用户名: 密码: 验证码:
切削GH4169的相关机理及高效切削技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基高温合金GH4169因具有优良的热强性能、热稳定性能和热疲劳性能,常用于制造航空发动机与燃气轮机的轮盘、叶片等耐热零部件。随着国内电力行业的蓬勃发展,大型电站的相继建立,汽轮机需求不断增加。但由于GH4169切削加工性很差,主要表现为切屑的形成、切削力、切削温度、刀具磨损与破损等都呈现特有的规律,切削加工效率低,严重制约其广泛应用,GH4169的高效切削是制造业急需解决的问题。因此,研究切削GH4169的相关机理及高效切削技术具有重要的理论意义和广阔的应用价值。
     通过提取切屑根深入研究锯齿形切屑形成的物理过程,结合积屑瘤对切屑形成的影响,揭示GH4169的切削变形机理,提出锯齿屑形成的过程包括初级、过渡和最后三个阶段,在切削程中,剪切角不断减小、剪切面转变为“剪切体”,断裂和绝热剪切共同作用而产生锯齿形切屑。并基于锯齿屑的几何特征建立剪切带变形的计算模型;最后研究了切削参数对锯齿形切屑几何特征的影响规律。
     从涂层材料、切削力、切削温度、刀具几何角度及刀具使用寿命等方面,通过切削试验和仿真分析优选适用高效切削GH4169的刀片涂层材料和合理刀具前角。通过对刀具磨损形态及其特征的观测,分析刀具材料从刀具基体脱落的物理过程,揭示切削GH4169刀具磨损机理。PVD涂层硬质合金刀具在低速时易形成积屑瘤,造成崩刃;当切削速度提高时,刀具基体形成片层状磨损碎片的脱落,是造成刀具磨损的主要形式;刀-屑/工件间的扩散与氧化,增加了磨损碎片形成的密度,加速了刀具磨损。最后依据切削原理和摩擦磨损学给出了刀具磨损的物理过程模型。
     在刀具磨损机理研究基础上,考虑粘结、扩散和氧化磨损均是滑动磨损的特征,应用滑动磨损的剥层理论,以分析靠近表面的金属材料的塑性变形和断裂行为为基础,并结合刀具材料在切削过程中的力学性能变化,建立并验证硬质合金刀具切削GH4169的后刀面磨损模型。
     针对每一对刀具-工件组合在切削加工过程中存在最佳的切削温度,使得刀具-工件具有最大的强度比,根据所建刀具磨损模型,对最佳切削温度进行求解,以保证刀具达到磨钝标准时,切削长度最长;并通过切削试验验证所求最佳切削温度的正确性;基于最小二乘法建立使切削过程在最佳切削温度下进行的切削参数经验模型,提出一种恒温切削的方法,为切削用量的合理选择提供一种有效而快速的手段;最后采用表面粗糙度评价恒温切削技术的可行性,结果表明,恒温切削技术有助于合理选择切削用量,减小表面粗糙度值,提高切削加工效率,符合高效切削技术的发展趋势。
Nickel-base superalloy GH4169is commonly used to produce aerospace engines andgas turbine wheel, blades and other heat-resistant parts, due to its high strength, highstability and anti-fatigue properties at high temperature. With the rapid development ofthe domestic power industry, large-scale power stations have been established, and thedemand of gas turbine is increasing. However, the poor machinability of GH4169,which is represented by the special law in chip formation, cutting force, cuttingtemperature and tool wear in machining GH4169, leads to low cutting efficiency andrestricting its wide application severely. The high-efficiency cutting technology ofNickel-base superalloy GH4169is one of the urgent problems in today's manufacturing.Therefore, the research on high-efficiency cutting technology of GH4169and its relatedmechanism have theoretical significance and wide application value.
