用户名: 密码: 验证码:
基于(火用)方法的暖通空调系统热力学分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在资源日趋紧张,环境保护压力不断增大的当今社会,节能减排已经成为很多国家、阶层和团体之间的共识。由于暖通空调系统在建筑能耗中占有很大的比例,因此对暖通空调系统的能耗问题展开研究,发展和应用新的节能技术就成为当今节能减排中的一项具体的重要工作。对暖通空调系统的研究过程中,通常采用能量分析方法,它虽然具有直观、简便的特点,却不能描述系统中存在的各种不可逆损失,因而对于系统的不合理用能状况难以进行量化、评价,为此在暖通空调系统中利用(火用)分析方法进行研究成为近年来的一个重要发展方向。然而,相对于暖通空调系统所涵盖的广大范围而言,当前的(火用)分析研究在某些方面上还很少涉及,如自然通风系统、溶液除湿系统以及一些新型吸收式制冷/制热系统,另外,目前的(火用)分析往往针对具体的实际系统,研究结果受具体因素影响而缺乏普遍性。因此,本文基于(火用)分析方法,针对暖通空调系统,着力于在以上两个方面开展研究,具体涉及了自然通风系统、蒸发冷却系统、溶液除湿系统、吸收式制冷/热泵系统以及吸收压缩式制冷/热泵系统的(火用)传递情况、运行工况和(火用)效影响因素,拓展了对暖通空调系统研究的广度,同时通过基于(火用)方法的热力学分析,揭示了各系统运行过程中所表现出的普遍规律和实质,也为实际系统的评价、运行及改进提供了理论指导。论文的主要研究工作和成果有:
     (1)详细介绍了(火用)分析中的一些重要基本概念,能量及(火用)传递过程中的动力学微分方程及其物理意义,进一步介绍了普遍化形式的能量及(火用)传递方程,重点阐述了不同表达方式下能量及(火用)传递过程的区别和联系,为利用(火用)分析方法研究暖通空调系统阐明了理论基础。
     (2)通过建立一维稳态(火用)平衡方程,以一带中庭的高层建筑为对象,分析了自然通风系统中的(火用)传递、驱动机制和(火用)效表现,阐明了自然通风和机械通风在能量分析角度和(火用)分析角度上存在的差异及其原因,分析了内外温差对自然通风系统(火用)效的影响,指出其中存在(火用)优化机会,进一步分析了利用太阳能进行光热转换驱动的自然通风系统和进行光电转换驱动的机械通风系统的(火用)效差异,指出光电转换具有更高(火用)效,为太阳能驱动通风系统的合理利用提供了理论指导。
     (3)通过分析湿空气(火用)和水(火用)的各项构成及其物理意义,提出将水(火用)用蒸发相变过程所涉及的饱和蒸汽(火用)和潜热(火用)来表示,从而将水(火用)计算与热湿处理过程中常见的水的相变过程联系起来,进一步研究了水(火用)、潜热(冷)(火用)以及蒸汽(火用)之间随温度变化的相互关系,划分出3个特征区域并阐明了各区域的(火用)传递特点,分析了直接蒸发冷却系统和简接蒸发冷却系统的(火用)效,指出在直接和间接蒸发冷却系统中都存在(火用)优化机会。通过建立计算模型并利用实验结果进行验证,对直接蒸发式冷却塔的(火用)传递过程以及(火用)效随水空比、冷却塔热效率的变化情况进行了详细分析。
     (4)从(火用)分析角度探讨了空调系统(火用)负荷的构成及其物理意义,通过动态能耗模拟方法研究了各类空调(火用)负荷的变化规律,分析了空调(火用)负荷与空调负荷的差异和原因,比较了风冷空调系统和水冷空调系统中空调(火用)负荷的变化规律。提出对空调系统热、湿处理过程进行单独(火用)评价的概念及方法,以某一次回风空调系统的夏季工况为例,阐明了该独立评价方法的应用过程,这对于在空调系统中促进热、湿独立处理技术的应用具有较大意义。
     (5)对溶液除湿系统的运行工况进行划分,研究其在各工况下的运行特点及其(火用)传递情况。通过建立(火用)平衡方程,研究了除湿温度、环境温度和环境水蒸汽分压力对溶液除湿系统(火用)效的影响规律,通过与冷凝除湿方式比较,指出溶液除湿系统的效率只在某些工况下才具有相对优势。进一步在普通溶液除湿系统基础上,提出双效溶液除湿系统,并对其进行了(火用)分析,阐明了双效系统相对于原系统的优越性,为双效系统的应用提供了初步的理论依据。
     (6)以吸收制冷/热泵系统为研究对象,分析了吸收式制冷系统、第一类吸收式热泵系统、第二类吸收式热泵系统的(火用)平衡、(火用)传递及运行工况,分析了运行参数对各系统(火用)效的影响,从(火用)方法角度揭示了这些系统中所表现出的普遍规律,对于理解、评价及改进实际系统具有指导意义。
     (7)对吸收压缩式制冷/热泵系统进行(火用)分析,研究了它们的(火用)平衡、工况划分及影响因素,所得结论对于认识、研究和评价实际系统具有普遍意义,重点提出了吸收压缩式双效第二类热泵系统、吸收压缩式双温第二类热泵系统和吸收压缩式双温双效第二类热泵系统等新的系统型式并进行(火用)分析,丰富了吸收压缩式系统型式,为其实际应用奠定了理论基础。
Energy saving and emission reduction has become common understanding ofmany countries, classes and groups as the relations between human being andresources and environment are getting tension. It is considered that development andapplication of new energy saving technology in HVAC systems which take up a greatproportion in building energy consumption is very important. Generally, HVACsystems are studied by energy analysis method, which is simple and easy tounderstand but is not an effecitive method to describe different irreversible losses.Thus, the exergy analysis method has attracted more and more attentions in nowadaysand obtained many achievements. However, the past researches on this filed areemphasized in concret