用户名: 密码: 验证码:
微囊藻毒素在上海市水源地的分布状况及去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,富营养化水体中藻类水华的发生已经成为一个世界性问题。水体富营养化产生的危害之一是微囊藻毒素的生成和释放,其中microcystin-LR(MC-LR)和microcystin-RR(MC-RR)是两种最为常见的藻毒素。本论文采用预氧化、粉末活性炭吸附、混凝和强化混凝工艺以及液氯消毒等工艺对两种常见的微囊藻毒素及藻类的去除特性和机理进行了研究,此外,还对上海市水源水中藻类和微囊藻毒素的状况进行了调查,初步研究了太阳光催化氧化对微囊藻毒素的去除效果、影响因素以及其对藻类的灭活和生长抑制作用。
     针对上海市水源地的首次系统调查结果表明,上海市两大水源地水中的藻类数目和微囊藻毒素浓度相对较低:两大水源地藻类数目基本在6~1000万个/L之间;黄浦江水中的总MC-LR浓度在0~250ng/L之间,总MC-RR浓度在0~650ng/L之间,且主要为溶解性毒素,而长江水中毒素浓度则更低,许多月份低于100ng/L的检测限,但形成原因各不相同。
     预氯化和高锰酸钾预氧化均可在一定程度上强化混凝工艺对藻类的去除效果。预氯化工艺非但不能有效降低细胞外微囊藻毒素浓度,反而会使藻细胞破裂释放出藻毒素;高锰酸钾预氧化虽然不能显著降低细胞外微囊藻毒素的浓度,但不会明显增加水中微囊藻毒素浓度,原因为高锰酸钾优先与水中的溶解性微囊藻毒素反应。
     粉末活性炭可以有效吸附去除水中的微囊藻毒素,10mg/L的粉末活性炭在40min内对MC-RR、MC-LR的去除率分别达到55%和45%;在一定初始浓度范围下,对于给定的吸附时间、活性炭投加量,在天然有机物存在的条件下,两种微囊藻毒素的去除效果与其初始浓度无关,应用孔表面扩散模型(PSDM)、理想吸附理论(IAST)及当量背景化合物理论(EBC)从理论上证明了这一结果;与以往的结果不同,粉末活性炭和氯同时投加时,氯会在一定程度上强化粉末活性炭对两种微囊藻毒素的吸附去除效果(20%左右),原因可能为粉末活性炭的表面官能团与氯作用生成羟基自由基,强化了对微囊藻毒素的氧化效果。
     对处于高藻期的原水,调节原水的pH值到6.0左右并投加10mg/L左右的粉末活性炭可以有效去除原水中的藻类,并保证其细胞的完整性,此外还可解决高藻水的藻嗅问题;强化混凝工艺可以明显提高细胞外微囊藻毒素的去除效果,去除率达到60~70%,去除机理主要在于强化混凝工艺条件下,微囊藻毒素分子结构中的羧基与水合金属离子形成溶解度相对较小的化合物,而这种化合物较易在混凝过程加以去除,对有机物的分级测定结果表明,强化混凝明显强化了对微囊藻毒素这类小分子弱疏水性有机物的去除;而强化混凝工艺不能强化对水中的阿特拉津和双酚A这类微量有机污染物的去除。
     游离氯对两种微囊藻毒素(MC-LR、MC-RR)具有一定的去除作用,两种微囊藻毒素的氯化降解过程均符合二级反应动力学模型,氧化过程与反应时间和游离氯浓度密切相关:在pH值为7.25时,将黄浦江水中10μg/L的MC-LR降低到国家水质标准中的要求值(1μg/L)所需要的CT值为101.88mgmin/L,较低的pH值有利于两种微囊藻毒素的氧化降解,原因为HOCl与微囊藻毒素分子之间的反应为游离氯氧化微囊藻毒素的主要途径;强化混凝+氯+氨联合消毒工艺在有效保证消毒效果的同时,显著降低了DBPs的生成量,该消毒工艺用于处理高藻水则可以有效去除水中的藻类细胞、细胞外微囊藻毒素。
     太阳光催化氧化工艺对饮用水中MC-RR、MC-LR两种微囊藻毒素有很好的去除效果,两种物质的降解过程均符合一级反应动力学模型;腐殖酸对太阳光降解水中微囊藻毒素具有促进和抑制的双重作用,在太阳光/腐殖酸体系中,腐殖酸可以催化微囊藻毒素的光降解,而在太阳光/腐殖酸/TiO_2体系中,由于腐殖酸吸收了大量的太阳光,减弱了照射到TiO_2上的光强以及腐殖酸本身可以与羟基自由基反应,从而弱化微囊藻毒素的光降解效果;溶解氧对太阳光催化氧化的效果具有显著的影响;太阳光催化氧化可以有效的杀灭水中已存在的藻类,而且可以有效抑制水源水中藻类的繁殖生长;太阳光催化氧化工艺还可以有效氧化去除水中的莠灭净、阿特拉津和双酚A等内分泌干扰物,而且去除效果与有机物本身的稳定性无关,进一步说明太阳光催化生成的自由基是氧化水中有机物的主要途径。
In recent years, the occurrence of heavy cyanobacteria blooms in eutrophic fresh water has been a worldwide problem. One of the major problems caused by cyanobacteria is the producing and releasing of microcystins (MCs), in which microcystin-LR and microcystin-RR are the two most common species. Pre-oxidation. powdered activated carbon (PAC) adsorption, coagulation and enhanced coagulation and disinfection process were studied in this paper to explore the removal characteristics and mechanisms of the two microcystins. in addition, removal effects and influential factors of solar catalyzed oxidation process to microcystins and algae were studied in the meantime.
     The quantity of algae and the content of microcystin in the Shanghai water sources are relatively low: the quantity of algae are between 60,000 and 10,000,000 per liter, the concentration of total MC-LR and MC-RR are 0-250ng/L and 0-650ng/L, respectively, in Huangpu river; as to Yangtz River source, the value are even lower than that.