     The chip formation process was studied by getting chip root. With the researches ofthe formation of built-up-edge (BUE) and its effects on chip formation, the cuttingdeformation mechanism was studied. The opinion that serrated chip formation processincludes three stages (primary, transition, and the last stage) was proposed. In thecutting process, the shear plane changed into ‘shear body’ with the decreasing of theshear angle. The serrated chip generated under the combined action of fracture andadiabatic shear. The model involving deformation of shear band based on the geometrycharacteristic of serrated chip was established. The effects of cutting parameters on thegeometry characteristic of serrated chip were also studied at last.
     The TiAlN coating and favorable tool geometry were chosen through cuttingexperiments and FEM in terms of tool material, cutting force, cutting temperature, toolgeometry and tool life. The physic process of tool material peeling off from toolsubstrate was studied though observing tool wear morphology and its features analysis,and the tool wear mechanism in machining GH4169was revealed. In machiningGH4169using PVD-film carbide tool, the BUE easily generated at low cutting speedand its falling off causes tool chipping. When cutting speed increased, tool substratematerial peeled off in the form of lamellar wear debris. This is the main form leading totool wear. The diffusion and oxidation between tool and chip/workpiece made thedensity of wear debris increase and then accelerating tool wear. The model representingtool wear process was established in the light of cutting theory and friction wear theory.
     Based on the research of tool wear mechanism, the adhesion, diffusion and oxidationwear is considered as the characteristics of slide wear. The delamination theory ofsliding wear was used to analyze the plastic deformation and fracture behavior of metallic materials which is closed to the tool surface. Tool flank wear model wasestablished considering the mechanical property changes of tool material, and the wearmodel was verified through experiments.
     For each pair of the tool-workpiece, there exists an optimal cutting temperature tomake the strength ratio of tool-workpiece material maximum in cutting process. Theoptimal cutting temperature was calculated in the light of the established wear model, inorder to make the cutting length longest when tool fail. Excellent experimentalagreement was achieved in optimal temperature calculated by the established model.The empirical model using cutting parameters at the optimal cutting temperature wasestablished using the least squares method. The thermostatic cutting method wasproposed to provide an effective and rapid method for the reasonable choice cuttingparameters. Finally, the surface roughness was used to evaluate the feasibility ofthermostatic cutting technology. The results show that thermostatic cutting technologyhelps to select the cutting parameters, reduce the surface roughness value and improvecutting efficiency, in accordance with the development trends of high-efficiency cuttingtechnology.
引文
[1]胡创国,张定华,汪文虎.难加工材料切削机理研究的新进展[J].力学进展,2004,34(3):373-378.
    [2] D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan. Study on the machinabilitycharacteristics of superalloy Inconel718during high speed turning[J]. Materialsand Design,2009,30:1718-1725.
    [3] M. Rahman, W.K.H. Seah and T.T. Teo. The Machinability of Inconel718[J].Journal of Materials Processing Teclmology,1997,63:199-204.
    [4] G.Poulachon, A.Moisan.Contribution to the study of the cutting Mechanismsduring high speed machjning of Hardened steel[J]. Annals of the CIRP,1998,47(l):73-76.
    [5] J.D.Kim, Y.H.Kang. High speed machining of Aluminium using DiamondEndmills[J]. International Journal of Machine Tools and Manufacture,1997,37:1155-1165.
    [6] Shuting Lei, Wenjie Liu. High-speed machining of titanium alloys using the drivenrotary tool[J]. International Journal of Machine Tools and Manufacture,2002,7:653-661.
    [7] R.M.Arunachalam,M.A.Mannan. Surface integrity when machining age hardenedInconel718with coated carbide cutting tools[J]. International Journal of MachineTools and Manufacture,2004,44:1481-1491
    [8]高桂天.机械工程概论[M].北京:国防工业出版社,2006:208-209.
    [9]熊良山,严晓光,张福润编著.机械制造技术基础[M].武汉:华中科技大学出版社,2006:124-126.
    [10]徐芗明.镍基高温合金切削锯齿形切屑研究[J].机械制造,2008,526(46):38-40.
    [11]杨奇彪,刘战强,曹成铭,杜劲.高温合金高速切削锯齿形切屑应变与应变率研究[J].农业机械学报,2011,42(2):225-228.
