用户名: 密码: 验证码:
中国近海浮游植物光合作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究内容是初级生产力模型计算方法以及活体叶绿素荧光测量方法在我国近海浮游植物光合作用研究中的应用。
     论文对在我国近海实测的1321组叶绿素垂直分布数据以及84组初级生产力数据进行了非线性拟合分析,得出了描述叶绿素和初级生产力垂直变化规律的相应参数。结合光合参数——初始斜率α的平面分布将我国近海分为9个光合作用特征相对独立的分区。以光强和遥感叶绿素为输入变量,以各分区实测参数的平均值为模型参数,首次建立了分海区的时间-深度积分初级生产力计算模型。
     对拟合参数的分析表明:我国近海深水叶绿素峰(DCM)在夏季最明显而在冬季则不明显,这与夏季温跃层的形成和冬季温跃层消失的规律相符合。最大光合速率参数主要受温度和营养盐状况的影响,但整体而言各个季节的变化不大。光合作用初始斜率参数主要受浮游植物光照条件和光照历史的影响,从春季到冬季持续增加,基本与光照强度的变化刚好相反。光抑制参数反映着浮游植物对高光强伤害的敏感性,它在夏、秋季较低而在冬季较高。
     模型计算结果表明我国近海初级生产力规模约为6.4±1.0×108tC/a。总体来说我国近海海域初级生产力北方高于南方,西部高于东部。北方初级生产力高峰期大都出现在夏季而南方出现在冬季,中部则高峰期出现在春秋两季,与温跃层出现和消失的规律有一定的相关性。与由实测生产力推算的初级生产力相比,本模型的计算结果较高,误差产生的原因包括二类水体遥感叶绿素浓度偏高、地形因素等。与VGPM相比较,本模型的计算结果更接近于实测结果。模型中云覆盖度参数的变化可能引起计算结果约25%的变化,当取云覆盖度参数为0.5时的计算结果与用实际天气状况数据的计算结果较为接近。制作了基于分区模型的水柱初级生产力计算软件,可在仅测量叶绿素浓度的情况下进行水柱初级生产力的计算。模型准确度的进一步提高的途径主要包括实测参数数量的增加以及遥感叶绿素浓度准确性的提高。
     与初级生产力相比,活体叶绿素荧光测量可以更快速、简便地跟踪浮游植物光合作用动态。本研究首次将活体叶绿素荧光测量方法应用于野外浮游植物光合作用状态研究。通过暗驰豫实验,建立了使用OS5-AFM藻类荧光仪现场测定活体叶绿素荧光参数——F_v/F_m(光化学效率)的操作方法,并对胶州湾海域浮游植物光化学效率进行了高时空分辨率的调查,对相关因素进行了分析,并尝试通过F_v/F_m进行初级生产力计算。
     结果表明,胶州湾海域表层F_v/F_m值的全年平均值约0.37,处于中等偏低水平。F_v/F_m值在秋季最高而春季最低,其平面分布在夏季较均匀而在春季则有较大的区域差异。湾东部F_v/F_m值变化幅度较大,一年中有4个高峰期;而湾西部F_v/F_m值变化幅度较小,一年中有3个高峰期。光合作用最活跃的海区随季节更替而变化,其年变化模式可能具有一定的重复性。不同深度上F_v/F_m值的海区平均值没有显著差异,但底层F_v/F_m值的空间差异较小。
     通过对营养盐和F_v/F_m值时间变化的分析,首次发现了自然水体中F_v/F_m值变化对氮盐浓度变化响应的滞后效应,在不同的站点,影响F_v/F_m值的氮盐种类有所不同,湾西部海域与NH_4~+相关性较高而湾东部海域与NO3-的相关性较高,P、Si等则与F_v/F_m值基本无相关性。滞后期的长度并不稳定,1旬和2旬的滞后现象都可观察到。F_v/F_m值变化率与氮盐浓度变化率之间的相关性高于F_v/F_m值与氮盐浓度之间的相关性。这表明即使在胶州湾这样无机氮浓度很高、浮游植物生长基本不受氮源限制的水体,氮源浓度的变化仍然影响着浮游植物的光合作用状态。
     初步建立了由F_v/F_m测量结果计算初级生产力的方法。模型的计算结果与文献资料中胶州湾水域初级生产力的时空分布趋势基本一致,但在数量上明显低于传统估算的结果。获得更多同步测量的初级生产力和F_v/F_m值数据可逐渐改善这一方法计算结果的准确性,并可籍次方法更快更方便地进行初级生产力的测算。
In this paper, modeling of primary production and in vivo chlorophyll fluorescence measurement are introduced into the study of the photosynthesis of phytoplankton in China Sea。
     1321 sets of chlorophyll data and 84 sets of product data were analyzed by nonlinear estimation, and the corresponding parameters that describing the chlorophyll vertical distribution and product-light curve were generated. Reference to the spatial distribution of the photosynthesis parameter, primary slope -α, the China Sea is separated into 9 provinces with different photosynthesis feathers. A primary production model that using light intensity and remote sensed chlorophyll concentration as input was developed, using the average values of the measured parameters of each province as the local parameter of the model.