     Both pre-chlorination and potassium permanganate pre-oxidation can improve the removal effect to algae by coagulation to some extent. However, they have some discrimination in the extra-cellar microcystins' removal. Pre-chlorination can't reduce the concentration of extra-cellar microcystins but increase it to some certain extent. Potassium permanganate can't increase the concentration of extra-cellar microcystins, for it can oxidize microcystins prior.
     Powdered activated carbon can effectively remove microcystins from natural waters, the removal rate can reach 45% and 55% for MC-LR and MC-RR, respectively, at PAC dosage of 10mg/L. The removal percentage of microcystins at any contact time and at any PAC dose were observed to be independent of the initial microcystins concentration when the initial concentrations were below some given concentration. Equation derived from pore surface diffusion model (PSDM), ideal adsorbed solution theory (IAST) and equivalent background compounds (EBC) validated this result; Chlorine can enhance the removal effect of PAC to microcystins(about 20%), which was contrary to the former results in literatures; the reason may be lied in that the OH radicals produced through the way of reaction between PAC and chlorine.
     To high-algae raw water, adjusting the pH to 6.0 and adding 10mg/L PAC can remove algae effectively and keep the cellar intact, it can also resolve the problem of "algae-odour" in high algae water. Enhanced coagulation can improve the removal effect of extra-cellar microcystins obviously, of which removal rate was 60~70% and the removal mechanism mainly lies in that the carboxyl in microcystin molecular structure can form some compounds with metal hydrate at the condition of enhanced coagulation and these compounds can be easily removed in the process of coagulation. Enhanced coagulation can't enhance the removal of some trace SOCs such as atrazine and BPA, which doesn't has carboxyl group.
     Free chlorine can remove two kinds of microcystins to some extent, and the degradation process in aqueous solution followed second-order kinetics, which related closely with reaction time and free chlorine concentration. CT value was at least 101.88 mg L~(-1) min at pH 7.25 to reduce 10μg/L microcystins to the national standard of 1μg/L, which is higher than normal CT value for disinfection; Acidic pH condition favored the degradation of the two kinds of microcystins, for the reaction betw(?) HOCl mocecular and microcystins are the main pathways of all reactions. Enhanced coagulation combined with chlorine and ammonia disinfection significantly decreased the production of DBPs, and ensured a good disinfection effect. The process could effectively remove alge and microcystins in water.
     Sunlight-indued catalytic oxidation has a good removal effect both on MC-RR and MC-LR. The degradation process of two substances followed pseudo-first order kinetics well. Humic acids had both improving and retardant effects on the degradation process. Microcystins removal was improved in sunlight/HA system, whereas it was retarded in sunlight/HA/TiO_2 system. Because HA adsorbed partial sunlight, which decrease the light intensity used by TiO_2 and OH radicals thereafter. And HA could react with OH·also. Sunlight-induced catalytic oxidation could inactivate algae in water efficiently, and control the production of algae in water resources. Furthermore, it could oxidize EDCs substances such as ametryn, BPA and atrazine. The removal efficiency is unrelated with the structure of organic substance, which suggest the OH·reaction is the main degradation pathway.
引文
1.谢雄飞,肖锦。水体富营养化问题评述.四川环境,2000,19(2):22-25.
    2.钱大富,马静颖,洪小平.水体富营养化及其防治技术进展.青海大学学报(自然科学版),2002,20(1):28-30.
    3.2005年环境质量公报,http://www.china.com.cn/zhuanti2005/node_6075041.htm.
    4. Sanchez N. Problems caused by biological growth in water distribution systems storage and regulation reservoirs. Water Supply, 1984, 2(3/4): 65-63.
    5.范成新,张路,王建军等.湖泊底泥疏浚对内源释放影响的过程与机理.科学通报,2004,49(15):1523-1528.
    6.孙傅,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估.环境污染治理技术与设备,2003,4(8):61-64.
    7.亚欧会议首届河流流域管理暨中国富营养化湖泊及其流域治理国际研讨会专家建议书,2002.3.25~27,中国,昆明.
    8.刘霞,杜桂森.藻类植物与水体富营养化控制.首都师范大学学报(自然科学版),2002,23(4):56-59.
    9.赵会明,罗固源.聚硅酸硫酸铝铁(PSAFA)除磷研究.水处理技术,2006,32(11):41-44.
    10.付春平,唐运平,李江华.水葱湿地对泰达景观河道水质净化特性研究.环境科学与技术,2006,29(7):6-8.
    11.黄钰玲,惠二青,刘德富.河道型水库库湾水体富营养化评价及防治初探.人民长江,2006,37(4):16-17
    12. Sivonen K. Cyanobacterial toxin and toxin production. Phycologia, 1996, 35 (6): 12-24.
    13. Carmichael W W. The toxins of cyanobacteria. Sci Am, 1994, 270 (1): 78-86.
    14. An J, Cannichael W W. Use of colorimeric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon, 1944, 32(10): 1495-1507.
    15. Duy T N, Lain P K S, Shaw G R. Toxicology and risk assessment of fresh water cyanobacterial toxins in water. Rev Environ Contam Toxicol, 2000, 163 (1): 113-116.
    16.韩志国,吴宝歼,郑解生等.淡水水体中蓝藻毒素研究进展.暨南大学学报,2001,22(3):129-135.
    17. Lagos N, Onedera H, Zagatto P A. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospennophsis raciborskii, isolated from Brazil. Toxicon, 1999, 37(10): 1359-1373.
    18. Svreck C, Smith D W. Cyanoba, cteria toxins and the cun'ent state of knowledge on water treatment options: a review. Environ. Eng. Sci., 2004, 3(1): 155-185.
    19. Harada K I, Suzuki M, Dahlem A M, et al. Mass spectrometric screening method for microcystin in cyanobacteria. Toxicon,1996,34(6):701-710.