    [12]郭晓东,李军利,邹斌,陈明.剪切温度对车削加工GH4169镍基高温合金的影响[J].上海交通大学学报,2009,43:79-83.
    [13] Komnaduri R,Schroeder T. On hear instability in machining niekcl-iron basesuperalloy[J]. J.of.Eng. For Ind,1986,108:93-100.
    [14] R.F. Recht, Catastrophic thermoplastic shear[J]. Journal of Applied Mechanics-ransactions of the ASME,1964,86:189-193.
    [15] Recht R F.A Dynamic analysis of high speed machining[J]. Journal of Engineeringfor Industry,1985,107:309-315.
    [16] Komnaduri R, Borwn R H. On the mechanism of chip segmentation inmachining[J]. Journal of Engineering for Industry,1981,103:33-51.
    [17] Komnaduri R,Schroeder T, Hazra J,et al. On the catastrophic shear instability inhigh-speed machining of an AISI4340[J]. Journal of Engineering for Industry,1982,104:121-131.
    [18] Dvaies M A,Chou.Y, Evsna.C.J. On chip morphology,tool wear and cuttingmechanics in finish hard turning[J]. Annals of the CIRP,1996,45(l):77-82.
    [19] Dvaies. M A,Buns.T.J,Evnas.C.J. on the dynamics of chip of formation inmachining hard metals[J]. Annals of the CIRP,1997,46(l):25-30.
    [20]王敏杰.金属动态力学性能与热塑剪切失稳的正交切削实验方法[D].大连:大连理工大学博士学位论文,1989.
    [21]段春争.正交切削高强度钢绝热剪切行为的微观机理研究[D].大连:大连理工大学博士学位论文,2004.
    [22] Mnayindo BM.Modeling of the catasrtophic shear type of chip when machiningstainless steel[J].Proc.Instn.Mech.Engrs,1986,200:349-355.
    [23] Xie J Q,Byaoumi A E,Zbib H.M. A Sutdy on shear banding in chip formation oforthogonal machining[J]. International Journal of Machine Tools and Manufacture,1996,7:835-847.
    [24] K.Nakayama, M.Arai, T. Kanda.Machining Characteristics of Hard Materials[J].Annals of the CIRP,1988,37(l):89-92.
    [25] M.C. Shaw, A.Vyas.The Mechanism of Chip Formation with Hard TurningSteel[J]. Annals of the ClRP,1998,47(1):77-83.
    [26] M.A. Elbestawi, A. K. Srivastava, T. I. El-Wardany.A Model for Chip FormationDuring Machining of Hardened Steel[J]. Annals of the CIRP,1996,8:71-76.
    [27] Gerard Poulachon, Alphonse L. MoisanHard Turning: Chip FormationMechanisms and Metallurgical Aspects[J]. Journal of Manufacturing Science andEngineering,2000,122(8):406-412.
    [28] T. Obikawa, E. Usui, Computational machining of titanium alloy-finite elementmodeling and a few results[J]. Journal of Manufacturing Science andEngineering-Transactions of the ASME,1996,118:208-215.
    [29] Hua Jiang, Shivpuri Rajiv, Prediction of chip morphology and segmentation duringthe machining of titanium alloys[J]. Journal of Materials Processing Technology,2004,150:124-133.
    [30]徐进,郭志敏.基于滑-停-滑机理的锯齿形切屑高速成形分析[J].工具技术,2007,41:15-18.
    [31] A. Altin, M. Nalbant, A. Taskesen.The effects of cutting speed on tool wear andtool life when machining Inconel718with ceramic tools[J]. Materials and Design,2007,28:2518-2522.
    [32] S. Lo Casto, E. Lo Valvo, E. Lucchini, S. Maschio, M. Piacentini, V.F. Ruisi.Ceramic materials wear mechanisms when cutting nickel-based alloys[J]. Wear,1999,225-229:227-233.
    [33] D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan.Study on the machinabilitycharacteristics of superalloy Inconel718during high speed turning[J]. Materialsand Design,2009,30:1718-1725.