     Analysis of the parameters shows that: The deep chlorophyll maximum (DCM) is marked in summer while is weak in winter, matching the phenomena that the thermocline appears in summer and disappears in winter. The maximum photosynthetic rate is related to temperature and nutrients, and it varies little through seasons. The primary slope of photosynthesis is most affected but the light history. It increases from spring to winter, opposite to the variation of seasonal variation of the irradiance. The photoinhibtion parameter presents the sensitivity of the phytoplankton to high light damages. It is low in summer and autumn, and is high in winter.
     Calculation result shows that the annual primary production of China Sea is about 6.4×108tC. The primary production in the north area of China Sea is higher then south area, and west area is higher then east area. The primary production maximum appears in summer for the north area while it appears in winter for the south area, and it appears in spring and autumn in the middle area, probably relating to the appearance of thermocline. The primary product calculated by the model is in some degree higher than that estimated by the measured primary production data. The errors may derived from the over estimation of the chlorophyll concentration for remote sensing of the type II water, and discounting the bottom topography, etc. Compare to the result of VGPM, our model is more close to the measured data. Cloud cover may lead to 25% variance of the primary production, and it is close to the real PAR situation when the cloud cover takes the value 0.5. We produced a application software based on the model, which can calculate the primary production just by chlorophyll concentration data. The improvement of the accuracy of the model relies on acquirement of more measured primary production data and more better remote sensing chlorophyll concentration data.
     In vivo chlorophyll fluorescence measurement is a rapid and facility method for tracing the photosynthesis activity of phytoplankton. In this study, we introduced the in vivo chlorophyll fluorescence measurement into the field investigation of phytoplankton photosynthesis status. By the dark-relaxation experiment, we developed the procedure for in situ measurement of phytoplankton F_v/F_m (photochemical efficiency, the maximum proportion that the energy used in the primary photochemical reactions in the total light energy absorbed by the light harvesting system) -a commonly used in vivo chlorophyll fluorescence parameter, by the OS5-AFM algae fluorometer. We made a high spatial-temporal investigation of phytoplankton photochemical efficiency in Jiaozhou Bay (2003-2004), and analyzed the relating factors. We made an attempt to calculate the primary production by F_v/F_m data.
     The investigation shows that, annual average of F_v/F_m for Jiaozhou Bay is about 0.37. It is highest in autumn and lowest in spring. The spatial variation of F_v/F_m is large in spring and small in summer. F_v/F_m in east part of the bay varies in a large range, and exhibit 4 peaks through the year. F_v/F_m in the west part of the bay is relatively stable, and exhibit 3 peaks through the year. The subregion of the bay that photosynthesizing most actively changed over seasons. The shifting mode is probably repetitious every year. The averages of F_v/F_m of each depth were not remarkably different, but the F_v/F_m values at bottom present a more evenly spatial distribution than that of the surface.
     By analyzing the dynamic of F_v/F_m and nutrients through the year, the phenomenon that the variation of F_v/F_m is lagging to the variation of inorganic nitrogen concentration in nature waters is first been discovered. In west part of the bay, F_v/F_m is more related to NH_4~+ while in east part of the bay it is more related to NO_3~-. The lagging period may vary. The relativity between change rate of F_v/F_m and change rate of inorganic nitrogen concentration is higher than that F_v/F_m vs inorganic nitrogen concentration. It implicate that, even in waters in which inorganic nitrogen concentration is high so that the growth of phytoplankton is not limited by nitrogen supply, the variation of the concentration of nitrogen may still affect the photosynthesis activity of the phytoplankton.