    20. Jones G J, Orr P T. Release and degradation of Microcystin following algicide treatment of a microcystis aeruginasa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research,1994,28(4):871-876.
    
    21.Rivasseau C, Martins S, Hennion M. Determination of some physicochemical parameters of microcystins and trace level analysis in environmental samples using liquid chromatography. J Chromatography. ,1998,799(1):155-169.
    
    22. Beasely V R., Lovell R A., Homlmes K R. Microcystin-LR decreases hepatic and renal perfusion, and cause circulatory shock, severe hypoglycemia, and terminal hyperkalemia in intravasularly dosed swine. J Toxicol. Environ. Health A. 2000,61(2):281-303.
    23. Chen T, Cui J, Liang Y. Identification of human liver mitochondrial aldehyde dehydrogenase as a potential targent for microcystin-LR. Toxicology, 2006,220(1):71 -80.
    24.Bojana Z., Tamara T L., Metka F. Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Mutation Research, 2006,611(1):25-33.
    
    25.Weng D, Lu Y, Wei Y, et al. The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology, 2007,232(l-2):15-23.
    
    26.Fischer W J., Dietrich D R. Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp. Toxicol. Appl., 2000,164(1):73-81.
    
    27.Milutionovic A., Sedmak B., Horvat z., et al. Renal injuries induced by chronic intoxication with microcystins. Cell Mol. Biol. Lett., 2002,7(1):139-141.
    
    28.Liu Y D., Song L R., Li X Y, et al. The toxic effect of microcystin-LR om embryo-larval and juvenile development of loach, Misguruns mizeleis. Toxicon,2002,40(2):395-399.
    
    29. Chernoff N., Hunter E S., Hall L L. Lack of teratogenicity of microcystin-LR in the mouse and load. J Appl. Toxicol., 2002,22(1):13-17.
    30. Miroslava P., Roman K., Klara H., et al. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp. Aqutic Toxicology,2007,81(3):312-318.
    31. Zhang J., Zhang H., Chen Y Sensitive of apoptosis induced by microcystins in the crucian carp lymphocy in vitro. Toxicology in Vitro, 2006,20,(3):560-566.
    32. Rymuszka A., Sieroslawska A., Bownik A., et al. In vitro effect of pure microcystin-LR on the lymphocyte proliferation in rainbow trout. Fish Shellfish Immunology,2007,22(3):289-292.
    33. Chen J, Xie P. Tissue distributions and seasonal dynamics of hepatotoxic microcystins-LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow eutrophic lake of subtropical China[J]. Toxicon,2005,45(5):615~625.
    34. Chen J, Xie P. Tissue distributions and seasonal dynamics of hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China. Environmental pollution [J],2005,134(3):423~430 .
    35.孙露,沈萍萍,周莹等.太湖水华微囊藻毒素对小鼠免疫功能的影响.中国药理学和毒理学杂志,2002,16(2):226-230.
    36. Maidana M., Carlis V., Galhardi F G., et al. Effects of microcystins over short and long-term memory and oxidative stress generation in hippocampus of rats. Chemical-Biological Interactions, 2006, 159(2): 223-234.
    37. Paulina S., Bozena B., Jaromir M., et al. Damage of cell membrane and antioxidative system in human erythrocytes incubated with microcystin-LR in vitro. Water Research, 2006, 47(2): 387-397.
    38.穆丽娜,陈传伟,俞顺章等.太湖水体微囊藻毒素含量调查及其处理方法研究.中国公共卫生,2000,16(19):803-805.
    39. Vasconcelos V M, Cannichael WW, Croll Bet al. Hepatotoxin microcystin diversity in cyanbacterial blooms collected in purtuguese freshwater. Water Research, 1996, 30(10): 2377-2386.
    40. Kleikauf H, Von Doheren H. A non-ribsomal system of peptide biosynthesis. Eur J Biochem, 1996, 236(2): 335-351.
    41. Nishizawa T, Asayama M, Fujii K, et al. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in microcystis spp. Biochemistry, 1999, 126(3): 520-529.
    42. Tillett D, Dittmann E, Erhard M, et al. Structural organization of microcystin biosynthesis in microcystis aerginosa-PCC7806: an integrated peptide-polyketide synthetase system. Chem. &Biology, 2000, 7(10): 753-764.
    43. Dittmann E, Neilan B A, Borner T. Molecular biology ofpeptid and polyketide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol, 2001, 57(3): 467-473.
    44.连民,刘颖,俞顺章等.氮、磷、铁、锌对铜绿微囊藻生长及产毒的影响.上海环境科学,2001,20(4):166-177.
    45. Jennifer L G., Jones J., Jones S., et al. Environmental factors influenceing microcystin distribution and concentration in the Midwestern United States. Water Research, 2004, 38(20): 4395-4404.
    46. Oh H M, Lee S J, Jang M H, et al. Microcystin production by microcystis aeruginosa in a phosphorus-limited chemostat. Applied and Environ Microbiol, 2000, 66(1): 176-179.
    47. Sivonen K. Effect of light, temperature, nitrate, orthophosphate and bacteria on growth of and hepatotoxin production by oscillatoria agardhil strains. Applied and Environ Microbiol, 1990, 56: 2658-2666.
    48. Lee S, Jang M, Kim H, et al. Variation of microcystin content of microcystis aeruginosa relative to medium N: P ratio ang growth stage. Appl Microbiol 2000, 89(2): 323-329.
    49. Lukae M, Aegerter R. Influence of trace metal on growth and toxin production of microcystis aeruginosa. Toxicon, 1993, 31 (12): 2293-2305.
    50.张晴浩,任基成,朱惠刚等.源水中藻毒素污染的探讨.中国给水排水,2002,18(4):23-25.
    51. Song L R, Sano T, Li R, et al. Microcystin production by Microcystis viridis under different culture conditions. Phycological Research, 1998, 46(1): 19-23.