systems, the performance of the HVAC systems in the meaningof thermodynamic limit is negnected and have some deficienceies in the application ofexergy analysis. Therefore, this paper conducted thorough research intobuoyance-driven ventilation, evaporative cooling process, air conditioning exergy load,ideal liquid dessicant cycles, ideal absorption refrigeration/heatpump cycles and idealabsorption-compression refrigeration/heat pump cycles in respects of exergy transfer,running conditions and impact factors of exergy efficiency by exergy analysis methodand empasized on the research in the meaning of thermodynamic limit so as tohighlight the university of results and provides a theoretical guidance for assessmentand improvement of real systems. The main research work and its conclusions areintroduced as follows:
     (1) The basic concepts of exergy analysis are introduced, as well as the dynamicdifferential equations in energy and exergy transfer process and their physicalmeanings, it introduced the general energy and exergy transfer equations, mainlydiscussing the differences and connections, to elucidate the theoretical foundation ofexergy analysis method used for HVAC systems.
     (2) A model of buoyancy-driven ventilation in a high building with an atrim isanalyzed in respects of exergy transfer, driving mechanism and exergy performance byexergy balance equations. It expouds the differences in buoyancy-driven ventilationand mechanical ventilation from energy and exergy concepts, analyzes the effect oftemperature difference between the atrim and the environment on exergy efficiency,points out the exergy optimization opportunity. Moreover, the ventilation systems driven by photothermal conversion and photoelectric conversion of solar energy arecompared on exergy efficiency with a result that the photoelectric conversion is moreefficient, providing a theoretical guidance for rational utilazation of solar-drivenventilation systems.
     (3) By analyzing the exergy compositions and physical meanings of moist airand water, it puts forward an expression of water exergy which involves water vaporexergy and latent heat exergy of water for relating the water exergy calculation withthe phase change process in air conditioning systems. Moreover, the relations betweenexergy of water, water vapor and latent heat on different temperature are studied andthree feature regions are outlined with different characteristics of exergy transfer.After analyzing the ideal direct and indirect evaporation cooling systems, it shows thatthere exist exergy optimization opportunities in both systems. The exergy transfer andthe effects of water-to-air ratio and thermal efficiency on exergy efficiency are alsodiscussed in detail by theoretical calculation for the counter-flow cooling tower.
