用户名: 密码: 验证码:
水稻窄卷叶基因NRL1的克隆与功能验证&水稻杂种弱势的遗传机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻叶片是植物进行光合作用的主要营养器官,也是理想株型的重要组成部分,因此水稻叶型已经成为了分子遗传和育种学家研究的热点。为了进一步了解水稻叶发育的调控机制,本研究从日本晴和武运粳7号的EMS诱变中成功分离到三个等位的窄卷叶突变体nrl1-1、nrl1-2和nrl1-3,它们都表现出了矮化、窄叶微卷、籽粒细长,根系变短等一系列形态上的变化。切片观察表明NRL1能够控制一系列细胞和组织的发育,叶片的泡状细胞、叶脉、茎秆厚壁细胞和薄壁细胞都在nrl1内发生了大小或数量上的变化,其中泡状细胞的缩小,能够造成nrl1叶片向内卷曲,而叶脉数目的下降也导致了nrl1叶片的窄化。同时突变体内茎秆的纤维素、半纤维素和木质素含量都有所提高,因此推测NRL1很可能涉及到了它们的生物合成。
     通过图位克隆法最终将NRL1定位在第12染色体8.7kb的范围内,该区间只有一个开放阅读框。测序后发现,三个等位突变体都在该基因的编码序列上发生了碱基变化,通过构建的NRL1功能互补和过表达载体进行了转基因试验,结果表明,突变体转互补载体和过表达载体的植株表型都得到了恢复,但野生型日本晴转互补和过表达载体的植株并没有增加叶片的宽度和卷曲度,表明NRL1没有剂量效应。NRL1在组织中表现为组成型表达特征,其在所测试的根、茎、叶、鞘、穗上都表达,在突变体中的表达量有所下降,在互补转基因植株中表达差异不明显,但在过表达植株中增加显著。序列分析表明NRL1编码了一个类纤维素合成蛋白D4(OsCslD4),由1215个氨基酸组成,共包含了两个外显子和一个内含子。与其它Csl家族一样,NRL1同样包含了结合核苷酸糖和催化纤维素合成的D,D,D,QXXRW保守基序和八个跨膜区。
     杂种弱势是植物中普遍存在的一种合子后生殖隔离现象,对杂种弱势控制基因的研究将为进一步了解生殖隔离的分子作用机理和生产应用打下理论基础。本研究发现秘鲁的品种Jamaica和常规粳稻品种杂交产生的F1均为弱势,植株表现为矮化、单分蘖、短根等特征。杂种F1种子在胚胎发育和种子萌发过程中都正常,但生长势在萌发后受到抑制,并且根系受到的抑制比苗早。其在常规大田管理条件下无法存活,但如果避免生存竞争,并给予良好的生长条件,杂种弱势植株可以存活到成熟,并可少量结实。遗传分析表明,该杂种弱势受显性互补基因Hwc1和Hwc2控制,其中Jamaica的基因型为Hwc1Hwc1hwc2hwc2,粳稻的基因型为hwc1hwc1Hwc2Hwc2,而籼稻的基因型则为hwc1hwc1hwc2hwc2,当Hwc1和Hwc2位点同时显性纯合或显性杂合时表现为弱势,而当两位点有一个位点隐性纯合或两位点都隐性纯合时就表现正常。
     通过上清液PCR快速检测和测交验证重组个体,Hwc1最终被定位在第1染色体22.9kb的范围内,该区间只有一个开放阅读框,Hwc2也被确定在第4染色体24.6kb的区间内,该区段共有4个开放阅读框。目前已经构建好了相应候选基因的功能互补载体,转基因试验正在进行中。为了在生产上应用杂种弱势基因,我们将Jamaica所特有的Hwc1导入到抗虫BT、抗除草剂农达和Basta的转基因植株中,以建立“无外源基因逃逸”的转基因技术,现已经获得了抗农达、Basta和BT与Hwc1的基因聚合株。同时也将Hwc1导入到保持系武运粳7号和恢复系C堡中,现已分别获得了6代和7代的近等基因系,为Hwc1基因在杂交水稻中的利用奠定了基础。
Leaf is a main organ of photosynthesis and contributes to ideal plant type in rice. Therefore, leafshape has become one of hot spots by molecular geneticist and breeder. In order to furtherunderstanding of the regulatory mechanism of leaf development, we isolated three allelic mutants ofnrl1, nrl1-1and nrl1-2from an M2population of the japonica rice cultivar Nipponbare, nrl1-3from thejaponica rice cultivar Wuyunjing7after EMS mutagenesis. Three mutants showed phenotypes ofdwarfism with different degree, reduced leaf width, semi-rolled leaves and slim grain. Microscopicanalysis indicated that the NRL1involved in development of different cells and tissues, i.e. the bulliformcells, longitudinal veins, sclerenchyma cells and parenchyma cells were changed in size or number.Among them, smaller bulliform cells may explain the semi-rolled leaves and fewer leaf veins result inthe narrowed leaves. The content of cellulose, hemicellulose and lignin also increased in mutants,suggesting NRL1likely affect their biosynthesis.
     The NRL1gene was fine mapped to an interval of8.71kb, where one open reading frame (ORF)located on chromosome12via map-based cloning strategy. To define the mutation locus, the DNAfragments of wild-type and three allelic mutants were amplified and sequenced. Single base-pairsubstitutions were found at different loci in each of the three allelic mutants. To confirm the biologicalfunction of the NRL1gene, we constructed complementation vector and over-expression vector. Thephenotype of mutant was completely suppressed while Nipponbare not changed in complementation testand over-expression analysis which confirming NRL1without dosage effect. NRL1exhibitedconstitutive expression at transcription level at the heading stage, and decreased in the mutants, alteredlittle in complementary transgenic plants and increased significantly in over-expression plants.Sequence analysis of cDNA revealed that the NRL1gene is composed of two exons and one intron,which encodes a protein of1215amino acids in the KOME database. BLAST analysis indicated that theNRL1protein is the cellulose synthase-like protein D4(OsCslD4), which contains the D, D, D,QXXRW motif and eight trans-membrane segments characterized in Csl family.
