Nagarajan, S.V.K. Jagadish, A.S. Hari Prasad. Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India[J].Agriculture, Ecosystems and Environment,2010 (138):274-281.
    [56]李霞,戴传超,焦德茂等.光照条件下低温对水稻籼粳亚种幼苗抗氧化物质含量的影响[J].植物生理与分子生物学学报,2006.32(3):345-353.
    [57]王尚明,张崇华,胡逢喜等.空气温度对水稻生长影响的数学模拟[J].江西农业学报,2007,19(10):16-18.
    [58]马宝,高温对水稻光合特征、生长发育和生量的影响[D],中国农业科学院学位论文,2009.6, 1-5.
    [59]Yang Xiaoguang, B.A.M. Bouman, Wang Huaqi et al. Performance of temperate aerobic rice under different water regimes in North China[J]. Agricultural Water Management,2005(74):107-122.
    [60]Manuel Blouin, Patrick Lavelle, DanielLaffray. Drought stress in rice(OryzasativaL.) is enhanced in the presenceofthe compacting earthworm Millsonia anomala[J]. Environmental and Experimental Botany,2007 (60):352-359.
    [61]陈书强,郑桂萍,李金峰等.土壤水分对寒地水稻生育特性和物质积累的影响[J].沈阳农业大学学报,2007.02,38(1):14-19.
    [62]周青,王纪忠,康晓鹏等.水分胁迫对不同基质所育水稻秧苗生长和生理特性的影响[J].扬州大学学报(农业与生命科学版),2006.12.27(4):70-73.
    [63]孙园园,孙永健,吴合洲等.水分胁迫对水稻幼苗氮素同化酶及光合特性的影响[J].植物营养与肥料学报,2009.15(5):1016-]022.
    [64]栗海俊,李勇,杨秀霞等.不同形态氮素营养和水分条件对苗期水稻生长及渗透调节能力的影响[J].中国水稻科学,2010.24(4):403-409.
    [65]郑桂萍,殷大伟,刘丽华等.水分胁迫对水稻生长发育影响的补偿性及意义[J].华北农学报,2009,24(6):93-99.
    [66]王卫,谢小立,谢永宏.不同水分管理模式对水稻生长及光合特性的影响[J].长江流域资源与环境,2010.7.19(7):746-751.
    [67]凌启鸿,张洪程,蔡建中等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [68]Venkateswarlu B,Visperas RM.Source-sink relationships in crop plants:a review,IRPS,1987.125.
    [69]黄育民,李义珍,庄占龙等.杂交稻高产群体干物质积累运转Ⅰ干物质的积累运转[J].福建省农科院学报,1996,11(2):7-11.
    [70]曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265-272.
    [71]张俊国.不同粳稻品种源库特征及类型划分[J].吉林农业科学,1990,(2):35-41.
    [72]古小平,吴俊铭.贵州省水稻产量农艺性状与气候生态环境研究[J].贵州气象,1994,4:12-16.
    [73]杨从党,朱德峰,周玉平等.不同生态条件下水稻产量及其构成因子分析[J].西南农业学报,2004,17(增刊):35-39.
    [74]马莲菊,李雪梅,王艳.源库处理对两种不同穗型水稻品种籽粒灌浆的影响[J].沈阳师范大学学报(自然科学版),2006,24(4):470-473.
    [75]吕军,王伯伦,孟维韧等.不同穗型粳稻的光合作用与物质生产特性[J].中国农业科学,2007,40(5):902-908.
    [76]邹应斌.釉型超级杂交水稻高产栽培研究进展[J].耕作与栽培,2006,(5):1-5.
    [77]Chaturvedi G S, Ingram K T. Growth and yield of low land rice in response to shade and drainage[J]. Crop Science,1989,14:61-67.
    [78]Thangaraj M, Sivasubramanian V. Effects of low light intensity on growth and productivity of irrigated rice[J]. Madras Agriculture,1990,77:220-224.
    [79]Shingnori Okawa, Amane Makino, Tadahiko Mae. Effect of Irradiance on the Partitioning of Assimilated Carbon during the Early Phase of Grain Filling in Rice[J]. Annals of Botany,2003,92: 357-364.
    [80]Jun Hidema, Amane Makino, Yasuko Kurita et al. unihiko Ojima. Changes in the Levels of Chlorophyll and Light-Harvesting Chlorophyll a/b Protein of PSII in Rice Leaves Aged under Different lrradiances from Full Expansion through Senescence[J]. Plant Cell Physiol,1992,33(8): 1209-1214.
    [81]Kobata T, Sugawara S, Takatu S. Shading during the Early Grain Filling Period Does not Affect Potential Grain Dry Matter Increase in Rice. Agron. [J],2000,92:411-417.
    [82]Tanaka. A. Studies on the characteristics of the Physiological function of leaf of definite Position on stem of the rice plant[J]. Science soil Manure,1958,29:327-331.
    [83]张文香,王成瑗,王伯伦等.寒冷地区温度、光照对水稻产量及品质的影响[J].吉林农业科学,2006,31(1),19-20.
    [84]熊洪,唐玉明,任道群等.不同土壤类型、不同气候条件与水稻产量的关系[J]. 西南农业学报,2004,17(3):305-309.
    [85]许传桢,元生朝,蔡士云.高温对杂交稻结实的影响[J].华中农学院学报,1982,2(3):1-7.
    [86]王光明,杨贵旭,朱自均等.高低温对水稻Ⅱ优6078开花结实的影响研究[J].西南农业大学学报,1998,20(1):24-27.