     (4) The compositions and physical meanings of various air conditioning exergyloads have been investigated through exergy analysis, and the variations of differentair conditioning exergy load are studyed by dynamic energy-consuming simulationmethod. The differences and reasons between exergy load and air conditioning loadare analyzed, and the effects of air cooled mode and water cooled mode on airconditioning exergy loads are made. The method to evaluate the air conditioningprocess by exergy analysis based on independent temperature and humidity contry isput forward, and a primary return air system in summer condition is analyzed forexample, showing the application value of this independent evaluation method,promoting the development of temperature and humidity control technology.
     (5) An ideal liquid desiccant dehumidification system has been built based on theideal liquid desiccant cycle, in which the running conditions are divided, and theoperation characteristics and the exergy transfer under various running conditions arestudied which have realistic guiding significance to the operation of practical systems.It discusses the effects of dessicant temperature, the environment temperature and thewater vapor pressure on the exergy efficiency, and indicates that the efficiency ofliquid dessicant system has relative advantage only under certain conditions whencomparing with the condensation dessicant systems. A double-effect liquid dessicantsystem is further proposed, and corresponding exergy analysis is done. It shows thatthe newly presented system is always superiorious over the original system, providingpreliminary theoretical foundation for application of the double-effect system.
     (6) The ideal absorption refrigeration system, the ideal typeⅠ/typeⅡabsorptionheat pump systems based on the ideal liquid cycle are studied by exergy analysis, theexergy transfer, exergy balance and running conditions of these systems discussed, aswell as the effects of operation parameters, the exergy performance of these systemsare discussed from from the view of thermodynamic limit with a guiding significancefor further understanding, evaluating and improving real systems.
     (7) A study focusing the absorption-compression refrigeration/heat pump systemsin respects of exergy balance, running conditions and impact factors is carried out,which is expected to be universally significant for further understanding andevaluating practical systems. The typeⅡ absorption-compression double effect heatpump system, typeⅡ absorption-compression double temperature heat pump systemand typeⅡ absorption-compression double-temperature double effect heat pumpsystem are presented and analyzed from exergy concept, these systems enrich thetypes of the absorption-compression systems and the discusses lay a theritical basis forpractical applications.
引文
[1]中华人民共和国建设部.公共建筑节能设计标准(GB50189-2005).北京:中国建筑工业出版社,2005,1-6
    [2] B. M.布罗章斯基.火用方法及其应用.王加璇.北京:中国电力出版社,1997,209-225
    [3]谷雅秀,吴裕远.火用传递与火用经济分析的研究进展与展望.西安交通大学学报,2005,25(2):21-25
    [4]宫克勤,项新耀,曾玲敏.火用传递研究现状分析.大庆石油学院学报,2002,26(4):75-77
    [5]王松平,陈清林,尹清华等.火用传递和转换规律的探讨.华南理工大学学报,1998,26(9):28-32
    [6]乔春珍,吴照云,项新耀.一维稳态导热过程的火用传递规律及计算.华北电力大学学报,2003,30(5):50-53
    [7]乔春珍,吴照云,项新耀.一维非稳态导热过程火用传递的规律及计算.热科学与技术,2003,2(1):42-46
    [8] Shuang-Ying Wu, You-Rong Li, Yan Chen. Exergy transfer characteristics offorced convective heat transfer through a duct with constant wall temperature.Energy,2007,32(12):2385-2395
    [9] rfan Kurtba, Nevin Celik, brahim Din er. Exergy transfer in a porousrectangular channel. Energy,2010,35(1):451-460