     As the phenomenon of postzygotic reproduction isolation, hybrid weakness is common in plants.Genetic study of hybrid weakness will contribute to understanding the molecular mechanism ofreproduction isolation and its application. In this study, the F1plants from the cross between Peruvianvariety Jamaica and japonica varieties exhibited phenotypes of dwarfism, single tiller and notablyshortened roots. The F1seeds were normal in embryonic development and germination, but hybridweakness exhibited weak growth potential after germination, while growth was inhibited in root earlierthan in shoot. The plants will die under conventional field management, but flowering and seed settingwas achieved under favorable conditions without survival competition. Genetic analysis indicatedhybrid weakness was controlled by a pair of dominant complementary genes. The genotype of Jamaica,japonica and indica rice is Hwc1Hwc1hwc2hwc2, hwc1hwc1Hwc2Hwc2and hwc1hwc1hwc2hwc2,respectively. When the locus of Hwc1and Hwc2are dominant homozygous or dominant heterozygous,the plant appears hybrid weakness and it is normal if one or two loci is recessive homozygous.
     The hybrid weakness gene Hwc1was fine mapped into a region of22.9kb on chromosome1,which had only one ORF by PCR rapid screening and test cross of recombinant. Hwc2was also finemapped in24.6kb on chromosome4, where total four genes were predicted. Complementation vectorsfor both genes have constructed and transgenic experiment is being carried out. In order to apply thehybrid weakness gene in rice production, we introduced Hwc1into a transgenic plant with Bt, Roundupand Bar gene. Now, herbicide and pest resistant plants with Hwc1have obtained by gene pyramiding toestablish a new technology of preventing the exogenous gene escape. The Hwc1also has beenintroduced into maintainer line Wuyunjing7and restorer line C Bao by backcrosses and have gainedNILs of BC6and BC7respectively, which provides basis for production apllication in hybrid rice.
引文
[1]曹慧娟.植物学(第2版).北京:中国林业出版社,1992:116-125
    [2]陈英之,刘丕庆,白德朗,李容柏.水稻卷叶突变新基因的遗传分析和初步定位.广西农业科学,2010,41(5):403-407
    [3]鞠培娜,方云霞,邹国兴,彭友林,孙川,胡江,董国军,曾大力,郭龙彪,张光恒,高振宇,钱前.一个新的水稻叶形突变体(tll1)的遗传分析与精细定位.植物学报,2010,45(6):654-661
    [4]李楠,桑贤春,赵芳明,凌英华,李云峰,杨正林,何光华.水稻窄叶突变体nal(t)的表型分析与基因定位.植物学报,2010,45(2):157-161
    [5]李仕贵,何平,王玉平,黎汉云,陈英,周开达,朱立煌.水稻剑叶性状的遗传分析和基因定位.作物学报,2000,26(3):261-265
    [6]罗远章,赵芳明,桑贤春,凌英华,杨正林,何光华.水稻新型卷叶突变体rl12(t)的遗传分析和基因定位.作物学报,2009,35(11):1967-1972
    [7]钱前,能振民,闵绍楷.影响水稻杂种优势表现的生殖障碍基因的研究及利用途径.水稻文摘,11(2):1-4
    [8]邵元健,陈宗祥,张亚芳,陈恩会,祁顶成,缪进,潘学彪.一个水稻卷叶主效QTL的定位及其物理图谱的构建.遗传学报,2005,32(5):501-506
    [9]田晓庆,桑贤春,赵芳明,李云峰,凌英华,杨正林,何光华.水稻卷叶基因RL13的遗传分析和分子定位.作物学报,2012,38(3):423-428
    [10]汪得凯,刘合芹,李克磊,李素娟,陶跃之.一个水稻窄叶突变体的鉴定和基因定位.科学通报,2009,54(3):360-365
    [11]王德仲,桑贤春,游小庆,王增,王秋实,赵芳明,凌英华,李云峰,何光华.水稻细卷叶突变体nrl2(t)的遗传分析和基因定位.作物学报,2011,37(7):1159-1166
    [12]王峰,唐彦强,苗润隆,徐芳芳,林婷婷,何光华,桑贤春.水稻窄叶白化突变体nul1的鉴定与基因定位.科学通报,2012,57(22):2066-20711
    [13]张慧,李东宣,魏振飞,钱树琪,冯德党,谢小东,熊海波,徐家星,甘树仙,朱骞,张小玲,谭学林,陈丽娟.粳稻杂种劣势的遗传及表型特性分析.分子植物育种,2012,10(3):270-277
    [14]徐是雄,徐雪宾.稻的形态解剖.北京:农业出版社,1984:12-20
    [15]裔传灯,汤述翥,周勇,梁国华,龚志云,顾铭洪.亚洲栽培稻与宽叶野生稻种间杂种的获得及其原位杂交分析.科学通报,2008,53(17):2047-2053
    [16]余东,吴海滨,杨文韬,巩鹏涛,李有志,赵德刚.水稻单侧卷叶突变体B157遗传分析及基因初步定位.分子植物育种,2008,6(2):220-226
    [17]袁隆平.从育种角度展望我国水稻的增产潜力.杂交水稻,1996,(4):1-2
    [18]周勇,方云霞,朱金燕,李生强,顾飞,顾铭洪,梁国华.一个水稻卷叶突变体rl11(t)的遗传分析和基因定位.科学通报,2010,55(13):1240-1246
    [19] Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H.DRB4-dependent TAS3trans-acting siRNAs control leaf morphology through AGO7. Curr Biol.2006,16(9):927-932
    [20] Alcázar R, García AV, Parker JE, Reymond M. Incremental steps toward incompatibility revealedby Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl AcadSci,2009,106(1):334-339
    [21] Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-actingsiRNA biogenesis in plants. Cell,2005,121(2):207-221
    [22] Becraft PW, Bongard-Pierce DK, Sylvester AW, Poethig RS, Freeling M. The liguleless-1geneacts tissue specifically in maize leaf development. Dev Biol,1990,141(1):220-232
    [23] Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, Pautot V. KNAT6: an Arabidopsishomeobox gene involved in meristem activity and organ separation. Plant Cell,2006,18(8):1900-1907
    [24] Benjamins R, Scheres B. Auxin: the looping star in plant development. Annu Rev Plant Biol,2008,59:443-465
    [25] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local,efflux-dependent auxin gradients as a common module for plant organ formation. Cell,2003,115(5):591-602
    [26] Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B,Feldmann KA. Arabidopsis AUX1gene: a permease-like regulator of root gravitropism. Science,1996,273(5277):948-950
    [27] Bernal AJ, Jensen JK, Harholt J, S rensen S, Moller I, Blaukopf C, Johansen B, de Lotto R, PaulyM, Scheller HV, Willats WG. Disruption of ATCSLD5results in reduced growth, reduced xylanand homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J.2007,52(5):791-802
    [28] Bernal AJ, Yoo CM, Mutwil M, Jensen JK, Hou G, Blaukopf C, S rensen I, Blancaflor EB,Scheller HV, Willats WG. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2,and CSLD4in tip-growing Arabidopsis cells. Plant Physiol,2008,148(3):1238-1253
    [29] Bolduc N, Hake S.The maize transcription factor KNOTTED1directly regulates the gibberellincatabolism gene ga2ox1. Plant Cell,2009,21(6):1647-1658
    [30] Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D. Autoimmuneresponse as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoSBiol,2007,5(9): e236
    [31] Bomblies K, Weigel D. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plantspecies. Nat Rev Genet,2007,8(5):382-393
    [32] Bowman JL, Smyth DR. CRABS CLAW, a gene that regulates carpel and nectary development inArabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development,1999,126(11):2387-2396
    [33] Burkholder, WH, Muller AS. Hereditary abnormalities resembling certain virus diseases in beans.Phytopathology,1926,16:731-737