     We tested the method to calculate the primary production by the parameters deriving from F_v/F_m and the water column primary production integral model. The result exhibit similar spatial and temporal distribution to that reported by presented literatures. But in quantity, our result is obviously lower. Acquirement of more synchronous F_v/F_m vs primary production data may improve the accuracy of the model. By this way, more rapid and convenient primary production measurement will be possible.
引文
费尊乐等. 1991.渤海生产力研究.海洋水产研究12:55~69.
    付翔,韩博平,林秋奇. 2003.蓝细菌CO2浓缩机制的研究概况.海洋科学, 27(4):13~17.
    韩博平,韩志国,付翔. 2003.《藻类光合作用-机理与模型》。科学出版社。
    官文江,何贤强,潘德炉,龚芳. 2005 .渤、黄、东海海洋初级生产力的遥感估算。水产学报,29(3):367~372
    葛人峰等. 2006.黄、东海陆架海域温度垂直结构类型划分及温跃层分析。海洋科学进展. 24(4):424~435.
    兰健,鲍颖,于飞,孙双文. 2006.南海深水海盆环流和温跃层深度的季节变化。海洋科学进展。24(4):436~445.
    李国胜,王芳,梁强,李继龙. 2003.东海初级生产力遥感反演及其时空演化机制.地理学报, 58(4):483~493.
    李国胜,梁强,李柏良. 2003.东海真光层深度的遥感反演与影响机理研究。自然科学进展. 13(1):90~94.
    李小斌等. 2006.南海1998-2002年初级生产力的遥感估计及其时空演化机制。热带海洋学报. 25(3):57~62.
    吕瑞华,夏滨,李宝华,费尊乐. 1999.渤海初级生产力十年间的变化.黄渤海海洋.17(3):80~86.
    马超飞等. 2005. HY-1 CCD宽波段水色要素反演算法。海洋学报. 27(4):38~44
    毛兴华,朱明远,杨小龙,郝亚威,J.库伦. 1996.一种快速、简便测定海洋浮游植物光合作用-光强曲线的新方法。海洋学报. 18(2):119~122.
    宁修仁,刘子琳,史君贤. 1995.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,17(3):72~84.
    宁修仁,刘子琳,蔡昱明. 2000.我国海洋初级生产力研究二十年.东海海洋,18(3):13~20.
    潘德炉,何贤强,李淑菁. 2004.我国第一颗海洋卫星HY-1A的应用潜力研究。海洋学报. 26(2):37~44.
    任敬萍,赵进平. 2002.二类水体水色遥感的主要进展与发展前景.地球科学进展, 17(3):363~371.
    商少凌,洪华生. 2001.海洋初级生产力模式研究与遥感应用研究进展。厦门大学学报. 40(3):647~652.
    孙军,刘东艳,柴心玉,张晨. 2003. 1998~1999年春秋季渤海中部及其邻近海域叶绿素a及初级生产力估算。生态学报,23(3):517~526.
    檀赛香,石广玉. 2005.海洋初级生产力的卫星遥感。地球科学进展. 20(8):863~870.
    檀赛香,石广玉. 2006.中国近海初级生产力的遥感研究及其时空演化。地理学报. 61(11):1189~1199。
    唐军武等. 2004.黄、东海二类水体水色要素的统计反演模式。海洋科学进展. 22(增):1~7.
    唐世林,陈楚群,詹海刚. 2006.海洋初级生产力的遥感研究进展。台湾海峡. 25(4):591~598
    王海黎等. 2001.用卫星资料估算东海的初级生产力。《东海海洋通量关键过程》,海洋出版社.
    王俊,李洪志. 2002.渤海近岸叶绿素和初级生产力研究.海洋水产研究,23(1):23~28.
    王荣. 1992.海洋生物泵与全球变化.海洋科学, 16(1):18~21.
    王晓梅等. 2005.黄海、东海二类水体漫衰减系数与透明度反演模式研究。海洋学报. 27(5):38~45.