    [87]张效忠,苏泽胜.温度对水稻幼穗大小影响的研究[J].安徽农业科学,1998(3):207-208.
    [88]郑志广.光温条件对水稻结实及干物质生产的影响[J].北京农学院学报,2003,18(1):13-16.
    [89]李国生,苏祖芳,张亚洁.抽穗结实期的温度对水稻产量构成因素的影响[J].扬大农学院,1995,(5):39-41.
    [90]矫江,孟英.黑龙江省水稻低温冷害及对策研究[J].黑龙江农业科学院,2002,(4):3-4.
    [91]矫江,祖世亨.黑龙省主要气象灾害对粮食产量的影响及减灾对策[J].自然灾害学报,2002,(3):]8-21.
    [92]王连敏,王立志,张国民.寒地水稻耐冷基础的研究[J].中国农业气象.1997,(5):23—26.
    [93]王连敏,王立志,王春艳等.花期低温对寒地水稻颖花结实的影响[J].农业现代化研究,2004,10(2):57-59.
    [94]何宝安,方红军,明万才.水分胁迫对水稻植株性状及产量的影响[J].黑龙江水利科技,2002,(3):44-45.
    [95]季飞,付强,王克全,徐淑琴.不同水分条件对水稻需水量及产量影响[J].灌溉排水学报,2007,26(5).
    [96]陆建飞,丁艳锋,黄丕生.持续土壤水分胁迫对水稻生育与产量构成的影响[J].江苏农学院学报.1998,19(2):43-48.
    [97]丁友苗,黄文江,王纪华.水稻旱作对产量和产量构成因素的影响[J].干旱地区农业研究2002,20(4):50-54.
    [98]王昌全,全曹莉,卢俊宇.土壤水分状况与水稻生长的关系[J].西南农业学学报.1997,10(2):67-70.
    [99]Lafitte H R.Courtois B. Interpreting cultivation environment interactions for yield in upland rice[J]. Crop Science,2002,42(5):1409-1420.
    [100]张玉屏,朱德峰,林贤青等.不同时期水分胁迫对水稻生长特性和产量形成的影响[J].干旱地区农业研究.2005,23(2):48-53.
    [101]郭建平,高素华,刘玲.气象条件对作物产量品质影响实验研究[J].气候与环境研究,2001,6(3):361-367.
    [102]蔡一霞,朱庆森,王志琴等.灌浆期土壤湿度对水稻品质的影响[J].作物学报,2002,28(5):601-608.
    [103]王忠,顾蕴洁,陈刚等.稻米的品质和影响因素[J].分子植物育种.2003(2):231-241.
    [104]吴殿星,夏英武.食用稻米品质的研究进展及其改良策略[J].中国农学通报,1999,(3):36-37.
    [105]秦阳,蒋文春,张城等.不同水稻品种播期与品质的关系[J1.沈阳农业大学学报,2004,(4):328-331.
    [106]曹黎明,袁勤,倪林娟等.优质稻保优栽培技术的研究进展[J].上海农业学报,2001,17(2):45-48.
    [107]Henmalatha M, Thirurnmurugan V. Influence of organic,biofertilizer,and inorganic forms of nitrogenon rice quality[J]. International Rice Research Notes,1999,24-33.
    [108]殷延勃,朱美静,马洪文等.环境因子对宁夏水稻品质性状的影响[J].宁夏农林科技,2002,(2):17-19
    [109]吕文彦,邵国军,曹萍等.辽宁省水稻品质兼及品质与产量关系的研究V.稻谷灌浆与稻米品质[J].辽宁农业科学,2001,(6):19-21.
    [110]Toru Tashiro.Studies on white belly rice kernel Ⅶthe most vunerablestages of kernel development for the occurrence of white belly[J]. Japan Jour Crop Sci,1980,49(3):482-488.
    [111]蔺万煌,萧浪涛,彭克勤等.稻米垩白的形成及其调控[Jl].湖南农业大学学报(自然科学版),2001,27(3):234-239.
    [112]沈波,陈能.温度对早籼稻米垩白发生与胚乳形成的影响[J].中国水稻科学,1997,11(3):183-186.
    [113]程方民,胡东维,丁元树.人工控温条件下稻米垩白形成变化及胚乳扫描结构观察[J].中国水稻科学,2000,14(2):83-87.
    [114]朱碧岩,黎杰强,程方民等.稻米外观品质形成动态变化规律及结实期温度的影响[J].华南师范大学学报,2000,(3):75-80.
    [115]朱旭东,熊振民,罗玉坤等.异季栽培对稻米品质的影响[J].中国水稻科学,1993,7(3):172-174.
    [116]甄海,黄慧君,吴东辉等.不同造别栽培对稻米外观品质的影响[J].广东农业科学,1998,(增刊):48-51.
    [1]7] 马彬林,杨长桃,钟金仙等.不同生育时期对汕优63稻米品质的影响[J].三明农业科技,1994,(2),21-22.
    [1]8] 朱碧岩,程方民,吴永常.结实期温度对稻米粒重和整精米率形成动态的影响[J].西北农业学报,1996,5(4):31-35.
    [119]李 林,沙国栋,陆景淮.水稻灌浆期温光因子对稻米品质的影响[J].中国农业气象,]989,(3):33-38.
    [120]Tsuneo Kato. Efects of the shading and rachis branch clipping on the grainfilling process of rice cuhivars difering in the grain[J]. Japan Jour Crop Sci,1986,55(2):252-260.
    [121]程方民,张嵩午,吴永常等.稻米胶稠度与结实期温度间的关系[J].西北农业大学学报,1996,24(5):16-20.