    [34] Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB.The geneticsand transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. PlantPhysiol,2008,146(4):1821-1833
    [35] Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ,Bacic A, Fincher GB. Cellulose synthase-like CslF genes mediate the synthesis of cell wall(1,3;1,4)-beta-D-glucans. Science,2006,311(5769):1940-1942
    [36] Byrne ME. Making leaves. Curr Opin Plant Biol,2012,15(1):24-30
    [37] Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. Asymmetricleaves1mediates leaf patterning and stem cell function in Arabidopsis. Nature,2000,408(6815):967-971
    [38] Byrne ME, Simorowski J, Martienssen RA. ASYMMETRIC LEAVES1reveals knox generedundancy in Arabidopsis. Development,2002,129(8):1957-1965
    [39] Candela H, Johnston R, Gerhold A, Foster T, Hake S. The milkweed pod1gene encodes aKANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell,2008,20(8):2073-2087
    [40] Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science,2003,301(5631):336-338
    [41] Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, WangL, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, Zhang Q. A triallelic system of S5is a majorregulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. ProcNatl Acad Sci,2008,105(32):11436-11441
    [42] Chen M, Luo J, Shao G, Wei X, Tang S, Sheng Z, Song J, Hu P. Fine mapping of a major QTL forflag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant CellRep,2012,31(5):863-872
    [43] Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC.Pattern formation via small RNA mobility. Genes Dev,2009,23(5):549-554
    [44] Chu YE, Oka HI. The genetic basis of crossing barriers between Oryza perennis subsp. barthiiand its related taxa. Evolution,1970,24:135-144
    [45] Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N,Wilkerson CG. A gene from the cellulose synthase-like C family encodes a beta-1,4glucansynthase. Proc Natl Acad Sci,2007,104(20):8550-8555
    [46] Coyne JA, Orr HA. Speciation. Sunderland, MA, USA: Sinauer Associates.2004
    [47] Cutler S, Somerville C. Cellulose synthesis: Cloning in silico. Curr Biol.1997,7(2): R108-111
    [48] Delmer DP. CELLULOSE BIOSYNTHESIS: Exciting times for a difficult field of study. AnnuRev Plant Physiol Plant Mol Biol,1999,50:245-276
    [49] Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ,Tomes D, Nichols S, Anderson P. Guar seed beta-mannan synthase is a member of the cellulosesynthase super gene family. Science,2004,303(5656):363-366
    [50] Dixon MS, Golstein C, Thomas CM, van Der Biezen EA, Jones JD. Genetic complexity ofpathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2.Proc Natl Acad Sci,2000,97(16):8807-8814
    [51] Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JD. The tomato Cf-2diseaseresistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell,1996,84(3):451-459
    [52] Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, BacicA. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis intransgenic Arabidopsis. Proc Natl Acad Sci.2009,106(14):5996-6001
    [53] Douglas RN, Wiley D, Sarkar A, Springer N, Timmermans MC, Scanlon MJ. ragged seedling2Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but notdorsiventrality, of maize leaves. Plant Cell,2010,22(5):1441-1451
    [54] Egusa M, Ozawa R, Takabayashi J, Otani H, Kodama M. The jasmonate signaling pathway intomato regulates susceptibility to a toxin-dependent necrotrophic pathogen. Planta,2009,229(4):965-976
    [55] Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radialpatterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol,2003,13(20):1768-1774
    [56] Eshed Y, Baum SF, Perea JV, Bowman JL. Establishment of polarity in lateral organs of plants.Curr Biol,2001,11(16):1251-1260
    [57] Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL. Asymmetric leaf development and bladeexpansion in Arabidopsis are mediated by KANADI and YABBY activities. Development,2004,131(12):2997-3006
    [58] Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC.Regulation of AUXIN RESPONSE FACTOR3by TAS3ta-siRNA affects developmental timing andpatterning in Arabidopsis. Curr Biol,2006,16(9):939-944
    [59] Fang L, Zhao F, Cong Y, Sang X, Du Q, Wang D, Li Y, Ling Y, Yang Z, He G. Rolling-leaf14is a2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cellwall formation in leaves. Plant Biotechnol J,2012,10(5):524-532
    [60] Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L. KOJAKencodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis.Genes Dev,2001,15(1):79-89
    [61] Foster T, Yamaguchi J, Wong BC, Veit B, Hake S. Gnarley1is a dominant mutation in the knox4homeobox gene affecting cell shape and identity. Plant Cell,1999,11(7):1239-1252
    [62] Friml J. Auxin transport-shaping the plant. Curr Opin Plant Biol,2003,6(1):7-12
    [63] Friml J, Palme K. Polar auxin transport--old questions and new concepts? Plant Mol Biol,2002,49(3-4):273-284
    [64] Fu Y, Xu L, Xu B, Yang L, Ling Q, Wang H, Huang H. Genetic interactions between leafpolarity-controlling genes and ASYMMETRIC LEAVES1and2in Arabidopsis leaf patterning.Plant Cell Physiol,2007,48(5):724-735
    [65] Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROWLEAF7controls leaf shape mediated by auxin in rice. Mol Genet Genomics,2008,279(5):499-507
    [66] Fukuoka S, Namai H, Okuno K. RFLP mapping of the genes controlling hybrid breakdown in rice(Oryza sativa L.). Theor Appl Genet,1998,97:446-449
    [67] Fukuoka S, Newingham MCV, Ishtaq M, Nagamine T, Kawase M, Okuno K. Identification andmapping of two new loci for hybrid breakdown in cultivated rice. Rice Genet Newsl,2005,22:29
    [68] Garcia D, Collier SA, Byrne ME, Martienssen RA. Specification of leaf polarity in Arabidopsisvia the trans-acting siRNA pathway. Curr Biol,2006,16(9):933-938