    52.连民,陈传伟,俞顺章等.淀山湖夏季微囊藻毒素分布状况及其影响因素.中国环境科学,2000,20(4):323-327.
    53. Utiklen H, Gjolme N. Toxin production by microcystis aeruginosa as a function of light in a continuous culture and its ecological significance. Appt Environ Microbiol, 1992, 58(4): 1321-1330.
    54. Rapala J, Sivonen K, Lyra C, et al. Variation of microcystins, cyanobacterial hepatotoxins in Anabaena spp as a function gowth. stimuli. Appl Microbiol, 2000, 89(2): 323-329.
    55. Jang M., Ha K., Lucas M., et al. Changes in microcystin peoduction by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquatic Toxicology, 2004, 68(1): 51-59.
    56. Chen J., Xie P., Zhang D., et al. In situ on the distribution patterns and dynamics of microcystins in a biomanipulation fish-bighed carp. Environ. Pollution, 2007, 147(1): 150-157.
    57.Utkilen H, Gjohne N. Iron-stimulatd toxin production in microcystis Aeruginosa. Appl Environ Microbiol, 1995, 61 (2): 797-804.
    58. Li X Y, Song L R, Liu Y D. The production, detection and toxicology of microcystins. Acta Hydrobiologia Sinica., 1999, 23(5): 517-523.
    59. Baeco M., Lawton L., Rivara J., et al. Optimization of intracellular microcystin extraction for their subsequent analysis by high performance liquid chromatography. J Chromatography, 2005, 1074(1): 23-30.
    60. Chen Y M., Lee T., Lee S., et al. Potential of a simple solid-phase extraction method coupled to analytical and bioanalytical methods for an improved determination of microcystins in algal samples. J Chromatography, 2007, in press.
    61.汤坚,陈艳,秦芳等.液相色谱—电喷雾电离质谱法测定水中的微囊藻毒素.分析化学,2003,31(12):1462—1464.
    62. Cong L., Huang B., Chen Q., et al. Determination of trace amount of microcystins in water samples using liquid chromatogramphy coupled with triple quadrupole mass spectrometer. Analytica Chimica Aata, 2007, inpress.
    63. Gregson B R, Millie D F., Cao C., et al. Simiplified enrichment and identification of environmental peptide toxins using antibody-capture surfaces with subsequent mass spectrometry detection. J Chromatography, 2006, 1123(2): 233-238.
    64. Tsuji K, Masui H, Uemura H, et al. Analysis of Microcystins in sediments using MMPB method. Toxicon, 2001, 39(5): 687-692.
    65. Vasas G., Szydlowska D., Gaspar A., et al. Determination of microcystins in environmental samples using capillary electrophoresis. J Biochem. Biophys. Methods, 2006, 66(1): 87-97.
    66. Gabor Vasas, Attila Gaspar, Csilla Pager et al. Analysis of cyanobacterial toxins (anatoxin-a, cylindrospennopsin, microcystin-LR)by capillary electrophoresis. Elecreophoresis, 2004, 25(1), 108-115.
    67. Fladmark K E, Serres M H, Carsen N L. Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon. 1998, 36(8): 1101-1114.
    68.傅文字,李敏伟,陈加平等.一种检测微囊藻毒素LR诱导的大鼠肾细胞凋亡的方法.水生 生物学报,2004,28(1):101—102.
    69 王晓峰,郭宗楼,王燕等.用蛋白磷酸酶抑制法—比色法检测水中微囊藻毒素类物质.水生生物学报,2003,27(4):431—433.
    70. Ortea Paloma M, Alis O, Healy B M, et al. Detennination of toxic cyclic heptapeptides by liquid chromatograpy wirh detection using Ultra-Violet, protein phosphatase assay and tandem mass spectrometry. Chemosphere.2004, 55(10): 1395-1402.
    71. Xu L H, Lam P KS, Chen J P et al. Use of protein phosphatase inhibition assay to detect microcystin in Donghu-water reservoir. Chemosphere. 2000, 41(1): 53-58.
    72.连民,俞顺章,林玉娣等.太湖流域水中微囊藻毒素含量调查.中国公共卫生,2002,18(12):1455—1456.
    73. J S Metcalf, G A Codd. Analysis of cyanobacterial toxins by immunological methods. Chemical Research Toxicology, 2003, 16(2): 103-112.
    74.雷腊梅,甘南琴,张小明等.三种检测微囊藻毒素的ELISA方法比较研究.高技术通讯,2004.7:89—92.
    75. Hoeger S J., Hitzfeld B C., Dietrich D R. Occurrence and elimination of cyanobacterial toxins in chinking water treatment plants. Toxicology and Applied Pharmacology, 2005, 203(2): 231-24-2.
    76 Hoeger S J., Shaw G., Hitzfeld B C et al.. Occurrence and elimination of cyanobacterial toxins in two AustraIian drinking water treatment plants. Toxicon, 2004, 43(6): 639-649.
    77. Lam A K Y., Prepas E E., Spink D., et al. Chmical control of hepatotoxic phytoplankton: implications for human health. Water Research, 1995, 29(8): 1845-1854.
    78. Chow C W K, House J, Velzeboer R M A, et al The effect of ferric. chloride flocculation on cyanobacterial cells [J]Water Research, 1998, 32(2): 808-814.
    79. Hall T., Hart J., Croll B., et al. Laboratory-scale investigations of algae toxins remowl by water treatment. J. Chart. Inst. Water E, 2000, 14(2): 143-149.
    80. Karner D A., Standridge J H., Harrington G W., et al. Microcystin algal toxins in source and finished drinking water. JAWWA., 2001, 93 (8): 72-81.
    81. Hoger S., Dietrich D., Hitzfeld B. Effect of ozonation in ohinking water treatment on the removal of cyanobacterial toxins. Toxicol. Sci., 1999, 48(1): 23-29.