    [34] T. Kitagawa, A. Kubo, K. Maekawa.Temperature and wear of cutting tools inhigh-speed machining of Incone1718and Ti-6A1-6V-2Sn[J]. Wear,1997,202:142-148.
    [35] Y.S. Liao, R.H. Shiue.Carbide tool wear mechanism in turning of Inconel718superalloy[J]. Wear,1996.193:16-24.
    [36] Y.C. Chen, Y.S. Liao. Study on wear mechanisms in drilling of Inconel718superalloy[J]. Journal of Materials Processing Technology,2003,140:269-273.
    [37] A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, D. Larrouquere. Cuttingforces and wear in dry machining of Inconel718with coated carbide tools[J]. Wear,2007,262:931-942.
    [38] J.P. Costes, Y. Guillet, G. Poulachon, M. Dessoly. Tool-life and wear mechanismsof CBN tools in machining[J]. International Journal of Machine Tools&Manufacture,2007,47:1081-1087.
    [39] Abhay Bhatt, HelmiAttia, R.Vargas, V.Thomson. Wear mechanisms of WC coatedand uncoated tools in finish turning of Inconel718[J]. Tribology International,2010,43:1113-1121.
    [40] Deng Jianxin, Ai Xing. Wear behavior and mechanisms of alumina-based ceramictools in machining of ferrous and non-ferrous alloys[J]. Tribology International,1997,30:807-813.
    [41] D. Jianxin, A. Xing, Friction and wear behavior of Al2O3/TiB2ceramic compositeagainst cemented carbide in various atmospheres at elevated temperature[J]. Wear1996,195:128-132.
    [42] D. Jianxin, A. Xing, Effect of TiB2particle and SiC whisker additions on thefriction and wear behaviors of Al2O3ceramic[J]. Journal of Advanced Materials1996,27(4):32-36.
    [43] Deng Jianxin, Liu Lili, Liu Jianhua, Zhao Jinlong, Yang Xuefeng.Failuremechanisms of TiB2particle and SiC whisker reinforced Al2O3ceramic cuttingtools when machining nickel-based alloys[J]. International Journal of MachineTools&Manufacture,2005,45:1393-1401.
    [44]宋新玉,赵军加工Inconel718时硬质合金涂层刀具的磨损机理[J].工具技术,2008.42(7):10-12.
    [45]宋新玉,赵军,姜俊玲.加工Inconel718时陶瓷刀具的磨损机理[J].中国机械工程,2009,20(7):763-767.
    [46] Zhao Jun, Deng Jianxin, Zhang Jianhua, Ai Xing. Failure mechanisms of awhisker-reinforced ceramic tool when machining nickel-based alloys[J]. Wear,1997,208:220-225.
    [47]肖茂华,何宁,李亮,陆爱华.镍基合金高速切削中锯齿状切屑毛边和刀具磨损研究[J].工具技术,2009,43(6):32-36.
    [48]肖茂华,何宁,李亮,刘海滨.陶瓷刀具高速切削镍基高温合金沟槽磨损试验研究[J].中国机械工程,2008,19(10):1188-1192.
    [49] XIAO Maohua, HE Ning, LI Liang.Modeling Notch Wear of Ceramic Tool inHigh Speed Machining of Nickel-based Superalloy[J]. Journal of WuhanUniversity of Technology-Mater,2010,25(1):78-83.
    [50] XIAO Maohua, HE Ning, LI Liang.Wear Mechanisms of Ceramic Inserts inMachining Nickel2Based Superalloy[J]. Journal of Southwest Jiaotong University(English Edition),2010,18(1):59-64.
    [51] E. Usui, T. Shirakhashi, T. Kitagawa, Part3: Analytical prediction of threedimensional cutting processes, Transactions of ASME[J]. Journal of Engineeringfor Industry,1978,(1):33-38.
    [52] T. Kitagawa, K. Maekawa, T. Shirakhashi, E. Usui, Analytical prediction of flankwear of carbide tools in turning plain carbon steels[J]. Bulletin of the Japan Societyof Precision Engineering,1988,22(4):263-269.