    [69] Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. Climate change effects on plant disease:genomes to ecosystems. Annu Rev Phytopathol,2006,44:489-509
    [70] Gasciolli V, Mallory AC, Bartel DP, Vaucheret H. Partially redundant functions of ArabidopsisDICER-like enzymes and a role for DCL4in producing trans-acting siRNAs. Curr Biol,2005,15(16):1494-1500
    [71] Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P,Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y,Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B,Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S,Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T,Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T,Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,2002,296(5565):92-100
    [72] Guo M, Thomas J, Collins G, Timmermans MC. Direct repression of KNOX loci by theASYMMETRIC LEAVES1complex of Arabidopsis. Plant Cell,2008,20(1):48-58
    [73] Ha CM, Jun JH, Fletcher JC. Shoot apical meristem form and function. Curr Top Dev Biol,2010,91:103-140
    [74] Ha CM, Jun JH, Nam HG, Fletcher JC. BLADE-ON-PETIOLE1encodes a BTB/POZ domainprotein required for leaf morphogenesis in Arabidopsis thaliana. Plant Cell Physiol,2004,45(10):1361-1370
    [75] Ha CM, Jun JH, Nam HG, Fletcher JC. BLADE-ON-PETIOLE1and2control Arabidopsis lateralorgan fate through regulation of LOB domain and adaxial-abaxial polarity genes. Plant Cell,2007,19(6):1809-1825
    [76] Hannah MA, Kr mer KM, Geffroy V, Kopka J, Blair MW, Erban A, Vallejos CE, Heyer AG,Sanders FE, Millner PA, Pilbeam DJ. Hybrid weakness controlled by the dosage-dependent lethal(DL) gene system in common bean (Phaseolus vulgaris) is caused by a shoot-derived inhibitorysignal leading to salicylic acid-associated root death. New Phytol,2007,176(3):537-549
    [77] Harper L, Freeling M. Interactions of liguleless1and liguleless2function during ligule inductionin maize. Genetics,1996,144(4):1871-1882
    [78] Hay A, Barkoulas M, Tsiantis M. ASYMMETRIC LEAVES1and auxin activities converge torepress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis.Development,2006,133(20):3955-3961
    [79] Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. The gibberellin pathway mediatesKNOTTED1-type homeobox function in plants with different body plans. Curr Biol,2002,12(18):1557-1565
    [80] Hazen SP, Scott-Craig JS, Walton JD. Cellulose syntheses-like genes of rice. Plant Physiol,2002,128:336-340
    [81] Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM. Patterns of auxintransport and gene expression during primordium development revealed by live imaging of theArabidopsis inflorescence meristem. Curr Biol.2005,15(21):1899-1911
    [82] Henderson DC, Muehlbauer GJ, Scanlon MJ. Radial leaves of the maize mutant ragged seedling2retain dorsiventral anatomy. Dev Biol,2005,282(2):455-466
    [83] Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y. TheADAXIALIZED LEAF1gene functions in leaf and embryonic pattern formation in rice. Dev Biol,2009,334(2):345-354
    [84] Hu J, Zhu L, Zeng D, Gao Z, Guo L, Fang Y, Zhang G, Dong G, Yan M, Liu J, Qian Q.Identification and characterization of NARROW AND ROLLED LEAF1, a novel gene regulatingleaf morphology and plant architecture in rice. Plant Mol Biol,2010,73(3):283-292
    [85] Hultquist JF, Dorweiler JE. Feminized tassels of maize mop1and ts1mutants exhibit alteredlevels of miR156and specific SBP-box genes. Planta,2008,229(1):99-113
    [86] Hunter CT, Kirienko DH, Sylvester AW, Peter GF, McCarty DR, Koch KE. CelluloseSynthase-Like D1is integral to normal cell division, expansion, and leaf development in maize.Plant Physiol.2012,158(2):708-724
    [87] Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig SR.Trans-acting siRNA-mediated repression of ETTIN and ARF4regulates heteroblasty inArabidopsis. Development,2006,133(15):2973-2981
    [88] Ichitani K, Namigoshi K, Sato M, Taura S, Aoki M, Matsumoto Y, Saitou T, Marubashi W,Kuboyama T. Fine mapping and allelic dosage effect of Hwc1, a complementary hybrid weaknessgene in rice. Theor Appl Genet.2007,114(8):1407-1415
    [89] Ichitani K, Takemoto Y, Iiyama K, Taura S, Sato M. Chromosomal location of hca1and hca2,hybrid chlorosis genes in rice. Int J Plant Genomics,2012,649081
    [90] Ichitani K, Taura S, Tezuka T, Okiyama Y, Kuboyama T. Chromosomal location of HWA1andHWA2, complementary hybrid weakness genes in rice. Rice,2011,4:29-38
    [91] Inoue E, Sakuma F, Kasumi M, Hara H, Tsukihashi T. Effect of high-temperature on suppressionof the lethality exhibited in the intergeneric hybrid between Japanese pear (Pyrus pyrifolia Nakai)and apple (Malus×domestica Borkh.). Scientia horticulturae,2003,98:385-396
    [92] Ishikawa R, Ohnishi T, Kinoshita Y, Eiguchi M, Kurata N, Kinoshita T. Rice interspecies hybridsshow precocious or delayed developmental transitions in the endosperm without change to therate of syncytial nuclear division. Plant J,2011,65(5):798-806
    [93] Itoh J, Sato Y, Nagato Y. The SHOOT ORGANIZATION2gene coordinates leaf domaindevelopment along the central-marginal axis in rice. Plant Cell Physiol,2008,49(8):1226-1236
    [94] Izhaki A, Bowman JL. KANADI and class III HD-Zip gene families regulate embryo patterningand modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell.2007,19(2):495-508
    [95] Jackson D, Veit B, Hake S. Expression of maize KNOTTED1related homeobox genes in the shootapical meristem predicts patterns of morphogenesis in the vegetative shoot. Development,1994,120:405-413
    [96] Jang S, Hur J, Kim SJ, Han MJ, Kim SR, An G. Ectopic expression of OsYAB1causes extrastamens and carpels in rice. Plant Mol Biol,2004,56(1):133-143
    [97] Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOXaction in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities.Curr Biol,2005,15(17):1560-1565