    赵骞,田纪伟,赵仕兰,毛自库. 2004.渤海冬夏季营养盐和叶绿素a的分布特征。海洋科学,28(4):34~39。
    朱明远,毛兴华,吕瑞华,孙明华. 1993.黄海海区的叶绿素a和初级生产力.黄渤海海洋,11(3):38~51.
    邹亚荣,马超飞,邵岩. 2005.遥感海洋初级生产力的研究进展。遥感信息.(2):58~61.
    Altabet M A, Francois R, Murray D W, Prell W L. 1995. Climate-related variation in denitrification in the Arabian Sea form sediment 15N/14N rations. Nature, 373: 506~509.
    Anderson L A, Sarmiento J L. 1994. Redfield ratios of remineralization determinedby nutrient data analysis. Global Biogeochem. Cyc., 8: 65~80.
    Antoine D, Morel A. 1996. Oceanic primary production 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochem. Cyc., 10: 43~55.
    Antoine D, Andre J-M, Morel A. 1996. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cyc., 10: 57~69.
    Baly E C C. 1935. The kinetics of photosyntheisi. Proc. R. Soc. Lond. Ser. B, 117: 218~239.
    Babin M, Morel A, Gentili B. 1996. Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence. Int. J. Remote Sensing, 17: 2417~2448.
    Baker N R, Ort K R. 1992. Light and crop photosynthesis performance. In: Baker N R, Thomas H (eds). Crop Photosynthesis: Spatial and Temporal Determinations. Elsevier, Amsterdam, 289~312.
    Barber R T. 1992. Geological and climate time scales of nutrient availability. In: Falkowski P G, Woodhead A (eds). Primary Productivity and Biogeochemical Cycles in the Sea. Plenum, New York, 89~106.
    Bates S S. 1985. Sample preconditioning for measurement of fluorescence induction of chlorophyll-a in marine phytoplankton. J. Plankton Res., 7: 703~714.
    Behrenfeld M, Randerson J, McClain C. 2001. Biospheric primary production during an ENSO transition. Science, 291: 2594~2597.
    Behrenfeld M J, Falkowski P G. 1997a. A consumer’s guide to phytoplankton primary productivity models. Limnol. Oceanogr., 42: 1479~1491.
    Behrenfeld M J, Falkowski P G. 1997b. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42: 1~20.
    Bender M, Sowers T. 1994. The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochem. Cyc., 8: 363~376.
    Bender M, Grande K, Johnson K. 1987. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr., 32: 1085~1043.
    Blackman F F. 1905. Optima and limiting factors. Ann. Bot., 19: 281~295.Blankenship R E. 1992. Origin and early evolution of photosynthesis. Photosynth. Res., 33: 91~111.
    Broecker W S, Peng T-H, Engh R. 1980. Modelling the carbon system. Radiocarbon, 22: 565~598.
    Campbell J, Antoine D, Armstrong R. 2002. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature and irradiance. Global Biogeochemical Cycles. 16:1~15.
    Codispoti L A. 1995. Is the ocean losing nitrate? Nature, 376: 724.
    Copin-Montegut C, Copin-Montegut G. 1983. Stoichiometry of carbon, nitrogen and phosphorus in marine particulate matter. Deep-sea Res., 30: 31~46.
    Cullen J J, Eppley R W. 1981. Chlorophyll maximum layers of the Southern California Bright and possible mechanisms of their formation and maintenance. Oceanol. Acta, 4: 23~32.
    Dugdale R C. 1967. Nutrient limitration in the sea: dynamics, identification and significance. Limnol. Oceanogr., 12: 685~695.
    Edmunds L N J, French R R. 1969. Circadian rhythm of cell division in Euglena: effect of a random illumination regime. Science, 165: 500~503.
    Eppley R W. 1972. Temperature and phytoplankton growth in the sea. Fish Bull., 1972, 70: 1063~1085.
    Eppley R W, Peterson B J. 1979. Particular organic matter flux and planktonic new production in the deep ocean. Nature, 282: 677~680.
    Eppley R W, Stewart E, Abbott M R, Heyman U. 1985. Estimating ocean primary production from satellite chlorophyll. Introduction to regional differences and statistics for the Southern California Bight. J. Plankton Res., 7: 57~70.