    82. Lepist L., Lakti K., Niemi J. Removal of cyanobacteria and other phytoplankton in four Finnish Waterworks. Algoog. Studies, 1994, 75 (1): 167-181.
    83. Grutzmacher G, Bottcher G, Chorus IRemoval of microcystins by slow sand filtration [J] EnvironToxicol, 2002, 17(4): 386-394
    84. Tsuji K., Watanuki T., Kondo F., et al. Stability of microcystins from cyanobacteria-Ⅳ. Effect of chlorination on decomposition. Toxicon, 1997, 35 (7): 1033-1041.
    85. Nicholson B C., Rositano J., Burch M D. Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine. Water Research, 1994, 28(6): 1297-1303.
    86. Nicholson BC., Shaw G., Morral J., et al. Chlorination for degrading saxitoxins in water. Environ. Technol., 2003, 24(6): 1341-1348.
    87. Senogles P., Shaw G., Smith M., et al. Degradation of the cyanobacterial toxin cylindrospermopsin. From Cylindrospermopsis raciborskii by chlorination. Toxicon, 2000, 38(9): 1203-1213.
    88. Restino J., Bond P., Nichloson B. By-products of the destruction of cyanobacterial peptide hepatotoxins using chlorine. In: 16th AWWA Federal convention, Darling Harbour Sydney, Austrilia: Australian Water and Wastewater Association, 1995.
    89. Acero J L., Rodriguez E., Meriluoto J. Kinetics of reaction between chlorine and the cyanobacterial toxins microcystins. Water Research, 2005, 39(8): 1628-1638.
    90. Linel H., Gretchen O., Urs Gunton., et al. Difference in the chlorine reactivity of four microcystin analogues. Water Research, 2006, 40(6): 1200-1209.
    91. Rositano J. Nicholson B., Pieronne P. Destruction of cyanobacterial toxins by ozone. Ozone Sci. Eng., 1998, 20(3): 223-238.
    92. Hall T., Hart J., Croll R., et al. Laboratory-scale investigations of algal toxin removal by water treatment. Water Environmental Management, 2000, 14(1): 143~149.
    93. Pietsch J., Bornmann K., Schmidt W. Relevance of intra-and extracellular cyanotoxins for drinking water treatment. Acta Hydrochim Hydrobiol, 2002, 30(1): 7~15
    94. Drikas M., Chow C WK., House J., et al. Using coagulation, flocculation and setting to remove toxic bacteria. JAWWA, 2001, 93 (2): 100-111.
    95. Chen X., Xiao B., Liu J., et al. Kinetics of the oxidation of MCRR by potassium permanganate. Toxicon, 2005, 45(7): 911~917.
    96. Eva R., Maria E M., Jussi M., et al. Oxidation of microcystins by permanganate: Reaction kinetics and implications for water treatment. Water Research, 2007, 41 (1): 102-110.
    97. Xing H., Yuan B., Wang Y. Photocatalytic detoxication of microcystins combined with fouate pretreatment. J Environ. Sci. Health Part A, 2002, 37(3): 641-649.
    98. Fawell J K, Hart H A, Pan W. Blue green algae and their toxins analysis, toxicity, treatment and environment control [J]Water Supply, 1993, 11 (3/4): 109-121
    99.穆丽娜,陈传炜,俞顺章,等太湖水体微囊藻毒素含量调查及其处理方法研究[J]中国公共卫生,2002,18(12):1455-1456
    100. Hoger S J., Dietrich D R., Hitzfeld B C. Effect of ozonation on the removal of cyanobacterial toxins during water treatment. Environ. Health Perspect, 2002, 1100:1127-1131.
    101.缪晶广.微污染源水生物接触氧化处理技术.西安建筑科技大学硕士学位论文,2004.7.
    102. Thomas H, Niels O G J, Claus J, et al. Degradation of microcystin in sediments at oxic and anoxic, denitrifying conditions.Water research, 2003, 37(19): 4748-4760.
    103. Angeline K Y L, Philijp M F, Ellie E P. Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and proteinphophatase bioessay. Environ Sci Technol, 1995, 29 (1): 242-246.
    104. Cousins I T., Bealing D J., James H A., et al. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Research, 1996, 30(2): 481-485.
    105. Hiroshi Ishii, Miyuki Nishijima, Toshihiko Abe. Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Research, 2004, 38(11)2667-2676.
    106. Bourne D G., Blakeley R L., Riddles R, et al. Biodegradation of cyanobacterial toxins microcystin LR in natural water and biologically active slow sand filters. Water Research, 2006, 40(6): 1294-1302.
    107. Lionel H., Meyn T., Keegan A., et al. Bcterial degradation of microcystin toxins within a biologically active sand filter. Water Reseach, 2006, 40(4): 768-774.
    108. Tsuji K., Asakawa M., Anzai Y., et al. Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere, 2006, 65(1): 117-124.
    109. Cosimo D, Mary D, Rob H, et al. Microcystin-LR adsorption by powdered activated carbon. Water Research, 1994, 28 (80): 1735-1742.
    110. Pendleton P, Schumarm R, Shiaw H W. Microcystin-LR Adsorption by activated carbon. Journal of Colloid and Interface Science, 2001, 240(1): 1-8.
    111. Margarida C., Maria J R. The ionic strength effect on microcystin and natural matter surrogate adsorption onto PAC. J Colloid Interface Science, 2007, in press.
    112. Gajdek R, Bober B., Mej E., et al. Sensitised decomposition of microcystin-LR using UV radiation. J Photochemistry Phtobiology B: Biology, 2004, 76(1): 103-106.
    113.陈晓国.微囊藻毒素的提纯、制备及去除研究.中国科学院水生生物研究所博士毕业论文,2004.7.