    [53] T. Kitagawa, K. Maekawa, T. Shirakhashi, E. Usui, Analytical prediction of flankwear of carbide tools in turning plain carbon steels[J]. Bulletin of the Japan Societyof Precision Engineering,1989,23(2):126-134.
    [54] H. Takeyama, R. Murata, Basic investigation of tool wear[J]. Journal ofEngineering for Industry,1963,85(1):33-37.
    [55] J. Lorentzon, N. Jarvstrat.Modelling tool wear in cemented-carbide machiningalloy718[J]. International Journal of Machine Tools&Manufacture,2008,48:1072-1080.
    [56] T.H.C. Childs, K. Maekawa, T. Obikawa, Y. Yamane, and Metal Cutting: Theoryand Applications, Arnold, London,2000.
    [57] C. Schmidt, P. Frank, H. Weule, J. Schmidt, Y.C. Yen, T. Altan, Toolwearprediction and verification in orthogonal cutting, in: Proceedingof Sixth CIRPInternational Workshop on Modeling of MachiningOperations, Hamilton, Canada,May20,2003.
    [58] X. Luo, K. Cheng, R. Holt, X. Liu.Modeling flank wear of carbide tool insert inmetal cutting[J].Wear,2005,259:1235-1240.
    [59] A.Jawaid, S.Koksal, S.Sharif.Cutting performance and wear characteristics of PVDcoated and uncoated carbide tools in face milling Inconel718aerospace alloy[J].Journal of materials processing technology,2001,116:2-9.
    [60] Muammer Nalbant, Abdullah Altin, Hasan Gokkaya. The effect of coating materialand geometry of cutting tool and cutting speed on machinability properties ofInconel718super alloys[J]. Materials and Design,2007,28:1719-724.
    [61]黄立新,许耀东.高温材料镍基合金的切削试验研究[J].新技术新工艺,2008,8:88-90.
    [62] P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster.Performance of PVDTiN, TiCN, and TiAlN coated cemented carbide tools in turning[J]. InternationalJournal of Refractory Metals&Hard Materials,1999,17:163-170.
    [63] A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, D. Larrouquere. Cuttingforces and wear in dry machining of Inconel718with coated carbide tools[J].Wear,2007,262:931-942.
    [64]黄传真,艾兴.切削Inconel718时新型陶瓷刀具JX-2-Ⅰ的切削性能研究[J].硬质合金,1995,(12)4:228-232.
    [65] N.Narutaki,Y.Yamane.High speed machining of Inconel718with ceramic tools[J],Annals of CIRP,1993,42(1):103-106.
    [66] A.Gatto, L. Iuliano. Advanced coated ceramic tools for machining superalloys[J].International Journal of Machine Tools and Manufacture,1997,37(5):591-605.
    [67] T.Kitagawa, A.Kubo.Temperature and wear of cutting tools in high speedmachining of Inconel718and Ti-6Al-6V-2Sn[J]. Wear,1997,202:142-148.
    [68] R.M.Arunachalam,M.A.Mannan.Residual stress and surface roughness whenfacing age hardened Inconel718with CBN and ceramic cutting tools[J].International Journal of Machine Tools&Manufacture,2004,44:879–887.
    [69] Li.L, Ni.He, M.wang, Z.G.Wang. High speed cutting Inconel718during withcoated carbide and ceramic[J]. Journal of materials processing technology,2002,129:127-130.
    [70]赵军,艾兴,周建强.加工镍基合金时晶须增韧陶瓷刀具的寿命及损坏机理研究[C].中国高校金属切削研究会第五届年会论文集,武汉:华中理工大学出版社,1995.
    [71] D.K. Aspinwall, R.C. Dewes, E.-G. Ng, C. Sage, S.L. Soo. The influence of cutterorientation and workpiece angle on machinability when high-speed milling Inconel718under finishing conditions[J]. International Journal of Machine Tools&Manufacture,2007,47:1839-1846.