    [98] Jeuken MJ, Zhang NW, McHale LK, Pelgrom K, den Boer E, Lindhout P, Michelmore RW, VisserRG, Niks RE. Rin4causes hybrid necrosis and race-specific resistance in an interspecific lettucehybrid. Plant Cell,2009,21(10):3368-3378
    [99] Jiang W, Chu SH, Piao R, Chin JH, Jin YM, Lee J, Qiao Y, Han L, Piao Z, Koh HJ. Fine mappingand candidate gene analysis of hwh1and hwh2, a set of complementary genes controlling hybridbreakdown in rice. Theor Appl Genet,2008,116(8):1117-1127
    [100] Johnson NA. Sixty years after "Isolating Mechanisms, Evolution and Temperature": Muller'slegacy. Genetics,2002,161(3):939-944
    [101] Jouannet V, Moreno AB, Elmayan T, Vaucheret H, Crespi MD, Maizel A. CytoplasmicArabidopsis AGO7accumulates in membrane-associated siRNA bodies and is required forta-siRNA biogenesis. EMBO J,2012,31(7):1704-1713
    [102] Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC. microRNA-mediated repression ofrolled leaf1specifies maize leaf polarity. Nature,2004,428(6978):84-88
    [103] Jun JH, Ha CM, Fletcher JC. BLADE-ON-PETIOLE1coordinates organ determinacy and axialpolarity in arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell,2010,22(1):62-76
    [104] Kadioglu A, Terzi R. A dehydration avoidance mechanism: leaf rolling. Bot Rev,2007,73(4):290-302
    [105] Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. KANADI regulates organpolarity in Arabidopsis. Nature,2001,411(6838):706-709
    [106] Khush G.S. Green revolution: preparing for the21st century. Genome,1999,42(4):646-655
    [107] Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity throughARGONAUTE1. Nature,2004,428(6978):81-84
    [108] Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han CD. OsCSLD1, acellulose synthase-like D1gene, is required for root hair morphogenesis in rice. Plant Physiol,2007,143(3):1220-1230
    [109] Kramer EM. PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci.2004,9(12):578-582
    [110] Krowlow KD. Untersuchungen ü ber die Kreuzbarkeit zwischen. Weizen und Roggen. Z.Pflanzenzücht,1970,64:44-72
    [111] Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JD. A tomatocysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis.Science,2002,296(5568):744-747
    [112] Kubo T, Yoshimura A. Genetic basis of hybrid breakdown in a Japonica/Indica cross of rice,Oryza sativa L. Theor Appl Genet,2002,105(6-7):906-911
    [113] Kuboyama T, Saito T, Matsumoto T, Wu J, Kanamori H, Taura S, Sato M, Marubashi W, IchitaniK. Fine mapping of HWC2, a complementary hybrid weakness gene, and haplotype analysisaround the locus in rice. Rice,2009,2:93-103
    [114] Lee J, Park JJ, Kim SL, Yim J, An G. Mutations in the rice liguleless gene result in a completeloss of the auricle, ligule, and laminar joint. Plant Mol Biol,2007,65(4):487-499
    [115] Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The PutativeRNA-dependent RNA polymerase RDR6acts synergistically with ASYMMETRIC LEAVES1and2to repress BREVIPEDICELLUS and MicroRNA165/166in Arabidopsis leaf development. PlantCell,2005,17(8):2157-2171
    [116] Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An LS, Zhang JL. Overexpression of ACL1(abaxiallycurled leaf1) increased Bulliform cells and induced Abaxial curling of leaf blades in rice. MolPlant,2010,3(5):807-817
    [117] Li M, Xiong G, Li R, Cui J, Tang D, Zhang B, Pauly M, Cheng Z, Zhou Y. Rice cellulosesynthase-like D4is essential for normal cell-wall biosynthesis and plant growth. Plant J,2009,60(6):1055-1069
    [118] Liepman AH, Wilkerson CG, Keegstra K. Expression of cellulose synthase-like (Csl) genes ininsect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci.2005,102(6):2221-2226
    [119] Lin WC, Shuai B, Springer PS. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain geneASYMMETRIC LEAVES2functions in the repression of KNOX gene expression and inadaxial-abaxial patterning. Plant Cell,2003,15(10):2241-2252
    [120] Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S. A knotted1-like homeobox gene inArabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphologywhen overexpressed in transgenic plants. Plant Cell,1994,6(12):1859-1876
    [121] Liu HL, Xu YY, Xu ZH, Chong K. A rice YABBY gene, OsYABBY4, preferentially expresses indeveloping vascular tissue. Dev Genes Evol,2007,217(9):629-637
    [122] Long JA, Moan EI, Medford JI, Barton MK. A member of the KNOTTED class of homeodomainproteins encoded by the STM gene of Arabidopsis. Nature.1996,379(6560):66-69
    [123] Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L,Wu H, Liu YG. Hybrid male sterility in rice controlled by interaction between divergent alleles oftwo adjacent genes. Proc Natl Acad Sci,2008,105(48):18871-18876
    [124] Lu BR, Bothmer R. Production and cytogenetic analysis of the intergeneric hybrids between nineElymus species and common wheat (Triticum aestivum L.). Euphytica,1991,58:81-95
    [125] Lumba S, McCourt P. Preventing leaf identity theft with hormones. Curr Opin Plant Biol,2005,8(5):501-505
    [126] Luo Z, Yang Z, Zhong B, Li Y, Xie R, Zhao F, Ling Y, He G. Genetic analysis and fine mapping ofa dynamic rolled leaf gene, RL10(t), in rice (Oryza sativa L.). Genome,2007,50(9):811-817
    [127] Manfield IW, Orfila C, McCartney L, Harholt J, Bernal AJ, Scheller HV, Gilmartin PM,Mikkelsen JD, Paul Knox J, Willats WG. Novel cell wall architecture of isoxaben-habituatedArabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J,2004,40(2):260-275
    [128] Maheshwari S, Barbash DA. The genetics of hybrid incompatibilities. Annu Rev Genet,2011,45:331-355
    [129] Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP.MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA5' region. EMBO J,2004,23(16):3356-3364
    [130] Matsumoto N, Okada K. A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependentdevelopment of Arabidopsis flowers. Genes Dev,2001,15(24):3355-3364
    [131] McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA andPHAVOLUTA in determining radial patterning in shoots. Nature,2001,411(6838):709-713.