    Falkowski P G. 1981. Light-shade adaptation and assimilation numbers. J. Plankton Res., 3: 203~216.
    Falkowski P G, Raven J A. 1997. Aquatic Photosynthesis. Blackwell Science, Inc. Massachusetts.
    Falkowski P G, Greene R, Kolber Z. 1994. Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker N R, Bowyer J R (eds). Photoinhibition of Photosynthesis. Bio Scientific Publisher, Oxford, 407~432.
    Fanning K A. 1992. Nutrient provinces in the sea: connection ratios, reaction rate ratios, and ideal covariation. J. Geophys. Res., 97C: 5693~5712.
    Fischer J, Doerffer R, Grassl H. 1986. Factor analysis of multispectral radiance over coastal and open ocean waters based on radiative transfer calculations. Appl. Optics, 25: 448~456.
    Froelich P N. 1988. Kinetics control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol. Oceanogr., 33: 649~668.
    Gower J F R, Lin S, Borstad G A. 1984. The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters. Int. J. Remote Sensing, 5: 239~364.
    Greene R M, Kolber Z S, Swift D G, Fakowski P G. 1994. Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from the variability in the quantum yield of fluorescence. Limnol. Oceanogr., 39: 1061~1074.
    Howarth R W, Marino R, Cole J J. 1988a. Nitrogen fixation in freshwater, estuarine and marine ecosystems, 1. rates and importance. Limnol. Oceanogr., 33: 669~687.
    Howarth R W, Marino R, Cole J J. 1988b. Nitrogen fixation in freshwater, estuarine and marine ecosystems, 2. Biological geochemical controls. Limnol. Oceanogr., 33: 688~701.
    Jassby A D, Platt T. 1975. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540~547
    Kiefer D A, Chamberlin W S. 1989. Natural fluorescence of chlorophyll a: relationship to photosynthesis and chlorophyll concentration in the westernSouth Pacific gyre. Limnol. Oceanogr., 34: 868~881.
    Kirk J T O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge Univ Press, Second edition.
    Koblentz-Mishke O J. 1970. Plankton primary production of the world ocean. In: Nat Acad Sci Wash (eds). Scientific Exploration of the South Pacific. Standard Book No. 309-01755-6., 183~193.
    Kolber Z, Falkowski P G. 1993. Use of active fluorescence to estimate phytoplankton phosynthesis in situ. Limnol. Oceanogr., 38: 1646~1665.
    Kolber Z, Barber R T, Coale R H. 1994. Iron limitation of phytoplankton photosynthesis in the Equatorial Pacific Ocean. Nature, 371: 145~149.
    Kolber Z, Zehr J, Falkowski P G. 1988. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol., 88: 72~79.
    Krause G H, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Mol. Biol., 42: 313~349.
    Lalli C M, Parsons T R. 1997.张志南,周红等译.生物海洋学导论.青岛:青岛海洋大学出版社, 2000.
    Lewis M R, Cullen J J, Platt T. 1983. Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile. J. Geophys. Res., 88: 2565~2570.
    Long S P, Humphries S, Falkowski P G. 1994. Photoinhibition of photosynthesis in nature. Ann. Rev. Plant Physiol. Plant Mol. Biol., 45:655~662.
    Longhurst A, Sathyedranath S, Platt T, Caverhill C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res., 17: 1245~1271.
    Lorenzen C J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-sea Res., 13: 223~227.
    Martin J H. 1990. Glacial-interlacial CO2 change: the iron hypothesis. Paleoceanography, 5: 1~13.
    McClain C R, Feldman G, Esaias W. 1993.‘Oceanic Biological Productivity’. In:Gurney R J, Foster J L, Parkinson C L (eds). Atlas of Satellite Observations Related to Global Change. Cambridge University Press, Cambridge, 251~263.
    McElroy M B. 1983. Marine biological controls on atmospheric CO2 and climate. Nature, 302: 328~329.
    Morel A, Berthon J-F. 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr., 34: 1545~1562.
    Platt T. 1972. Local phytoplankton abundance and turbulence. Deep-Sea Res., 19: 183~187.