    [72] R.S.Pawade, Suhas S.Joshi, P.K.Brahmankar. Effect of machining parameters andcutting edge geometry on surface integrity of high-speed turned Inconel718[J].International Journal of Machine Tools&Manufacture,2008,48:15-28.
    [73] R.S. Pawade, Suhas S.Joshi, P.K.Brahmankar, M. Rahman. An investigation ofcutting forces and surface damage in high-speed turning of Inconel718[J]. Journalof Materials Processing Technology,2007,192-193:139-146.
    [74] J.P. Costes, Y. Guillet, G. Poulachon, M. Dessoly. Tool-life and wear mechanismsof CBN tools in machining of Inconel718[J]. International Journal of MachineTools&Manufacture,2007,47:1081-1087.
    [75]周俊.镍基高温合金GH4169高速切削相关技术与机理的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012.
    [76] Mark Anderson, Rahul Patwa, Yung C. Shin. Laser-assisted machining of Inconel718with an economic analysis[J]. International Journal of Machine Tools&Manufacture,2006,46:1879-1891.
    [77] H. Attia, S. Tavakoli, R. Vargas, V. Thomson. Laser-assisted high-speed finishturning of superalloy Inconel718[J]. CIRP Annals-Manufacturing Technology,2010,59:83-88.
    [78] Z.Y. Wang, K.P. Rajurkar, J. Fan, S. Lei, Y.C. Shin, G. Petrescu. Hybridmachining of Inconel718[J]. International Journal of Machine Tools&Manufacture,2003,43:1391-1396
    [79] C.Y. Hsua, Y.Y. Linb, W.S. Lee, S.P. Lob. Machining characteristics of Inconel718using ultrasonic and high temperature-aided cutting[J]. Journal of materialsprocessing technology,2008,198:359-365.
    [80] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt. Finite element analysis ofultrasonically assisted turning of Inconel718[J]. Journal of Materials ProcessingTechnology,2004,153-154:233-239.
    [81]石虹.难加工材料的等离子加热切削[J].现代兵器,1981,12:30-32.
    [82]赵广兴.难加工材料的等离子加热切削加工[J].机械工人,1988,11:48-51.
    [83]陈定一.用加热切削改善难加工材料加工性的分析[J].安徽工学院学报,1983,3-4(8-9):124-135.
    [84] Toshiyuki Obikawa, Yasuhiro Kamata, Yuki Asano, Kousuke Nakayama, AndrewW. Otieno. Micro-liter lubrication machining of Inconel718[J]. InternationalJournal of Machine Tools&Manufacture,2008,48:1605-1612.
    [85] Y. Kamata, T. Obikawa. High speed MQL finish-turning of Inconel718withdifferent coated tools[J]. Journal of Materials Processing Technology,2007,192-193:281-286.
    [86] Toshiyuki.Obikawa, Yuki Asano, Yasuhiro Kamata. Computer fluid dynamicsanalysis for efficient spraying of oil mistin finish-turning of Inconel718[J].International Journal of Machine Tools&Manufacture,2009,49:971-978.
    [87] T.Thepsonthi, M.Hamdi, K.Mitsui.Investigation into minimal-cutting-fluidapplication in high-speed milling of hardened steel using carbidemills[J].International Journal of Machine Tools&Manufacture,2009,49:156-162.
    [88] Vishal S.Sharma, ManuDogra, N.M.Suri. Cooling techniques for improvedproductivity in turning[J]. International Journal of Machine Tools&Manufacture,2009,49:435-453.
    [89] E.O. Ezugwua, J. Bonney a, D.A. Fadare b, W.F. Sales Machining of nickel-baseInconel718alloy with ceramic tools under finishing conditions with variouscoolant supply pressures[J]. Journal of Materials Processing Technology,2005,162-163:609-614.
    [90] E.O. Ezugwu, J. Bonney. Effect of high-pressure coolant supply when machiningnickel-base, Inconel718, alloy with coated carbide tools[J]. Journal of MaterialsProcessing Technology,2004,153-154:1045-1050.
    [91]韩荣第,王辉,刘俊岩,王扬.难加工材料绿色切削刀具磨损试验研究[J].制造技术与机床,2008,4:78-81.