    114. Jsuji K, Nalto S, et al Stability of microcystins from cyanobacteri a: effect of light on decomposition and isomerization [J]Environ SciTechnol, 1994, 28(1): 173-177
    115. Singh D P, Tyagi M B, Kumar A, et al Antialgal activity of a hepatotoxin producing cyanobacterium, Microcystis aeruginosa [J]World J of Microbiol& Biotech, 2001, 17: 15-22
    116. Sakai H., Oguma K., Katayama H., et al. Effect of low-and medium-pressure ultraviolet lamp irradiation on microxystis aeruginosa and Anabaena variabilis, Water Research, 2007, 41 (1): 11-18.
    117. Andrew J F., David W., Gary J J., et al. Photocatalytic degradation of the blue green algal toxin microcystin-LR in a natural organic-Aqueous Matrix. Environ. Sci. Technol., 1999, 33 (2): 243-249.
    118. Shephard G S., Stockenstorm S., Villiers D D., et al. Photocatalytic degradation of cyanobacterial microcystin toxins in water. Toxicon, 1998, 36(12): 1895-1901.
    119. Lawton L A., Robertson P K., Cornish B., et al. Processes influencing surface interacton and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J Catalysis, 2003, 213(1): 109-113.
    120. Lawton L, Robertson P K J, Cornish B, et al Detoxification of Microcystins(cyanobacterial hepatotoxins) using TiO2 photo catalytic oxidation [J]Environmental science and Technology, 1999, 33(5): 771-775
    121. Shephard G S, Stockenstrom S, Villiers D, et al Degradation of microcystin toxins in a falling film photo catalytic reactor with immobilized titanium dioxide catalyst [J]Water Research, 2002, 36(1): 140-146
    122.Lee D K., Kim S C, Kim S J., et al. Phtocatalytic oxidation of microcystin-LR with TiO2-coated activated carbon. Chemical Engineering,2004.103(1):93-98.
    
    123. Lee D K., Kim S C, Cho I C, et al. Phtocatalytic oxidation of microcystin-LR in a fluidzed bed reactor having TiO_2-coated activated carbon. Separation Purification Technology,2004,34(1):59-66.
    
    124.Lain L,Linda A L,Peter K J R. Mechanistic studies of the photocatalytic oxidation microcystin-LR:an investigation of byproduct of the decomposition process. Environ.Sci.Technol,2003,37(14):3214-3219.
    
    125. Iain L.Linda A,Lawton B C,Peter K JMechanistic and toxicity studies of the photo catalytic oxidation of microcystin LR [J]Photochemistry and Photobiology,2002,148:349-354
    
    126. Cornish B,Lawton L A,Robertson P K J. Hydrogen peroxide enhanced photo catalytic oxidation of Microcystins LR using titanium dioxide [J]Applied catalysis B:Environment,2000,25(1):59-67
    127. Qiao R P., Li N., Qi X H., et al. Degradation of microcystin-RR by UV radiation in the presence of Hydrogen peroxide. Toxicon, 2005,45(6):745-752.
    128.Yuan B L., Li Y B., Huang X D., et al. Fe(VI)-assisted photocatalytic degradating of microcystin-LR using titanium dioxide. J Photochemistry Photobiology A: Chemistry,2006(178):106-111.
    
    129. Xing H., Yuan B L., Wang Y Z., et al. Photocatalytic detoxification of microcystins combined with ferrate pretreatment. J Environ. Sci. Heal. A., 2002,37(4):641-649.
    130. Gajdek P., Lechowski Z., Bochnia T., et al. Decomposition of microcystin-LR by Fenton oxidation. Toxicon,2001,39(10):1575-1578.
    131. Bandala E R., Martinez D., Martinez E., et al. Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes. Toxicon,2004,43(7):829-832.
    132. Gijsbertsen-Abrahamse A J., Schmidt W., Chorus I., et al. Removal of cyanotoxins by ultrafiltration and nanofiltration. J Membrane Science, 2006,276(2):252-259.
    133. Teixeira M R., Rosa M J. Neurotoxic and hepatotoxic cyanotoxins removal by nanofiltration. Water Research,2006,40(15):2837-2846.
    134. Teixeira M R., Rosa M J. Microcystins removal by nanofiltration membranes. Separation and Purification Technology,2005,46(1):192-201.
    135. Teixeira M R., Rosa M J. Integration of dissolved gas flotation and nanofiltration for M. aemginosa and associated microcyatins removal. Water Research,2006,40(19):3612-3620.
    136. Warhurst A M,Raggett S L,McConnachie G L, et al Adsorption of the Cyanobacterial hepatotoxin Microcystins LR by a low cost activated carbon from the seed husks of the pan tropical tree,Moringa oleifera [J]The Science of Total Environment,1997,207(1):207-211
    137. Hoffmann J R H. Removal of Microcystis toxins in water purification processes [J] Water SA,1976,2:58-60
    138. Morris R J,Williams D E,Luu H A,Holmes, et al The adsorption of Microcystins LR by natural clay particles [J]Toxicon,2000,38(2):303-308
    139. Zhang G M., Zhang P Y., Wang B., et al. Ultrosonic frequence effects on the removal of microcystis aeruginosa. Ultrasonic Sonochemistry, 2007. IN press.
    140. Zhang G M., Zhang P Y., Liu H., et al. Ultrosonic damages cyanobacterial photosynthesis. Sonochemistry, 2006, 13(2): 501-505.
    141. Chi Yong A, Myung H P, Seung H J, et al. Growth inhibition of cyanobacterial by ultrasonic radiation: laboratory and enclosure studies. Environ Sci Technolo, 2003, 37(13): 3031-3037.
    142.李勇红,汪立飞,李彦春等.气浮处理含藻水库水的工艺设计.中国给水排水,2006,22(6):38-41.
    143. Tomas P J K, Peter H B, Krister M K, et al. Oxidation of the cyanpbacterial hepatotoxin microcystin-LR by chlorine dioxide: reaction kinetics, characterization, and toxicity of reaction products. Environ Sci Technolo, 2004, 38(22): 6025-6031.