    Platt T, Demman K L, Jassby A D. 1975. The mathematical representation and predication of phytoplankton productivity. Tech. Rep. Fish. mar. Serv. Tech. Rep., 523: 1~110.
    Platt T, Gallegos C L, Harrison W G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38: 687~701.
    Platt T, Herman A. 1983. Remote sensing of phytoplankton in the sea: surface-layer chlorophyll as an estimate of water-column chlorophyll and primary production. Int. J. Remote Sensing, 4: 343~351.
    Platt T, Sathyendranath S. 1988. Oceanic primary production: estimation by remote sensing at local and regional scales. Science, 241: 1613~1620.
    Raven J A. 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol., 109: 279~287.
    Raven JA. 1994. Carbon fixation and carbon availability in marine phytoplankton. Photosynth. Res., 39: 259~273.
    Raynaud D, Jouzel J, Barnola J M. 1993. The ice record of greenhouse gases. Science, 259: 926~934.
    Redfield A C. 1958. The biological control of chemical factors in the environment. Am. Sci., 46: 205~221.
    Ryther J H. 1969. Photosynthesis and fish production in the sea. Science. 66: 72~80.
    Sarmiento J L, Bender M. 1994. Carbon biogeochemistry and climate change.Photosynth. Res., 39: 209~234.
    Sathyendranath S, Platt T. 1993. Remote sensing of water-column primary production. ICES Mar. Sci. Symp., 197: 236~243.
    Sathyendranath S, Prieur L, Morel A. 1989. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. Int. J. Remote Sensing, 10: 1373~1394.
    Slovacek R E, Hannan P J. 1977. In vivo fluorescence determination of phytoplankton chlorophyll a. Limnol. Oceanogr., 22: 919~925.
    Smith R C. 1981. Remote sensing and depth distribution of ocean chlorophyll. Mar. Ecol. Prog. Ser., 5: 359~361.
    Smith R C, Eppley R W, Baker K S. 1982. Correlation of primary production as measured aboard ship in Southern California coastal waters and as estimated from satellite chlorophyll images. Mar. Biol., 66: 281~288.
    Smith E L. 1936. Photosynthesis in relation to light and carbon dioxide. Proc. Natl. Acad. Sci. USA, 22: 504~511.
    Steele J H. 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr., 7: 137~150.
    Steemann-Nielsen E, Hansen V K. 1959. Light adaptation in marine phytoplankton populations and its interrelation with temperature. Physiol. Plant, 12: 353~370.
    Stumm W, Morgan J J. 1981. Aquatic chemistry. New York: Wiley. Webb W L, Newton M, Starr D. 1974. Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia, 17: 281~291.
    Yoder A Y, McClain C R, Feldman G C, Esaias W E. 1993. Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: a satellite view. Global Biogeochem. Cyc., 7: 181~193
    Zehr J P, Mellon M, Braun S. 1995. Diversity of heterotrophic nitrogen-fixation genes in a marine cyanobacterial mat. Appl. Environ. Microbiol., 61: 2527~2532.
    郭玉洁杨则禹, 1992.初级生产力.见:刘瑞玉主编.胶州湾生态学和生物资源. 北京:科学出版社. 110-125
    韩博平韩志国付翔编, 2003.藻类光合作用机理与模型.北京:科学出版社.
    韩志国等, 2005.束生刚毛藻脱水和复水过程中光合作用的变化。生态学杂志. 24(11):1291-1294.
    韩志国雷腊梅韩博平,2006.角毛藻光合作用对连续强光照射的动态响应。热带亚热带植物学报. 14(1):7-13.
    林世青. 1996.荧光是光合作用的探针.见:吴相钰,赵微平,匡廷云,王学臣主编.植物生理补充教材——纪念56年教学研讨会40周年.中国植物学会生理专业委员会,北京植物生理学会. 16(1~12).
    潘友联曾呈奎郭玉洁, 1992.浮游植物的碳同化数.见:刘瑞玉主编.胶州湾生态学和生物资源.北京:科学出版社. 126-135
    潘友联郭玉洁曾呈奎, 1995.胶州湾口内初级生产力的周年定点观测.海洋与湖沼. 26(3): 309-315
    孙松张永山吴玉霖张光涛张芳蒲新明. 2005胶州湾初级生产力周年变化。海洋与湖沼. 36(6):481-486.