    [122]Guang-Cen He,Kiyoshi Kogure. Development of endosperm and synthesis of starch in rice grain.]. Dvelopment of endosperm and distribution of C—labeled assimilates[J]. Japan Jour Crop Sci,1989,58(2):246-252.
    [123]朱碧岩,黎杰强,程方民等.稻米直链淀粉含量形成动态及结实期温度的影响[J].华南师范大学学报,2000(1):94-98.
    [124]高铸九,顾佳清,杨祥玉.上海水稻地方品种蒸煮及食用品质的研究[J].上海农业科技,1983,(1):6-8.
    [125]王守海.灌浆结实期气候条件对稻米糊化温度的影响[J].安徽农业科学,1987,(1):16-18.
    [126]孟亚利,周治国.结实期温度与稻米品质的关系[J].中国水稻科学,1997,11(1):51-54.
    [127]王振中,周广洽,周青山等.杂交水稻库源关系的研究[J].湖南农业科学,1981,(6):1-4.
    [128]孟亚利,高如嵩,张嵩午.影响稻米品质的主要气候生态因子研究[J].西北农业大学学报,1994,22(1):40-43.
    [129]Gomez K.A. Efect of environment on protein and amylase centent of rice[J]. Proceed ings of the workshop on chemi cal aspects of rice grain qu ality,1979,59-65.
    [130]张嵩午,程方民,吴永常.稻米品质温光潜势的估算及其在我国的地域分布[J].自然资源学报,1997,12(4):323-328.
    [131]黄发松,孙宗修,胡培松等.食用稻米品质形成研究的现状与展望[J].中国水稻科学,1998,12(3):172-176.
    [132]Resurrecion A.P. Efect of temperature during ripening on ain quality of rice[J]. Soil Science And Plant Nutrition,1977,23(1):109-112.
    [133]张磊,吴冬云,朱碧岩等.灌浆期不同温光对水稻叶、籽粒可溶性蛋白质及可溶性糖动态变化的影响[J].华南师范大学学报(自然科学版),2002,(2):98-101.
    [134]本庄一雄.稻米蛋白质含量的研究Ⅰ不同施肥条件对糙米蛋白质含有率和蛋白质总量的影响[J].日本作物学会纪事,1971,40:190-197.
    [135]本庄一雄.稻米蛋白质含量的研究Ⅱ稻体内氮素和齐穗期追肥氮素向穗部的运转[J].日本作物 学会纪事,1979,48:5]7-524.
    [136]廖祥儒,张蕾,徐景智等.光在植物生长发育中的作用[J].河北大学学报,2001,21(3):341-346.
    [137]许大全.光合作用效率[M].北京高等教育出版社.1995,167-169.
    [138]Powles SB. Photoinhibition of photosynthesis induced by visible light[J]. Annual Review of Plant Physioiogy,1984,35:14-44.
    [139]Kok B. On the inhibition of photosynthesis by intense light[J]. Biochimica et Biophysica Acta,1956, 21:234-244.
    [140]Adams WW, Zarter CR, Mueh KE et al. Energy dissipation and photoinhibition:a continuum of photoprotection [J]. In Photoprotection, Photoinhibition, Gene regulation, and Environment,2006, 49-64.
    [141]Duan W, Fan PG, Wang LJ et al. Photosynthetic response to low sink demand after fruit.removal in relation to photoinhibition and photoprotection in peach trees[J]. Tree Physiology,2008,28:123-132.
    [142]Strizh IG, Neverov K.V. Photoinhibition of photosystem Ⅱ in vitro:Spectral and kinetic analyses[J]. Russian Journal of Plant Physiology,2007,54:439-449.
    [143]Takahashi S, Bauwe H, Badger M. Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem Ⅱ by suppression of repair but not acceleration of damage processes in Arabidopsis[J]. Plant Physiology,2007,144:487-494.
    [144]Watkins JE, Kawahara AY, Leicht SA et al. Fern laminar scales protect against photoinhibition from excess light[J]. American Fern Journal,2006,96:83-92.
    [145]Osmond CB. What is photoinhibition? Some insights from comparisons of shade and sun plants. In NR Baker, JR Bowyer, eds, Photoinhibition of photosynthesis:from Molecular Mechanisms to the Field[J]. Bios Scientific Publishers, Oxford,1994,1-24.
    [146]Szabo I, Bergantino E, Giacometti GM. Light and oxygenic photosynthesis:energy dissipation as a protection mechanism against photo-oxidation[J]. EMBO RePorts,2005,6:629-634.
    [147]Barber J, Andersson B. Too much of a good thing:light can be bad for photosynthesis[J]. Trends in Biochemical Sciences,1992,17:61-66.
    [148]Andersson B, Barber J. Mechanisms of photodamage and protein degradation during photoinhibition of photosystem Ⅱ [J]. In Photosynthesis and the Environment,2004,101-121.
    [149]Murata N, Takahashi S, Nishiyama Y et al. Photoinhibition of photosystem Ⅱ under environmental stress[J]. Biochimica et Biophysica Acta-Bioenergetics,2007,1767:414-421.
    [150]Wen XG, Gong HM, Lu CM. Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem Ⅱ in a cyanobacterium Spirulina platensis[J]. Plant Science,2005,168: 1471-1476.
    [151]Rodrigues GC, Jansen MAK, van den Noort ME et al. Evidence for the semireduced primary quinine electron acceptor of photosystem Ⅱ being a photosensitizer for UVB damage to the photosynthetic apparatus[J]. Plant Science,2006,170:283-290.