    144. Tomas P J K., Olli T S., Peter H B., et al.Oxidation of the cyanobacterial hepatotoxin microcystin-LR by Chlorine Dioxide: influence of natural organic Matter. Environ. Sci. Technol., 2006, 40(5): 1504-1510.
    145. Hart J, Fawell J K, Croll B. The fate of both intra-and extracellular toxins during drink water treatment. Water Supply, 1998, 16(5): 611-617.
    146.金丽娜,张维吴,郑利等.滇池水环境中微囊藻毒素的生物降解.中国环境科学,2002;22(2):189-192.
    147.董秉直,曹达文,陈艳.饮用水膜深度处理技术,化学工业出版社,2006.8.
    148. Croue J P., Martin B. Isolation and characaterization of dissolved hydrophobic and hydrophilic organic substances of a reservoir water. JAWWA, 1994, 86(12): 73-81. 2.
    149.张志红,郑力行,屈卫东.淀山湖微囊藻毒素-LR和类毒素-A的分布状况[J].中国环境科学,2003,23(4):403-406.
    150.连民,陈传炜,俞顺章。淀山湖夏季微囊藻毒素分布状况及其影响因素[J].中国环境科学,2000,20(4):323-327.
    151.张志红,赵金明,蒋颂辉等.淀山湖夏秋季微囊藻毒素-R和类毒素-A分布状况及其影响因素.卫生研究,2003,32(4):316-319.
    152.吴华.固相萃取技术及其在环境分析中的应用.现代仪器,2005,1:28-29.
    153. Sara Rodriguez-Mozaz, Maria J. Lopez de Alda, Damia Barcelo. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. Journal of Chromatogaphy A, 2004, 1045(1): 85~92.
    154.乐林生、鲍士荣、陈国光等.黄浦江上游原水水质特征与处理对策.城镇安全饮用水保障技术研讨会,2004.8.
    155.陈霄.原水蓄水池化学杀藻技术研究.西安建筑科技大学硕士学位论文,2004.7..
    156.董秉直,曹达文,范瑾初.强化混凝中不同分子质量有机物的变化特点[J].工业水处理,2003,23(9):41-43.
    157.陈忠林,马军,李圭白等.受硝基苯污染松花江原水的应急处理工艺研究。中国给水排水,2006,22(13):1-4.
    158. Yoshihiko M., Yoshitaka F., Takanobu I., et al. Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption. Water Research, 2003, 37(18): 4413-4424.
    159. Cook D., Newcombe G., Sztajnbok R The application of powdered activated carbon for MIB abd geosmin removal: prrdicting PAC doses in four waters. Water Research, 2001, 35(8): 1325-1333.
    160. Graham M R., Summers R S., Simpson M R., et al. Modeling equilibrium adsorption of 2-Methylisoborneol and geosmin in natural waters. Water Research, 2000, 34(8): 2291-2300.
    161. Matsui Y., Knaooe D., Takagi R. Pesticide adsorption by gradular activated carbon adsorbers. 1. Effect of natural organic matter preloading on removal rates and mogel simplication. Environmental Science Technology, 2002, 36(15): 3426-3431.
    162. Kanappe D., Snoeyink V., Poche P., et al. Atrazine removal by preloaded GAC. AWWA, 1999, 91 (10)97-109.
    163. Cook D, Newcombe G, Sztajnbok R The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw water[J]. Water Research, 2001, 35(5): 1325~1333.
    164. Hesse S, Kleiser G, Frimmel F. Characterisation of refiactory organic substances (ROS) in water treatment[J]. Water Science Technology, 1999, 40(9): 1~7.
    165. Gillogly T, Snoeylink V, Holtthouse A. Effect of chlorine on PAC's ability to adsorb MIB[J]. Journal of American Water Workers Association, 1998, 90(2): 107~114.
    166. Jackson D E, Larson R A, Snoeyink V L. Reaction of chlorine and chlorine dioxide with resorcinol in aqueous solution and adsorbed on gradular activated carbon[J]. Water Research, 1990, 24(4): 427~435.
    167. Glaze W H. Evaluating oxidants for the removal of model taste and odor COlnpounds from a municipal water supply[J]. Journal of American Water Workers Association, 1990, 82(5): 79~86.
    168.张晓健.松花江和北江水污染事件中的城市供水应急处理技术[J].给水排水,2006,32(6):6-12.
    169.刘成,高乃云.藻类和微囊藻毒素污染的应急处理方法研究.中国给水排水,2006,22 (21).
    170.李伟光,李大鹏,张金松.用粉末活性炭去除饮用水中嗅味.中国给水排水,2002,18(4):47-49.
    171.刘海龙,王东升,王敏等.强化混凝对水力条件的要求.中国给水排水,2006,22(5):1-4.
    172.晏明全,王东升,曲久辉等.典型北方高碱度微污染水体强化混凝的示范研究.环境科学学报,2006,26(6):887-892.
    173.刘海龙,夏忠欢,王东升等.典型南方强化混凝有机物分级处理研究.环境科学,2006,27(5):909-912.
    174.刘成,黄廷林,赵建伟.混凝、粉末活性炭吸附去除不同分子量有机物的研究.净水技术,2006,25(1):31-33.
    175. Chow C W K., Drikas M., House J., et al. The impact of conventional water treatment pricesses on cells of the cyanobacterium Microcystis aeruginosa. Water Research, 1999, 33(15): 3253-3256..
    176. Hoeger S J., Shaw G., Hitafeld B C., et al. Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon, 2004, 43(4): 639-649.
    177. Chowdhury Z K, Papadimas S P, Olivieri E B. AWWA WQTC conf, New Orieans, LA, 1995, November 12-16.
    178. Novak J M, Mills G L, Bertsch P M. Estimating the percent aromatic carbon in soil and aquatic humic substances using ultraviolet absorbance spectroscopy. Enviton Qual, 1992, 21(1): 144-147.