    [132] McHale NA, Koning RE. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTAmRNA regulates the vascular cambium and structure of apical meristems. Plant Cell,2004,16(7):1730-1740
    [133] Miura K, Yamamoto E, Morinaka Y, Takashi T,Kitano H, Matsuoka M, Ashikari M. The hybridbreakdown1(t) locus induces interspecific hybrid breakdown between rice Oryza sativa cv.Koshihikari and its wild relative O. nivara. Breeding Science,2008,58:99-105
    [134] Moon J, Hake S. How a leaf gets its shape. Curr Opin Plant Biol,2011,14(1):24-30
    [135] Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M. liguleless1encodes anuclear-localized protein required for induction of ligules and auricles during maize leaforganogenesis. Genes Dev,1997,11(5):616-628
    [136] Muehlbauer GJ, Fowler JE, Girard L, Tyers R, Harper L, Freeling M. Ectopic expression of themaize homeobox gene liguleless3alters cell fates in the leaf. Plant Physiol,1999,119(2):651-662
    [137] Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic AcidsRes,1980,8(19):4321-4325
    [138] Nagasaki H, Itoh J, Hayashi K, Hibara K, Satoh-Nagasawa N, Nosaka M, Mukouhata M, AshikariM, Kitano H, Matsuoka M, Nagato Y, Sato Y. The small interfering RNA production pathway isrequired for shoot meristem initiation in rice. Proc Natl Acad Sci,2007,104(37):14867-14871
    [139] Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K. Roles of the middledomain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves inArabidopsis. Plant Cell,2012,24(2):519-535
    [140] Nardmann J, Ji J, Werr W, Scanlon MJ. The maize duplicate genes narrow sheath1and narrowsheath2encode a conserved homeobox gene function in a lateral domain of shoot apicalmeristems. Development,2004,131(12):2827-2839
    [141] Nelson JM, Lane B, Freeling M. Expression of a mutant maize gene in the ventral leaf epidermisis sufficient to signal a switch of the leaf's dorsoventral axis. Development,2002,129(19):4581-4589
    [142] Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC.Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet,2009,5(1):e1000320
    [143] Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC. Two small regulatory RNAsestablish opposing fates of a developmental axis. Genes Dev,2007,21(7):750-755
    [144] Norberg M, Holmlund M, Nilsson O. The BLADE ON PETIOLE genes act redundantly to controlthe growth and development of lateral organs. Development,2005,132(9):2203-2213
    [145] Oka H I. Phvlogenetic differentiation of cultivated rice. XV. Complementary lethal genes in rice.Jpn. J. Genet,1957,32:83-87
    [146] Ori N, Eshed Y, Chuck G, Bowman JL, Hake S. Mechanisms that control knox gene expression inthe Arabidopsis shoot. Development,2000,127(24):5523-5532
    [147] Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE. REVOLUTA regulates meristeminitiation at lateral positions. Plant J,2001,25(2):223-236
    [148] Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry viamodulation of KANADI activity. Plant Cell,2005,17(11):2899-2910
    [149] Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. SGS3and SGS2/SDE1/RDR6arerequired for juvenile development and the production of trans-acting siRNAs in Arabidopsis.Genes Dev,2004,18(19):2368-2379
    [150] Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC, Maize rough sheath2and its Arabidopsisorthologue ASYMMETRIC LEAVES1interact with HIRA, a predicted histone chaperone, tomaintain knox gene silencing and determinacy during organogenesis. Plant Cell,2005,17(11):2886-2898
    [151] Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B,Chen J, Chen M, Li C. Mutation of the rice Narrow leaf1gene, which encodes a novel protein,affects vein patterning and polar auxin transport. Plant Physiol,2008,147(4):1947-1959
    [152] Raina SK, Crossability and in vitro development of hybrid embryos of Triticum Durum×secalecereale. Indian J. Genet,1984,44(3):429-437
    [153] Ramirez J, Bolduc N, Lisch D, Hake S. Distal expression of knotted1in maize leaves leads toreestablishment of proximal/distal patterning and leaf dissection. Plant Physiol,2009,151(4):1878-1888
    [154] Reiber JM, Neuman DS. Hybrid Weakness in Phaseolus vulgaris L. II. Disruption of Root-ShootIntegration. J Plant Growth Regul,1999,18(3):107-112
    [155] Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plantlateral organs. Plant Cell,2000,12(4):507-518
    [156] Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J,Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature,2003,426(6964):255-260
    [157] Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plantmicroRNA targets. Cell,2002,110(4):513-520
    [158] Richmond TA, Somerville CR. The cellulose synthase superfamily. Plant Physiol,2000,124(2):495-498
    [159] Rieseberg LH, Blackman BK. Speciation genes in plants. Ann Bot,2010,106(3):439-455
    [160] Rieseberg LH, Willis JH. Plant speciation. Science,2007,317(5840):910-914
    [161] Saito T, Ichitani K, Suzuki T, Marubashi W, Kuboyama T. Developmental Observation and HighTemperature Rescue from Hybrid Weakness in a Cross between Japanese Rice Cultivars andPeruvian Rice Cultivar 'Jamaica'. Breeding Science,2007,57:281-288
    [162] Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M. KNOX homeodomainprotein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shootapical meristem. Genes Dev,2001,15(5):581-590
    [163] Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. DifferentiatingArabidopsis shoots from leaves by combined YABBY activities. Plant Cell,2010,22(7):2113-2130
    [164] Sato YI, Sano Y, Nakagahra M. Gene symbols for gametic effect, sterility and weakness. RiceGenet Newsl,1987,4:46-51
    [165] Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K.FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a proteinwith a zinc finger and HMG-related domains. Genes Dev,1999,13(9):1079-1088