    [10]杨东华,李德虎.热经济学的历史与现状.自然杂志,1989,12(12):685-690
    [11] Aysegul Abusoglu, Mehmet Kanoglu. Exergoeconomic analysis and optimizationof combined heat and power production: A review. Renewable and SustainableEnergy Reviews,2009,13(9):2295-2308
    [12] E. Cortés, W. Rivera. Exergetic and exergoeconomic optimization of acogeneration pulp and paper mill plant including the use of a heat transformer.Energy,2010,35(3):1289-1299
    [13] Ozgur Balli, Haydar Aras, Arif Hepbasli. Thermodynamic and thermoeconomicanalyses of a trigeneration (TRIGEN) system with a gas–diesel engine: Part II–An application. Energy Conversion and Management,2010,51(11):2260-2271
    [14] Seyyed Masoud Seyyedi, Hossein Ajam, Said Farahat. A new approach foroptimization of thermal power plant based on the exergoeconomic analysis andstructural optimization method: Application to the CGAM problem. EnergyConversion and Management,2010,51(11):,2202-2211
    [15] Lingen Chen, Huijun Feng, Fengrui Sun. Exergoeconomic performanceoptimization for a combined cooling, heating and power generation plant with anendoreversible closed Brayton cycle. Mathematical and Computer Modelling,2011,54(11-12):2785-2801
    [16] Pouria Ahmadi, Ibrahim Dincer. Thermodynamic and exergoenvironmentalanalyses, and multi-objective optimization of a gas turbine power plant. AppliedThermal Engineering,2011,31(14-15):2529-2540
    [17] M. Tolga Balta, Ibrahim Dincer, Arif Hepbasli. Exergoeconomic analysis of ahybrid copper–chlorine cycle driven by geothermal energy for hydrogenproduction. International Journal of Hydrogen Energy,2011,36(17):11300-11308
    [18] Zemin Ding, Lingen Chen, Fengrui Sun. Finite time exergoeconomicperformance for six endoreversible heat engine cycles: Unified description.Applied Mathematical Modelling,2011,35(2):728-736
    [19] Leyla Ozgener, Onder Ozgener. Monitoring of energy exergy efficiencies andexergoeconomic parameters of geothermal district heating systems (GDHSs).Applied Energy,2009,86(9):1704-1711
    [20] Oguz Arslan, Ramazan Kose. Exergoeconomic optimization of integratedgeothermal system in Simav, Kutahya. Energy Conversion and Management,2010,51(4):663-676
    [21] Arif Hepbasli. A review on energetic, exergetic and exergoeconomic aspects ofgeothermal district heating systems (GDHSs). Energy Conversion andManagement,2010,51(10):2041-2061
    [22] Fangtian Sun, Lin Fu, Shigang Zhang. New waste heat district heating systemwith combined heat and power based on absorption heat exchange cycle in China.Applied Thermal Engineering,2012,37:136-144
    [23]华贲,仵浩,刘二恒.基于火用经济评价的换热器最优传热温差.化工进展,2009,28(7):1142-1146
    [24] Leyla Ozgener. A review on the experimental and analytical analysis of earth toair heat exchanger (EAHE) systems in Turkey. Renewable and SustainableEnergy Reviews,2011,15(9):4483-4490
    [25] Onder Ozgener, Leyla Ozgener. Determining the optimal design of a closed loopearth to air heat exchanger for greenhouse heating by using exergoeconomics.Energy and Buildings,2011,43(4):960-965
    [26]郑宏飞,吴裕远.广义火用经济学.西安交通大学学报,2000,20(3):69-74
    [27]杨秀奇,訾琨.火用分析理论发展综述.昆明理工大学学报,2004,29(2):158-162
    [28] Ahamed JU, Saidur R, Masjuki HH. Thermodynamic Performance Analysis ofR-600and R-600a as Refrigerant. Engineering e-Transaction,2010,5(1):11–8
    [29] Yumrutas R, Kunduz M, Kanoglu M. Exergy analysis of vapor compressionrefrigeration systems. Exergy,2002,2:266-272
    [30] Arora A, Kaushik SC. Theoritical analysis of vapor compreession refrigerationsystem with R502, R404A and R507A. Inernational Journal of Refrigeration,2008,31:998-1005.