    [152]Fufezan C, Gross CM, Sjodin M et al. Influence of the redox potential of the primary quinone electron acceptor on photoinhibition in photosystem Ⅱ [J]. Journal of Biological Chemistry,2007,282: 12492-12502.
    [153]Tyystjarvi E. Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster[J]. Coordination Chemistry Reviews,2008,252:361-376.
    [154]焦德茂,季本华,严建民等.水稻对高低光强适应的品种间差异[J].作物学报,1996,82(6):688-692.
    [155]Vass Ⅰ, Styring S, Hundal T et al. Reversible and irreversible intermediates during photoinhibition of photosystem II:stable reduced QA species promote chlorophyll triplet formation[J]. Proceedings of the National Academy of Sciences,1992,89:1408-1412.
    [156]胡美君.高温强光对温州蜜柑光合作用的影响及其机理研究[D].浙江大学博士论文,2008.
    [157]Nishiyama Y, Allakhverdiev SI, Yamamoto H et al. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp PCC 6803 [J]. Biochemistry,2004,43:11321-11330.
    [158]Ohnishi N, Allakhverdiev SI, Takahashi S et al. Two-step mechanism of photodamage to photosystem Ⅱ:step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center[J]. Biochemistry,2005,44:8494-8499.
    [159]Sarvikas P, Hakala M, Patsikka E et al. Action spectrum of photoinhibition in leaves of wild type and npq 1-2 and npq 4-1 mutants of Arabidopsis thaliana[J]. Plant and Cell Physiology,2006,47:391-400.
    [160]Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition[J]. Trends in Plant Science,2008,13:178-182.
    [161]Tjus SE, Moller BM, Scheller HV. Photoinhibition of photosystem I damages both reaction centre proteins PSI-A and PSI-B and acceptor-side located small photosystem I polypeptides[J]. Photosynthesis Research,1999,60:75-86.
    [162]Zhang SP, Scheller HV. Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana[J]. Plant and Cell Physiology,2004,45:1595-1602.
    [163]Jiao SX, Emmanuel H, Guikema JA. High light stress inducing photoinhibition and protein degradation of photosystem I in Brassica rapa[J]. Plant Science,2004,167:733-741.
    [164]Kern SO, Hovenden MJ, Jordan GJ. The impacts of leaf shape and arrangement on light interception and potential photosynthesis in southern beeeh (Nothofagus cunningham Ⅱ) [J]. Functional Plant Biology,2004,31:471-480.
    [165]Wada M, Kagawa T, Sato Y. Chloroplast movement[J]. Annual Review of Plant Biology,2003,54: 455-465.
    [166]沈福成.关于水稻卷叶性状在育种中利用的几点看法[J].贵州农业科学,1983(5):6-8.
    [167]朱德峰,林贤青,曹卫星.不同叶片卷曲度杂交水稻的光合特性比较[J].作物学报,2001,27(3):329-333.
    [168]袁隆平.杂交水稻超高产育种[M].杂交水稻,2000,15(培矮64S研究及其应用论文选编):31-33.
    [169]Kagawa T, Sakai T, Suetsugu N et al. Arabidopsis NPL1:A phototropin homolog controlling the chloroplast high-light[J] avoidance response. Science,2001,291:2138-2141.
    [170]Demmig B, Winter K, Kruger A et al. Photoinhibition and zeaxanthin formation in intact leaves:a possible role of the xanthophylls cycle in the dissipation of excess light energy[J]. Plant Physiology, 1987,84:218-224.
    [171]Muller P, Li X-P, Niyogi KK. Non-photochemical quenching a response to excess light energy[J]. Plant Physiology,2001,125:1558-1566.
    [172]Jiang CD, Gao HY, Zou Q et al. Leaf orientation, photorespiration and xanthophylls cycle protect young soybean leaves against high irradiance in field[J]. Environmental and Experimental Botany, 2006,55:87-96.
    [173]Li XG, Li JY, Zhao JP et al. Xanthophyll cycle and inactivation of photosystem Ⅱ reaction centers alleviating reducing pressure to photosystem I in morning glory leaves under short-term high irradiance[J]. Journal of Integrative Plant Biology,2007,49:1047-1053.
    [174]Havaux M, Eymery F, Porfirova S et al Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[J]. Plant Cell,2005,17:3451-3469.
    [175]Hwang HJ, Kim EM, Rhew TH et al. Reversible photoinactivation of photosystem Ⅱ during desiccation of barley (Hordeum vulgare L. cv. Albori) leaves in the light[J]. Journal of Plant Biology, 2004,47:142-148.
    [176]Kornyeyev D, Logan BA. Tissue DT et al. Compensation for PS Ⅱ photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation[J]. Plant and Cell Physiology,2006,47:437-446.
    [177]Chemeris YK, Korollkov NS, Seifullina NK et al. Reversible redox-dependent inactivation of photosystem Ⅱ as photosynthesis regulation in Chlorella[J]. Russian Journal of Plant Pysiology, 2004,51:754-760.
    [178]Ort DR, Baker NR. A photoprotective role for O2 as an alternative electron sink in photosynthesis[J]. Current Opinion in Plant Biologys,2002,5:193-198.
    [179]Jiang C, Jiang G, Wang X, Li L et al. Enhanced photosystem 2 thermostability during leaf growth of Elm (Ulmus pumila) seedlings[J]. Photosynthetica,2006,44:411-418.
    [180]Martinelli T, Whittaker A, Masclaux-Daubresse C et al. Evidence for the presence of photorespiration in desiccation-sensitive leaves of the C4 resurrection plant Sporobolus stapfianus during dehydration stress[J]. Journal of Experimental Botany,2007,58:3929-3939.