    179.黄量,于德泉.紫外光谱在有机化学中的应用.北京:科学出版社,1988.10.
    180.张声,谢曙光,张晓建等.利用强化混凝法去除水源水中天然有机物的研究进展.环境污染治理技术与设备,2003,4(8):19-22.
    181. Hart J., Farwell J K., Croll B. The fate of both intra-and extracellular toxins during drinking water treatment. Water Supply, 1998, 16(5): 611-617.
    182. Anderson D M. Turning back the harmful red tide. Nature, 1997, 388: 513-514.
    183. Hah M Y, Kim W. A theoretical consideration of algae removal with clays. Microchem, 2001, 68(2-3): 156-161.
    184.苑宝玲,曲久辉.高铁酸盐氧化絮凝去除藻类的机制.中国环境科学,2002,22(5):397-399.
    185.武道吉,马军,谭凤训等.微砂强化混凝工艺处理微污染水库水研究.中国给水排水,2006,21(11):47-49.
    186.彭海清,谭章荣,高乃云,孟长再.给水处理中藻类的去除.中国给水排水,2002:18(2):29~31
    187.罗晓鸥,周荣,王占生.藻类及其分泌物对混凝过程的影响研究.环境科学学报,1998,18(3):318-324.
    188.刘成,高乃云,蔡云龙.强化混凝去除黄浦江原水中有机物研究.中国给水排水,2006,22(1):84-87
    189. Detlefr U K., Yoshihiko M., Vernon L S. Predicting the capacity of powdered activated carbon for trace organic compounds in natural waters. Environ. Sci. Technol. 1998, 32(11): 1694-1698.
    190. Graham M R, Summers R S, Simpson M R, et al. Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters. Water Research, 2000, 34(8): 2291-2300.
    191. Cook D, Newcombe G, Sztajnbok P. The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw water[J]. Water Research, 2001, 35(5): 1325~1333.
    192.曹春秋.强化混凝法去除饮用水中天然有机物质评介.给水排水,1998,24(6):65-70.
    193. Korshin G, Benjamin M, Li C W. Use of differential spectroscopy to evaluate the structure and reactivity of humics. Water Sci Technol, 1999, 40(9): 9-16.
    194. Li C W, Korshin G, Benjamin M. Monitoring DBP formation with differential UV spectroscopy. AWWA, 1998, 90(8): 88-100.
    195.许保玖.给水处理理论.中国建筑工业出版社,北京,2000.10.
    196. Korshin G V., Li C W., Benjamn M M. Monitoring the properties of natural organic matter through UV spectroscopy: a consisitent theory. Water Research, 31(7): 1785-1792.
    197. Gozmen B., Oturan M A., Oturan N. Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton's Reagent. Environ. Sci. Technol., 2003, 37(16): 3716-3723.
    198. Gallard H., Von Gunten U. Chlorination of phenols: kinetics and formation of chloroform. Environ. Sci. Technol., 2002, 36(5): 884-890.
    199. Hureiki L., Croue J P., Legube B. Chlorination studies of free and combined amino acids. Water Research, 1994, 28(12): 2521-2544.
    200. Reckhow D A., Singer P C., Malcohn R I. Chlorination of humic materials: byproduct formation and chemical interpretations. Environntmental Science Technology, 1990, 24(11): 1655-1664.
    201. Taha F., Marhaba D V. The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. J Hazardous Materials, 2000, 70(3): 133-147.
    202.周勤,肖锦.搅拌条件对强化混凝去除给水微细颗粒的影响研究。环境科学与技术,2004,27(3):18—20。
    203.周勤,肖锦。强化混凝去除微污染原水胶体颗粒的研究,环境化学,2001,20(4):374—377.
    204. lachi K., Rapala J. Freshwater cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water. Water Research. 1997, 31 (5): 1005-1012.
    205.张维昊.滇池微囊藻毒素的环境化学行为研究.中国科学院水生生物研究所博士毕业论文,2001.7.
    206. Robertson P K J., Lawton L A., Munch B., et al. Destruction of cyanobacterial toxins by semi-conductor photocatalysis. Chem. Commun.1997, 4 (2): 393-394.
    207. Feitz A J., Waite T D., Jones G J., et al. Photocatalytic degradation of microcystin-LR: Conceptual model and scale studies. Phy. Chem., 1999, 213(1): 75-86.
    208.赵红花.负载型TiO2光催化技术在水处理中的应用.甘肃联合大学学报(自然科学版),2006,20(3):61~63.
    209.弓晓峰,简敏菲,刘春英等.玻璃纤维布负载TiO2膜光催化氧化垃圾渗滤液.重庆环境科学,2003,25(11):56-57.
    210. Noorjahan M., Kurnari V D., Subrahmanyam M., et al. Anovel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. J Applied Catalysis B: Environmental, 2004, 47(1): 209-213
    211. Welker M., Steinberg C. Indirect photolysis of cyanotoxins: one possible mechanism for their low persistence.. Water Research., 1999, 33(5): 1159-1164.
    212. Welker M., Steinberg C. Rate of humic substance photosensitized degradation of microcystin-LR in natural waters. Environ. Sci. Technol., 2000, 34(8): 3415-3419.
    213. Zepp R G., Schlozhauer P E, Sink R M. Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances. Environ. Sci. Technol., 1985, 19(1): 74-81.
    214. Copper W J., Zika R G., Fisher A M. Sunlight-induced photochemistry ofhumic substances in natural waters: major reactive species. Adv. Chem. Ser., 1989, 219(3): 333-363.
    215.苑宝玲,王宏杰.水处理新技术原理与应用.化学工业出版社,2006.4.1.
    216.詹雪艳,王莉娟.TiO2光催化氧化去除有机污染物的研究进展.化学研究与应用,2002,14(4):387-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700