    [31] Kabul A, Kizilkan O, Yakut AK. Performance and exergetic analysis of vaporcompression refrigeration system with an internal heat exchanger using ahydrocarbon, isobutane (R600a). Inernational Journal of Energy Research,2008,32:824-836
    [32] Hepbasli A. Thermodynamic analysis of household refrigerators. InernationalJournal of Energy Research,2007,31:947-59
    [33] Alsaad MA, Hammad MA. The application of propane/butane mixture fordomestic refrigerators. Applied Thermal Engineering,1998,18(9-10):911-918
    [34] Arora A, Arora BB, Pathak BD, Sachdev HL. Exergy analysis of a vapourcompression refrigeration system with R-22, R-407C and R-410A. InternationalJournal of Exergy,2007,4:441-54
    [35] Aprea C, Greco A. An exergetic Analytic of R-22substitution. Applied ThermalEngineering,2002,22(13):1455-1469.
    [36] Somsundaram P, Dinakaran R, Iniyan S, Samuel AA. Exergy based refrigerantselection and simulation of auto refrigeration cascade (ARC) system.International Journal of Exergy,2004,1:60-81
    [37] Mehrpooya M, Jarrahuan A, Pishvaie MR. Simulation and exergy-methodanalysis of an industrial refrigeration cycle used in NGL recovery units.International Journal of Energy research,2006,30:1336-51
    [38] J.U. Ahamed, R. Saidur, H.H. Masjuki. A review on exergy analysis of vaporcompression refrigeration system. Renewable and Sustainable Energy Reviews,2011,15(3):1593-1600
    [39] Jabardo JMS, Mamani WG, Ianalla MR. Modelling and experimental evaluationof an automotive air-conditioning system with a variable capacity compressor.International Jouranl Refrigeration,2002,25(8):1157-72.
    [40] Kedzierrski MA, Gong M. Effect of CuO nanolubricant on R134a pool boilingheat transfer. International Journal of Refrigeration,2009,32(5):791-799
    [41] Jwo CS, Jeng LY, Teng TP, Chang H. Effects of nanolubricant on performance ofhydrocarbon refrigerant system. Journal of Vacuum Science&Technology,2009,27:1473-1477
    [42] M. Pons, F Meunier, G Cacciola. Thermodynamic based comparison of sorptionsystems for cooling and heat pumping. International Journal of Refrigeration,1999,22(1):5-17
    [43] A. Sencan, A.K.A. Yakut, S.A. Kalogirou. Exergy analysis of lithiumbromide/water absorption systems. Renewable Energy,2005,30(5):645-657
    [44] Linghui Zhu, Junjie Gu. Second law-based thermodynamic analysis ofammonia/sodium thiocyanate absorption system. Renewable Energy,2010,35(9):1940-1946
    [45] Ravikumar TS, Suganthi L, Anand AS. Exergy analysis of solar assisted doubleeffect absorption refrigeration system. Renewable Energy,1998,14(1):55-59
    [46] N. Ben Ezzine, M. Barhoumi, Kh. Mejbri. Solar cooling with the absorptionprinciple: First and Second Law analysis of an ammonia–water doublegenerator absorption chiller. Desalination,2004,168(15):137-144
    [47] C. Onan, D.B. Ozkan, S. Erdem. Exergy analysis of a solar assisted absorptioncooling system on an hourly basis in villa applications. Energy,2010,35(12):5277-5285
    [48] Ren Chengqin, Li Nianping, Tang Guangfa. Principles of exergy analysis inHVAC and evaluation of evaporative cooling. Building and Environment,2002,37(11):1045-1055
    [49] Bilal A. Qureshi, Syed M. Zubair. Second-law-based performance evaluation ofcooling towers and evaporative heat exchangers. International Journal ofThermal Sciences,2007,46(2):188-198
    [50] B.N. Taufiq, H.H. Masjuki, T.M.I. Mahlia. Exergy analysis of evaporativecooling for reducing energy use in a Malaysian building. Desalination,2007,209(1-3):238-243
    [51] Thirapong Muangnoi, Wanchai Asvapoositkul, Somchai Wongwises. An exergyanalysis on the performance of a counterflow wet cooling tower. AppliedThermal Engineering,2007,27(5-6):910-917
    [52] Thirapong Muangnoi, Wanchai Asvapoositkul, Somchai Wongwises. Effects ofinlet relative humidity and inlet temperature on the performance of counterflowwet cooling tower based on exergy analysis. Energy Conversion andManagement,2008,49(10):2795-2800
    [53] L. Marletta. Exergy analysis of solar cooling—a worked example Report for theIEA SHC Task38, January2008.