    [181]Wise RR, Olson AJ, Schrader SM et al. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature[J]. Plant Cell and Environment, 2004,27:717-724.
    [182]Guan XQ, Zhao SJ, Li DQ et al. Photoprotective function of photorespiration in several grapevine cultivars under drought stress[J]. Photosynthetica,2004,42:31-36.
    [183]郭连旺,许大全.田间棉花叶片光合效率中午降低的原因[J].植物生理学报,1994,20:360-366.
    [184]Savitch LV, Massacci A, Gray GR et al. Acclimation to low temperature or high light mitigates sensitivity to photoinhibition:roles of the Calvin cycle and the Mehler reaction[J]. Australian Journal of Plant Physiology,2000,27:253-264.
    [185]Chen HX, Gao HY, An SZ et al. Dissipation of excess energy in mehler-peroxidase reaction in rumex leaves during salt shock[J]. Photosynthetica,2004,42:117-122.
    [186]Ruuska SA, Badger MR, Andrews TJ et al. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco:little evidence for significant Mehler reaction[J]. Journal of Experimental Botany,2000,51:357-368.
    [187]Forti G, Caldiroli G. State transitions in chlamydomonas reinhardtⅡ. the role of the Mehler reaction in state 2-to-state 1 transition[J]. Plant Physiology,2005,137:492-499.
    [188]Miyake C, Miyata M, Shinzaki Y et al. CO2 response of cyclic electron flow around PS1 (CEF-PSI) in tobacco leaves-relative electron fluxes through PSⅠ and PS Ⅱ determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence[J]. Plant and Cell Physiology,2005,46: 629-637.
    [189]Rumeau D, Peltier G, Cournac L. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response[J]. Plant Cell and Environment,2007,30:1041-1051.
    [190]Miyake C, Yonekura K, Okamura M et al. Cyclic electron flow within PS Ⅱ-Alleviation of PS Ⅱ photoinhibition[J]. Plant and Cell Physiology,2003,44:514-514.
    [191]ShenY-K, Chow W, ParkY-I et al. Photoinactivation of photosystem Ⅱ by cumulative exposure to short light pulses during the induction period of photosynthesis[J]. Photosynthesis Research,1996,47: 51-59.
    [192]Graes T, Pesaresi P, Schiavon F et al. The role of △pH-dependent dissipation of excitation energy in protecting photosystem Ⅱ against light-induced damage in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2002,40:41-49.
    [193]Bukhov NG, Carpentier R. Heterogeneity of photosystem II reaction centers as influenced by heat treatment of barley leaves[J]. Physiologia Plantarum,2000,110:279-285.
    [194]Eskling M, Emanuelsson A, Akerlund H-E. Enzymes and mechanisms for violaxanthin-zeaxanthin conversion[J]. In Regulation of Photosynthesis,2004,433-452.
    [195]Johnson G. Controversy remains:regulation of pH gradient across the thylakoid membrane[J]. Trends in Plant Science,2004(9):570-571.
    [196]Goss R, Ann Pinto E, Wilhelm C et al. The importance of a highly active and △PH-regulated diatoxanthin epoxidase for the regulation of the PSⅡ antenna function in diadinoxanthin cycle containing algae[J]. Journal of Plant Physiology,2006,163:1008-1021.
    [197]Arato A, Bondarava N, Krieger-Liszkay A. Production of reactive oxygen species in chloride and calcium-depleted photosystem Ⅱ and their involvement in photoinhibition[J]. Biochimica et BioPhysica Acta (BBA)-Bioenergetics,2004,1608:171-180.
    [198]Henmi T, Miyao M, Yamamoto Y. Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PS Ⅱ during photoinhibition[J]. Plant and Cell Physiology, 2004,45:243-250.
    [199]Verhoeven AS, Swanberg A, Thao M et al. Seasonal changes in leaf antioxidant systems and xanthophyll cycle characteristics in Taxus x media growing in sun and shade environments[J]. Physiologia Plantarum,2005,123:428-434.
    [200]Logan BA, Kornyeyev D, Hardison J et al. The role of antioxidant enzymes in photoprotection [J]. Photosynthesis Research,2006,88:119-132.
    [201]葛明治,焦德茂,宋长铣等.籼粳杂种稻亚优2号与汕优63光合特性比较[J].江苏农业科学,]990(4):6-8.
    [202]季本华,焦德茂,严建明等.水稻不同品种的光抑制敏感性差异及其生理机制[J].作物学报,1993,19(1):23-28.
    [203]顾行影,焦德茂,查元渊.水稻耐光氧化种质资源的批量筛选与鉴定[J].江苏农业学报,]992,8(2):1-6.
    [204]王荣福,崔继林,聂毓琦.水稻品种超氧歧化酶(SOD)活性与氧抑制光合的关系[J].植物生理学报,1987,13(3):257-264.
    [205]焦德茂,葛明治,宋长铣等.光氧化条件下不同水稻品种CO2交换与有关酶活性的变化[J].江苏农业学报,1991,7(1):1-6.
    [206]焦德茂.关于水稻的耐光抑制和育种问题[J].江苏农业科学,1993,29(4):293-296.
    [207]Sankhalkar S, Sharma PK. Photoinhibition of photosynthesis:Role of abscisic acid and antioxidants[J]. Physiology and Molecular Biology of Plants,2005,11:275-289.
    [208]Lambreva M, Christov K, Tsonev T. Short-term effect of elevated CO2 concentration and high irradiance on the antioxidant enzymes in bean plants[J]. Biologia Plantarum,2006,50:617-623.