    [166] Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T,Nagamura Y, Ashikari M, Kitano H, Matsuoka M. A rice tryptophan deficient dwarf mutant, tdd1,contains a reduced level of indole acetic acid and develops abnormal flowers and organlessembryos. Plant J,2009,60(2):227-241
    [167] Scanlon MJ. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leafinitiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol,2003,133(2):597-605
    [168] Scanlon MJ. Developmental complexities of simple leaves. Curr Opin Plant Biol,2000,3(1):31-36
    [169] Scanlon MJ, Schneeberger RG, Freeling M. The maize mutant narrow sheath fails to establish leafmargin identity in a meristematic domain. Development,1996,122(6):1683-1691
    [170] Schneeberger RG, Becraft PW, Hake S, Freeling M. Ectopic expression of the knox homeo boxgene rough sheath1alters cell fate in the maize leaf. Genes Dev,1995,9(18):2292-2304
    [171] Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M, Crespi M, Voinnet O, Martienssen RA.Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsisthaliana. PLoS One.2009,14(6): e5980
    [172] Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The ASYMMETRICLEAVES2gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishmentof venation and repression of meristem-related homeobox genes in leaves. Development,2001,128(10):1771-1783
    [173] Serrano-Cartagena J, Candela H, Robles P, Ponce MR, Pérez-Pérez JM, Piqueras P, Micol JL.Genetic analysis of incurvata mutants reveals three independent genetic operations at work inArabidopsis leaf morphogenesis. Genetics,2000,156(3):1363-1377
    [174] Sharma HC, Ohm HW. Crossability and embryo rescue enhancement in wide crosses betweenwheat and three Agropyron species. Euphytica,1990,49:209-214
    [175] Shi Z, Wang J, Wan X, Shen G, Wang X, Zhang J. Over-expression of rice OsAGO7gene inducesupward curling of the leaf blade that enhanced erect-leaf habit. Planta,2007,226(1):99-108
    [176] Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBYgene family specify abaxial cell fate in Arabidopsis. Development,1999,126(18):4117-4128
    [177] Singh SP, Gutiérrez JA. Geographical distribution of the DL1and DL2genes causing hybriddwarfism in Phaseolus vulgaris L, their association with seed size, and their significance tobreeding. Euphytica,1984,33:337-345
    [178] Smith LG, Greene B, Veit B, Hake S. A dominant mutation in the maize homeobox gene,Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development,1992,116(1):21-30
    [179] Sobrizal1, Yoshimura A. Hybrid weakness found in the backcross. progeny of an inter-specificcross of. oryza sativa/o. glumaepatula. Atom Indonesia,2009,35(1):49-56
    [180] Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells.Nat Rev Immunol,2012,12(2):89-100
    [181] Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF. YABBYs and the transcriptionalcorepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity inArabidopsis. Plant Cell,2009,21(10):3105-3118
    [182] Sylvester AW, Cande WZ, Freeling M. Division and differentiation during normal and liguleless-1maize leaf development. Development,1990,110(3):985-1000
    [183] Tadege M, Lin H, Bedair M, Berbel A, Wen J, Rojas CM, Niu L, Tang Y, Sumner L, Ratet P,McHale NA, Madue o F, Mysore KS. STENOFOLIA regulates blade outgrowth and leaf vascularpatterning in Medicago truncatula and Nicotiana sylvestris. Plant Cell,2011,23(6):2125-2142
    [184] Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp,1977,16:1-18
    [185] Tikhenko N, Rutten T, Voylokov A, Houben A. Analysis of hybrid lethality in F1wheat-rye hybridembryos. Euphytica,2008,159:367-375
    [186] Tikhenko ND, Tsvetkova NV, Vo lokov AV. Genetic control of embryo lethality in crossesbetween common wheat and rye. Genetika,2005,41(8):1075-10883
    [187] Timmermans MC, Hudson A, Becraft PW, Nelson T. ROUGH SHEATH2: a Myb protein thatrepresses knox homeobox genes in maize lateral organ primordia. Science,1999,284(5411):151-153
    [188] Timmermans MC, Schultes NP, Jankovsky JP, Nelson T. Leafbladeless1is required fordorsoventrality of lateral organs in maize. Development,1998,125(15):2813-2823
    [189] Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY. Molecularcharacterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1.Mol Genet Genomics,2007,277(5):457-468
    [190] Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA. The maize rough sheath2geneand leaf development programs in monocot and dicot plants. Science,1999,284(5411):154-156
    [191] Tsuge T, Tsukaya H, Uchimiya H. Two independent and polarized processes of cell elongationregulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development,1996,122(5):1589-1600
    [192] Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, Gerats T. Differentialrecruitment of WOX transcription factors for lateral development and organ fusion in Petunia andArabidopsis. Plant Cell,2009,21(8):2269-2283
    [193] Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, Gasser CS. INNER NOOUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev.1999,13(23):3160-3169
    [194] Vogler H, Kuhlemeier C. Simple hormones but complex signalling. Curr Opin Plant Biol,2003,6(1):51-56
    [195] Waites R, Hudson A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinummajus. Development,1995,121:2143-2154
    [196] Waites R, Selvadurai HR, Oliver IR, Hudson A. The PHANTASTICA gene encodes a MYBtranscription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell,1998,93(5):779-789
    [197] wakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C.Expression of the ASYMMETRIC LEAVES2gene in the adaxial domain of Arabidopsis leavesrepresses cell proliferation in this domain and is critical for the development of properly expandedleaves. Plant J,2007,51(2):173-184
    [198] Walsh J, Freeling M. The liguleless2gene of maize functions during the transition from thevegetative to the reproductive shoot apex. Plant J,1999,19(4):489-495