    [92]韩荣第,王辉,刘俊岩,王扬.绿色切削Ni基高温合金GH4169刀具磨损研究[J].润滑与密封,2008,8:12-15.
    [93]韩荣第,胡广义.用水蒸汽作冷却润滑介质的切削试验研究[J].现代制造工程,2003,25(2):12-13.
    [94] Han R.D., Liu J.Y., Zhang Y., Zhang L. Experimental study on green cutting withwater vapor as coolant and lubricant[J]. Key Engineering Materials,2006,315-316:45-50.
    [95] Y. Su, N. He, L. Li, A. Iqbal, M.H. Xiao, S. Xu, B.G. Qiu. Refrigerated cooling aircutting of difficult-to-cut materials[J]. International Journal of Machine Tools&Manufacture,2007,47:927-933.
    [96]田佳,何宁,李亮,赵威,戚宝运,卞荣.微量润滑切削加工性能影响因素的研究[J].工具技术,2009,43(5):3-8.
    [97]何宁,李亮,赵威.苏宇.难加工材料高性能加工的冷却润滑技术[J].航空制造技术,2007,7:46-48.
    [98] Su Yu, He Ning, Li Liang, Xu Sheng, XiaoMaohua. Influence of cold nitrogen gasand oilmist in machining nickel-base K424alloy with ceramic cutting tools[J].Transactions of Nanjing University of Aeronautics&Astronautics,2007,24(2):118-124.
    [99] Y. Su, N. He, L. Li, A. Iqbal, M.H. Xiao, S. Xu, B.G. Qiu. Refrigerated cooling aircutting of difficult-to-cut materials.International Journal of Machine Tools&Manufacture2007,47:927-933.
    [100]王辉.新绿色切削冷却润滑剂作用机理及其应用技术基础研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012.
    [101] N. Fang, Q. Wu. A comparative study of the cutting forces in high speedmachining of Ti–6Al–4V and Inconel718with a round cutting edge tool[J].Journal of Materials Processing Technology,2009,209:4385-4389.
    [102]梁1H161H16新德,陈1H261H26必清,杨1H361H36治国.机械制造工程学[M].成都:四川大学出版社,2005:20-22.
    [103] J.弗里埃德尔.位错[M].北京:科学技术出版社,1984.
    [104]范依航,郑敏利,杨树财,张为,石文勇.高效切削钛合金时刀具磨损试验分析[J].沈阳工业大学学报,2011,33(2):166-171.
    [105]周惠久,黄明志.金属材料强度学[M].科学出版社,1989.3.
    [106]《中国航空材料手册》编辑委员会.中国航空材料手册.第二卷.变形高温合金、铸造高温合金[M].北京:中国标准出版社,2001:323-328.
    [107]方亮,石金东.高温合金GH4169切削工艺[J].航天工艺,2000(6):43-45.
    [108]黄传真,艾兴.加工镍基合金时切削力和切削温度的特点[J].工具技术,1995,95(25):35-37.
    [109]高彩桥,刘家浚.材料的粘着磨损与疲劳磨损[M].北京:机械工业出版社.1999:47-50.
    [110]石德珂.材料科学基础[M].北京:机械工业出版社,2003:277-278.
    [111]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992:199-201.
    [112]周泽华.金属切削原理[M].上海:上海科学技术出版社,1984:119-121.
    [113] J.T. Burwell, C.D. Strang, on the empirical law of adhesive wear[J]. Journal ofApplied Physics,1952,23(1):18-28.
    [114] W. Acchar, U. U. Gomes, W. A. Kaysser, J. Goring.Strength Degradation of aTungsten Carbide-Cobalt Composite at Elevated Temperatures[J]. MaterialsCharacterization,1999,43:27-32.
    [115] A.д.马卡洛夫.杨锦华等译.切削过程最优化[M].北京:国防工业出版社,1988.
    [116]曹同坤,邓建新.固体润滑剂在切削加工润滑中的应用[J].工具技术,2004,38:110-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700