    [209]Yang XH, Wen XG, Gong HM et al. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem Ⅱ in tobacco plants[J]. Planta,2007,225:719-733.
    [210]Mahan JR, Mauget SA. Antioxidant metabolism in cotton seedlings exposed to temperature stress in the field[J]. Crop Science,2005,45:2337-2345.
    [211]Heiber I, Stroher E, Raatz B et al. The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes[J]. Plant Physiology,2007,143: 1774-1788.
    [212]季本华,焦德茂.不同温光条件下籼粳稻叶片的光抑制和光氧化表现[J].植物学报,2001,43(7):714-720.
    [213]欧志英,彭长连,林桂珠.超高产水稻培矮64SPE32及其亲本叶片的光氧化特性和遗传特点[J].作物学报,2004,30(4):308-314.
    [214]王荣富,张云华,焦德茂等.超级杂交稻两优培九及其亲本生育后期的光抑制和早衰特性[J].作物学报,2004,30(4):393-397.
    [215]李 霞,刘友良,焦德茂.不同高产水稻品种叶片荧光参数的日变化和光适应特性的关系[J].作物学报,2002,28(2):145-153.
    [216]林植芳,李双顺,林桂珠等.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    [217]焦德茂,高亮之,金之庆等.水稻耐光氧化和耐阴特性的鉴定及其生理基础[J].中国水稻科学,]995,9(4):245-248.
    [218]季本华,焦德茂.水稻抗光破坏能力与D1蛋白和叶黄素循环的关系[J].科学通报,2000,45(5):510-515.
    [219]时向东,文志强,刘艳芳等.不同光强对作物生长影响的研究综述[J].安徽农业科学,2006,34(17):4216-4218.
    [220]Horton P. Prospects for improvement through the genetie manipulation of Photosynthesis: morphological and biochemical aspects of light capture[J]. Journal of Experimental Botany,1999, 51(3):475-485.
    [221]Brugemann W. Long-term Chilling of Young Tomato Plants under Low Light. Ⅵ. Differential Chilling Sensitivity of Ribulose-1,5-BisPhosPhate Caboxylase/Oxygenase is Linked to the Oxidation of Cysteine Residues[J]. Plant Cell Physiol,1995,36(4):733-736.
    [222]Seemann J R. Light adaptation acclimation of Photosynthesis and there gulation of Ribulose-Ⅰ, 5-BisPhosphate carboxylase activity in sun and shade Plants[J]. Plant Physiol,1989,91(5):379-386.
    [223]陈根云,缪有刚,李立人.光合蛋白合成抑制剂对水稻RubisCo大、小亚基和RobisCo亚基结合蛋白基因表达的影响[J].植物生理学报,1993,19(3):243-249.
    [224]赵弢,高志奎,徐广辉等.非调制式荧光仪测定叶绿素荧光参数的研究[J].生物物理学报,2006,22(1):34-38.
    [225]孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报,2006,17(3):399-402.
    [226]魏胜利,王文全,秦淑英等.桔梗、射干的耐阴性研究[J].河北农业大学学报,2004,27(1):52-57.
    [227]战吉成,王利军,黄卫东.弱光环境下葡萄叶片的生长及其在强光下的光合特性[J].中国农业大学学报,2002,7(3):75-78.
    [228]张依,卓丽环,汪成忠.遮光对紫叶加拿大紫荆光合速率及叶绿素荧光参数的影响[J].河北农业大学学报,2009,32(6):53-56.
    [229]杨福孙,孙爱花,王燕丹等.遮光处理对槟榔苗期叶绿素荧光特征的影响[J].广东农业科学,2009(5):40-42.
    [230]缴丽莉,路丙社,周如久等.遮光对青榨槭光合速率及叶绿素荧光参数的影响[J].园艺学报学,2007,34(1):173-178.
    [231]高绍森,朱延姝,冯辉.连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究[J].辽宁农业科学,2005(3):31-32.
    [232]李伟,黄金丽,睦晓蕾等.黄瓜幼苗光合及荧光特性对弱光的响应[J].园艺学报,2008,35(1):]19-122.
    [233]谢华安,齐王鸟,杨惠杰等.杂交水稻超高产特性研究[J].福建农业学报,2003,18(4):201-204.
    [234]中国热带亚热带西部丘陵山区农业气候资源及其合理利用研究课题协作组.中国热带亚热带西部山区农业气候[M].气象出版社,1995,75.
    [235]王绍辉,郝翠玲,张振贤.植物遮荫的研究与进展[J].山东农业大学学报,1998,29(1):130-134.
    [236]王 忠.植物生理学[M].中国农业出版社,2000,130-131.
    [237]匡廷云.叶绿体膜的结构与功能Ⅰ组成与PS Ⅱ功能的关系[J].作物生理学报,1979,(2):99-107.
    [238]王丹英,章秀福,邵国胜等.不同叶色水稻叶片的衰老及对光强的响应[J].中国水稻科学,2008,22(1):77-81.
    [239]迟伟,王富荣.遮光条件下的草葛生理光合特性[J].江苏农业学报,2002,17(1):62-63.
    [240]别之龙,刘佩瑛,万兆良等.弱光对辣椒落花和光合作用的影响[J].核农学报,1998,12(5):314-316.
    [241]朱萍,杨世民,马均等.遮光对杂交水稻组合生育后期光合特性和产量的影响.作物学报,2008,34(11):2003-2009.
    [242]马德华,庞金安,霍振荣等.弱光对黄瓜幼苗某些生理特性的影响[J].河南农业大学学报,1997,31(3):248-252.