    [199] Walsh J, Waters CA, Freeling M. The maize gene liguleless2encodes a basic leucine zipperprotein involved in the establishment of the leaf blade-sheath boundary. Genes Dev,1998,12(2):208-218
    [200] Wang X, Cnops G, Vanderhaeghen R, De Block S, Van Montagu M, Van Lijsebettens M.AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. PlantPhysiol,2001,126(2):575-586
    [201] Wang W, Wang L, Chen C, Xiong G, Tan XY, Yang KZ, Wang ZC, Zhou Y, Ye D, Chen LQ.Arabidopsis CSLD1and CSLD4are required for cellulose deposition and normal growth of pollentubes. Exp Bot.2011,62(14):5161-5177
    [202] Woo YM, Park HJ, Su'udi M, Yang JI, Park JJ, Back K, Park YM, An G. Constitutively wilted1, amember of the rice YUCCA gene family, is required for maintaining water homeostasis and anappropriate root to shoot ratio.Plant Mol Biol,2007,65(1-2):125-136
    [203] Wu C, Fu Y, Hu G, Si H, Cheng S, Liu W. Isolation and characterization of a rice mutant withnarrow and rolled leaves. Planta,2010,232(2):313-324
    [204] Wu G, Lin WC, Huang T, Poethig RS, Springer PS, Kerstetter RA. KANADI1regulatesadaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRICLEAVES2. Proc Natl Acad Sci,2008,105(42):16392-16397
    [205] Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H. CFL1, a WW domainprotein, regulates cuticle development by modulating the function of HDG1, a class IVhomeodomain transcription factor, in rice and Arabidopsis. Plant Cell,2011,23(9):3392-3411
    [206] Xiang JJ, Zhang GH, Qian Q, Xue HW. Semi-rolled leaf1encodes a putativeglycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating theformation of bulliform cells. Plant Physiol,2012,159(4):1488-1500
    [207] Xie Z, Allen E, Wilken A, Carrington JC. DICER-LIKE4functions in trans-acting smallinterfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl AcadSci,2005,102(36):12984-12989
    [208] Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig RS, Huang H. Genetic interaction betweenthe AS1-AS2and RDR6-SGS3-AGO7pathways for leaf morphogenesis. Plant Cell Physiol,2006,47(7):853-863
    [209] Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N.Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol,2005,15(17):1566-1571
    [210] Yamada T, Marubashi W. Overproduced ethylene causes programmed cell death leading totemperature-sensitive lethality in hybrid seedlings from the cross Nicotiana suaveolens×N.tabacum. Planta,2003,217(5):690-698
    [211] Yamada T, Marubashi W, Nakamura T, Niwa M. Possible involvement of auxin-induced ethylenein an apoptotic cell death during temperature-sensitive lethality expressed by hybrid betweenNicotiana glutinosa and N. repanda. Plant Cell Physiol,2001a,42(9):923-930
    [212] Yamada T, Marubashi W, Niwa M. Facile induction of apoptosis into plant cells associated withtemperature-sensitive lethality shown on interspecific hybrid from the cross Nicotiana suaveolens×N. tabacum. Plant Cell Physiol,2001b,42(2):204-213
    [213] Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. The YABBY geneDROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. PlantCell,2004,16(2):500-509
    [214] Yamaguchi T, Nukazuka A, Tsukaya H. Leaf adaxial-abaxial polarity specification and laminaoutgrowth: evolution and development. Plant Cell Physiol,2012,53(7):1180-1194
    [215] Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J, Matsumoto T, Kitano H, Matsuoka M,Ashikari M. Gain of deleterious function causes an autoimmune response andBateson-Dobzhansky-Muller incompatibility in rice. Mol Genet Genomics,2010,283(4):305-315
    [216] Yan S, Yan CJ, Zeng XH, Yang YC, Fang YW, Tian CY, Sun YW, Cheng ZK, Gu MH. ROLLEDLEAF9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Mol Biol,2008,68(3):239-250
    [217] Yi JC, Zhuang CX, Wang XJ, Cao YP, Liu YG, Mei MT. Genetic analysis and molecular mappingof a rolling leaf mutation gene in rice, Journal of Integrative Plant Biology,2007,49(12):1746-1753
    [218] Yin L, Verhertbruggen Y, Oikawa A, Manisseri C, Knierim B, Prak L, Jensen JK, Knox JP, AuerM, Willats WG, Scheller HV. The cooperative activities of CSLD2, CSLD3, and CSLD5arerequired for normal Arabidopsis development. Mol Plant,2011,4(6):1024-1037
    [219] Yoshikawa M, Peragine A, Park MY, Poethig RS. A pathway for the biogenesis of trans-actingsiRNAs in Arabidopsis. Genes Dev,2005,19(18):2164-2175
    [220] Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, SunJ, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G,Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, NiP, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S,Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, LiuD, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X,Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R,Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H.. A draftsequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002,296(5565):79-92
    [221] Yuo T, Shiotani K, Shitsukawa N, Miyao A, Hirochika H, Ichii M, Taketa S. Root hairless2(rth2)mutant represents a loss-of-function allele of the cellulose synthase-like gene OsCSLD1in rice(Oryza sativa L.). Breeding Science,2011,61:225-233
    [222] Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW. SHALLOT-LIKE1is a KANADI transcriptionfactor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell,2009,21(3):719-735
    [223] Zhao SQ, Hu J, Guo LB, Qian Q, Xue HW. Rice leaf inclination2, a VIN3-like protein, regulatesleaf angle through modulating cell division of the collar. Cell Res,2010,20(8):935-947
    [224] Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU. Hormonalcontrol of the shoot stem-cell niche. Nature,2010,465(7301):1089-1092
    [225] Zou LP, Sun XH, Zhang ZG, Liu P, Wu JX, Tian CJ, Qiu JL, Lu TG. Leaf rolling controlled by thehomeodomain leucine zipper class IV gene Roc5in rice. Plant Physiol,2011,156(3):1589-1602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700