    王荣焦念志李超伦等, 1995.胶州湾的初级生产力和新生产力.见:董金海焦念志主编.胶州湾生态学研究.北京:科学出版社. 125-136
    万修全鲍献文吴德星等, 2003.胶州湾及其邻近海域潮流和污染物扩散的数值模拟.海洋科学. 27(5):31-36
    吴玉霖张永山, 1995.胶州湾叶绿素a和初级生产力的分布特征.见:董金海焦念志主编.胶州湾生态学研究.北京:科学出版社. 137-149
    吴长艾孟庆伟邹琦,2001.叶黄素循环及其调控.植物生理学通讯. 37(1):1-5.
    夏丽陈贻竹, 2000.盐藻叶绿素荧光非光化学淬灭产生的条件和主要成分检测. 海洋与湖沼. 31(5): 498-505
    徐敏陈珊刘国祥胡征宇,2004.极高CO_2胁迫对被甲栅藻(Scenedesmus armatus)生理活性和细胞结构影响。武汉植物学研究. 22(5):439-444.
    于勇. 1999.叶绿素荧光和延迟荧光的测定与分析.见:中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社, 109~111.
    张守仁. 1999.叶绿素荧光动力学参数的意义及讨论.植物学通报, 16():444~448.
    Antal T, Venediktov P, Matorin D et al., 2001. Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer. Oceanologia, 43(3): 291-313
    Babin M, Morel A, Claustre H et al., 1996. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Res I, 43(8): 1241-1272
    Behrenfeld M J, Bale A J, Kolber Z S, Aiken J, Falkowski P G. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature. 383:508-510
    Bj?rkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170: 489~504.
    Bilger W, Bj?rkman O. 1990. Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res., 25: 173~185.
    Boyd P W, Berges J A, Harrison P J. 1998. In vitro iron enrichment experiments at iron-rich and -poor sites in the NE subarctic Pacific. J. Exp.Mar.Bio.Ecol. 227: 133-151.
    Boyd P W. et al.. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature. 407: 695-702.
    Boyd P W., Abraham E R. 2001. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep-Sea Research II. 48: 2529-2550.
    Campbell D, Hurry V, Clarke A, Gustafsson P, ?quist G. 1998. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation.Microbiol. Mol. Biol. Rev., 62: 667~683.
    Cleveland J S, Perry M J. 1987. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Marine Biology. 94: 489-497.
    Cullen J J, Eppley R W. 1981. Chlorophyll maximum layers of the Southern California Bright and possible mechanisms of their formation and maintenance. Oceanol. Acta, 4: 23~32.
    Demmig B A. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochemica et Biophysica Acta. 1020:1-24.
    Falkowski PG, Wyman K, Ley A, Mauzerall D. 1986. Relationship of steady state photosynthesis to fluorescence in eucaryotic algae. Biochim.Biophys Acta. 849: 183-192.
    Falkowski P, Ziemann D, Kolber A et al., 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature 352: 55-58
    Falkowski P, Greene R, Kolber Z, 1994. Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker N R, Bowyer J R (eds). Photoinhibition of photosynthesis. Bio Scientific Publisher, Oxford: 407-432
    Ficek D, Ostrowska M, Kuzio M, Pogosyan S. 2000. Variability of the portion of functional PS2 reaction centres in the light of a fluorometric study. Oceanologia. 42(2): 243-250.
    Fork D C, Bose S, Herbert S K. 1986. Radiationless transitions as a protection mechanism against photoinhibition in higher plants and a red alga. Photosynth. Res., 10: 327~333.
    Geider R, Greene R, Kolber Z et al., 1993. Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic. Deep-Sea Res I, 40: 1205-1224
    Genty B, Briantais J-M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 990: 87~92.
    Gerber S, Hader D P. 1995. Effects of enhanced solar irradiation on chlorophyllfluorescence and photosynthetic oxygen production of five species of phytoplankton. FEMS Micrbiology Ecology. 16: 33-42.
    Govindjee, 1995. Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol, 22: 131-160
    Greene R, Geider R J, Kolber Z, Falkowski P G. 1992. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant.Physiol. 100: 565-575.