    [243]邵红宁,傅春霞,曹显祖等.水稻叶片光氧化敏感性与活性氧清除系统的关系[J].作物学报,1998,24(5):577-583.
    [244]傅春霞,顾形影,聂毓琦等.光和温度逆境对水稻光合抑制的影响[J].江苏农业学报,1989,5(1):1-10.
    [245]王贺正,马均,李旭毅,等.水分胁迫对水稻结实期一些生理性状的影响[J].作物学报,2006,32(12):]892-1897.
    [246]汤日圣,郑建初,陈留根,等.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响[J].植物生理与分子生物学学报,2005,3](6):657-662.
    [247]魏锦城,吴鼎福,王成毅,等.高光强对核酮糖二磷酸羧化酶/加氧酶与超氧化物歧化酶的影响[J].南京师大学报(自然科学版),1991,14(2):102-109.
    [248]季本华,朱素琴,焦德茂,等.不同温光条件下籼粳稻叶片的光能转化效率和膜脂过氧化表现[J].作物学报,2001,27(6):743-750.
    [249]张广华,葛会波,李青云,等.SOD对草莓叶片光抑制的防御作用[J].果树学报,2004,21(4):328-330.
    [250]杨亚军,李利红,赵会杰,等.Ca2+对高温强光胁迫下小麦叶片光和机构的保护作用[J].麦类作物学报,2008,28(6):1042-1047.
    [251]许晓明,戴新宾,张荣铣,等.籼粳稻叶片老化过程中光抑制特性的差异[J].作物学报,2000,26(6):795-800.
    [252]杨建昌,朱庆森,王志琴等.亚种间杂交稻光合特性及物质积累与运转的研究[J].作物学报,]997,23(1):82-88.
    [253]张宪政,谭桂茹,黄元极等.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1989:98-103.
    [254]陈洁,解晓霞,庞咏梅等.胡萝卜粉中类胡萝卜素含量的快速测定[J].新疆农业科学,2004,41(专刊):103-105.
    [255]唐延林,黄敬峰,王人潮.水稻不同发育时期高光谱与叶绿素和类胡萝卜素的变化规律[J].中国水稻科学,2004,18(1):59-66.
    [256]Lichtenthaler HK (1987).Chlorophylls and carotenoids:thepigments of photosynthetic biomembranes [J]. Methods in Enzymology,148,331-382.
    [257]林玉梅,任军,杨轶囡等.利用相对电导率和茎尖水势预报落叶松苗木生活力的研究[J].吉林林业科技,2002,31(3):15-17.
    [258]熊庆娥,叶珍,杨世民等.植物生理学实验教程[M].成都:四川科学技术出版社,2003,8:81-82,85-87,123-127.
    [259]李正理.植物组织制片学[M].北京大学出版社,1996.9,130-139.
    [260]WangW, Gu D P, Zheng Q, et al. Leaf proteomic analysis of three rice heritable mutants after seed space flight[J]. Adv Space Res,2008,42(6):1066-1071.
    [261]Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics,2002,2(9):1131-11451.
    [262]柴小清,靳飞,张艳萍等.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析[J].首都师范大学学报,2004,25(3):46-511.
    [263]郭尧君.蛋白质电泳实验技术[M].科学出版社,2005:201-208
    [264]任万军,杨文钰,徐精文,樊高琼,马周华.弱光对水稻籽粒生长及品质的影响.作物学报,2003,9(29):785-790.
    [265]Li T, Ryu O, Tohru Y, et al. Effects of weak light on rice starch accumulation and starch synthesis enzyme activities at grain filling stage. R ice Science,2006,13:51-58.
    [266]Nakano H. Effect of early stage shading of direct seeded rice on growth and yield components. Japanese Journal of Crop Science,2000,69:182-188.
    [267]李林,唐银凤,姚永康,刘敏华.营养生长期模拟阴天光质环境对水稻生育与产量形成的影响. 中国农业气象,1997,44(18):2
    [268]李 林,沙国栋.水稻灌浆结实期阴害的初步研究.中国农业气象,1997,4(18):2
    [269]刘奇华,周学标,杨连群,李大,张建军.生育前期遮光对水稻灌浆期剑叶生理特性及籽粒生长的影响.应用生态学报,2009,20(9):2135-2141.
    [270]陈仕江,张明.金钗石斛生长的最适光温研究[J].中国中药杂志.2002,27(7):509-510.
    [271]王云山,康黎芳.不同光照强度对仙客来生长及叶解剖的影响[J].山西农业科学,1999,27(1):53-56.
    [272]张震贤,邹奇.遮阴对生姜叶片显微结构及叶绿体超微结构的影响[J].园艺学报,1999,26(2):96-]00.
    [273]胡支华,梁慕勤.大豆耐阴性的研究:Ⅵ.大豆若干性状与耐阴性的关系[J].贵州农业科学,1991,(4):7-13.
    [274]艾希珍,郭延奎,马兴庄等.弱光条件下日光温室黄瓜需光特性和叶绿体超微结构[J].中国农业科学,2004,37(02):268-273.
    [275]范叶萍,余让才,郭志华.遮阴对匙叶天南星生长及光合特性的影响[J].园艺学报,1998,25(3):270-274.
    [276]采尼克尔,王世绩.木本植物耐荫性的生理学原理[M].北京:科学出版社,1986,(1):62.
    [277]李霞,严建民,季本华等.光氧化和遮荫条件下水稻的光合生理特性的品种差异[J1.作物学报,1999,25(3):301-308.