    Greene R, Kolber Z, Swift D et al., 1994. Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from variability in the quantum yield of fluorescence. Limnol Oceanogr, 39(5): 1061-1074
    Herrmann H, Hader D P, Kofferlein M, Seidlitz H K, Ghetti F. 1996. Efficts of UV radiation on photosynthesis of phytoplankton exposed to solar simulator light. J.Photochem.Photobio. 34: 21-28.
    Kashino Y, Kudoh S, Hayashi Y, et al., 2002. Strategies of phytoplankton perform effective photosynthesis in the North Water. Deep-Sea Res II, 49: 5049-5061.
    Kolber Z, Zehr J, Falkowski P, 1988. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol, 88: 923-929
    Kolber Z, Wyman K, Falkowski P, 1990. Natural variability in photosynthetic energy conversion efficiency: A field study in the Gulf of Maine. Limnol Oceanogr, 35(1): 72-79
    Kolber Z, Reynolds R A. 1992. Advances in understanding phytoplankton fluorescence and photosynthesis, in Primary productivity and biogeochemical cycles in the sea. Eviron.Sci.Res.43.Plenum: 155-174.
    Kolber Z, Falkowski P, 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr, 38(8): 1646-1665
    Kolber Z., et al. 1994. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature. 371: 145-149.
    Krause GH, Weis E, 1991. Chlorophyll fluorescence and phytosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol, 42: 313-349.
    Lorenzen C J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-sea Res., 13: 223~227.
    Malkin R, Niyogi K. 2000. Photosynthesis. In: Buchanan B B, Gruissem W, Jones R L (eds). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, Maryland, 568~628.
    Maxwell K, Johnson G N. 2000. Chlorophyll fluorescence—a practical guide. J. Experiment. Bot., 51: 659~668.
    Müller P, Li X-P, Niyogi K K. 2001. Non-photochemical quenching: a response to excess light energy. Plant Physiol., 125: 1558~1566.
    Olaizola M, Yamamoto H Y, 1994. Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri. J.Phycol. 30:606-612.
    Olaizola M, Geider R, Harrison W, et al., 1996. Synoptic study of variations in the fluorescence-based maximum quantum efficiency of photosynthesis across the North Atlantic Ocean. Limnol Oceanogr, 41(4): 755-765
    Oliver R, Whittington J, Lorenz Z, et al., 2003. The influence of vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its inclusion in a model of phytoplankton photosynthesis. J Plankton Res, 25(9): 1107-1129
    Olson R, Chekalyuk A M, Sosik H M. 1996. Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells. Limnol.Oceanogr. 41(6): 1253-1263
    Olson R, Sosik H, Chekalyuk A, et al., 2000. Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses. Deep-Sea Res II, 47: 3181-3200
    Quick W, Stitt M, 1989. An examination of factors contribution to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochemica Biophysica Acta, 977: 287 -296
    Rohá?ek K, Barták M. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica, 37: 339~363.
    Rohá?ek K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40: 13~29.
    Salil B, Stephen K H, David C F. 1988. Fluorescence characteristics of photoinhibition in a sun and a shade species of the red algal genus Porphyra. Plant.Physiol. 86: 946-950.
    Schreiber U. 1986. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth. Res., 9: 261~272.
    Schreiber U, Schliwa U, Bilger W. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res., 10: 51~62.
    Schreiber U, Neubauer C, Schliwa U. 1993. PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth. Res., 36: 65~72.Shen Z L, 2001. Historical change in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine Coastal and Shelf Science, 52: 211-224.
    Schreiber U, 1986. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth. Res., 9:261-272
    Sosik H, Olson R, 2002. Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep-Sea Res I, 49: 1195-1216
    Vaillancourt R, Sambrotto R, Green S, et al., 2003. Phytoplankton biomass and photosynthetic compentency in the summertime Mertz Glacier Region of East Antarctica. Deep-Sea Res II, 50: 1415-1440
    Wilson S, Blake C, Berges J A, Maggs C A. 2004. Environmental tolerances of free-living coralline algae(maerl): implications for European marine consevartion. Biological Conservation. 120: 283-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700