    [278]侯兴亮,李景富,许向阳.番茄耐弱光性的研究进展[J].中国蔬菜,1999,(4):485.
    [279]吴晓蕾,尚春明,张学东等.番茄品种耐弱光性的综合评价[J].华北农学报,1997,12(2):97-101.
    [280]Smeets.L. Growth flowering and chemical composition [J]. Acta Horticulturae,1992,32(3):341-347.
    [281]Mcavoy.R.J, Jane.H.W, Godfriaux.B.L. The effect of total available photosynthetic photo flux on single truss tomato growth and production [J]. J Appl Polym Sci, 1989,64(2):331-338.
    [282]郑勤,李俊.番茄苗期耐弱光特性及若干形态生理指标的测定[J].江苏农业科学,1999,(6):51-53.
    [283]吴兰坤,黄卫东,战吉晟.弱光对大樱桃坐果及果实品质的影响[J].中国农业大学学报,2002,7(3):69-74.
    [284]陈德兴,王天铎.叶片叶肉结构对环境光强的适应及对光合作用的影响[J].应用生态学报,1990,1(2):142-148.
    [285]胡文海.强光对番茄低温弱光胁迫后不同叶片恢复的影响[J].井冈山师范学院学报,2002,(5):34-36.
    [286]杨延杰.番茄耐弱光品系筛选及农艺性状和生理生化指标研究[D].沈阳:沈阳农业大学,2001.
    [287]陈青君,张福墁.不同品种黄瓜在低温弱光胁迫和恢复过程的光和特性[J].中国农业大学学报,2005,(5):30-35.
    [288]张林青,周青,肖程岭.园林植物耐阴性研究进展[J].安徽农业科学,2006,34(19):4851-4853
    [289]姜汉侨,段昌群,杨树华等.植物生态学[M].高等教育出版社,2004,4:213.
    [290]陈锦任,黎良平,徐忠祥等.杂交水稻新组合在浏阳的生态适应性鉴定[J].湖南农业科 学,2008,(4):]4-17.
    [291]蒋开锋,曾德初,郑家奎等.运用AMMI模型分析水稻多点双列杂交试验,1.组合的丰产性、稳产性和适应性分析[J].西南农业学报,]998,11(1):12-19.
    [292]卢兴桂,袁潜华,姚克敏等.我国主要水稻光温敏核不育系类型的气候适应性[J].中国水稻科学,2001,]5(2):81-87.
    [293]黄丽芳.水稻新品种区域适应性分析[J].农业科技通讯,2010.(7):46-48.
    [294]刘建昌,曹绍书,蒋志谦等.水稻新品种(系)区域适应性评价[J].贵州农业科学1997,25(1):17-20.
    [295]王润华,吴中坚.杂交水稻适应性分析[J].广东农业科学,1983,(6):12-16.
    [296]辽宁省不同生态条件水稻高产栽培模式研究课题组.辽宁省不同生态条件水稻高产栽培模式研究技术报告[J].汽阳农业大学学报,]993.24(3):193-199.
    [297]罗学刚,曾明颖,邹琦.梁造金四川不同海拔稻田生态条件与杂交水稻生长发育及其应用研究[J].应用与环境生物学报,]999,5(2):142-146.
    [298]周以鸿.云南不同地区水稻产量与气候因素关系的探讨[J].云南农业大学学报,1990,3(1):7-10.
    [299]蒋山,胡燕.杂交中籼水稻品种适应性试验结果初报[J].安徽农学通报,2010,16(4):75-76
    [300]李建新,万开军,谢英等.豫南稻区水稻新品种适应性研究[J].信阳农业高等专科学校学,2006,16(4):]04-]07.
    [30]] 邵国军,李玉福,洪光男等.水稻不同品种对环境的适应性分析[J].沈阳农业大学学报,1993,24(3):224-227.
    [302]何天祥,蔡光泽,郑传刚等.攀西地区攀引系列水稻品种的适应性研究[J].耕作与栽培,2003(3):33-35.
    [303]湖南农学院水稻生态生理研究室.湖南杂交水稻气候生态适应性研究:Ⅲ[J].气候生态条件对杂交水稻物质生产特性的影响.湖南农学院学报,1992,18(1):1-9
    [304]王胜华,刘贞琦.不同海拔水稻品种的光合特性及呼吸作用[J].贵州农院学报,1992,11(2):1-5.
    [305]李存信,林德辉.不同海拔地区种植的水稻叶片光合作用特征的比较[J].云南植物研究,1996,8(4):459-466.
    [306]陈建,莫成伦,谌家元.不同海拔地区杂交水稻品种各性状表现研究[J].种子世界,2007,(11):17.
    [307]谭亚玲,洪汝科,陈金凤.海拔高度对不同水稻品种生长的影响研究[J].种子,2009,28(7):27-29.
    [308]冯达权,彭国照,徐崇浩.论四川盆地东南部水稻立体气候生态适应性[J].气象科学研究院院刊,19861(2):197-199.
    [309]丁元树,王海生.水稻幼穗形成期不同生态条件对产量、产量构成因素和生长发育的影响[J].浙江农业大学学报,1983,9(]):17-28.
    [310]李霞,焦德茂.水稻耐光氧化和耐荫特性的生理基础[J]. Acta Bo tanica Sinica,2000,42(12) 1271-1277.
    [311]刘丰明,白选杰,张赞平.水稻在不同生态条件下叶片生长特性的研究[J].豫西农专学报,1985,(5):33-40.
    [312]张宪政.作物生理研究法[M].北京:农业出版社,1992,10,100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700