    [54] I. Dincer, M. Rosen, Exergy-Energy, Environment and Sustainable Development(1Th Ed). Oxford: Elsevier Publication,2007,124-127
    [55] Erta Hürdo an, Orhan Buyükalaca, Arif Hepbasli. Exergetic modeling andexperimental performance assessment of a novel desiccant cooling system.Energy and Buildings,2011,43(6):1489-1498
    [56] L. Marletta. G. Evola, F. Sciurella. Second law analysis of solar-assisteddesiccant open cycles: a comparative analysis. in: Proceedings of the2nd OTTIInternational Conference in Solar Air-Conditioning. Tarragona, Spain,2007,244-248
    [57] Ahmed CSK, Gandhidasan P, Zubair SM. Exergy analysis of aliquid-desiccant-based, hybrid air-conditioning system. Energy,1998,32(1):51-59
    [58] Li Z. Principles of thermodynamic analysis of humid air process and itsapplication in liquid desiccant air conditioning systems.[Ph.D. Thesis, TsinghuaUniversity]. Changsha: Tsinghua University,2006,115-116
    [59] Z.Q. Xiong, Y.J. Dai*, R.Z. Wang. Development of a novel two-stage liquiddesiccant dehumidification system assisted by CaCl2solution using exergyanalysis method. Applied Energy,2010,87(5):1495-1504
    [60] H. Gunerhan, A. Hepbasli, Exergetic modelling and performance evaluation ofsolar water heating systems for building applications. Energy and Buildings,2007,39(5):509-516
    [61] I. Luminosu, L. Fara. Determination of the optimal operation mode of a flat solarcollector by exergetic analysis and numerical simulation. Energy,2005,30(5):731-747
    [62] W. Xiaowu, H. Ben. Exergy analysis of domestic-scale solar water heaters.Renewable and Sustainable Energy Reviews,2005,9(6):638-645
    [63] Hisashi Saitoh, Yasuhiro Hamada, Hideki Kubota, et al. Field experiments andanalyses on a hybrid solar collector. Applied Thermal Engineering,2003,23(16):2089-2105
    [64] T. Fujisawa, T. Tani. Annual exergy evaluation on photovoltaic-thermal hybridcollector. Solar Energy Materials and Solar Cells,1997,47(1-4):135-148
    [65] T.T. Chow, G. Pei, K.F. Fong, et al. Energy and exergy analysis ofphotovoltaic-thermal collector with and without glass cover. Applied Energy,2009,86(3):310-316
    [66] T.A.H. Ratlamwala, M.A. Gadalla, I. Dincer. Performance assessment of anintegrated PV/T and triple effect cooling system for hydrogen and coolingproduction. International Journal of Hydrogen Energy,2011,36(17):11282-11291
    [67] A. Hepbasli, O. Akdemir. Energy and exergy analysis of a ground source heatpump system. Energy Conversion and Management,2004,45(5):737-753
    [68] O. Ozgener, A. Hepbasli. Modeling and performance evaluation of a groundsource (geothermal) heat pump system. Energy and Building,2007,35(5):66-75
    [69] H. Esen, et al. Energy and exergy analysis of a ground-coupled heat pumpsystem with two horizontal ground heat exchangers. Building and Environment,2007,42(10):3606-3615
    [70][70] Hoseyn Sayyadi, Mostafa Nejatolahi. Thermodynamic and thermoeconomicoptimization of a cooling tower-assisted ground source heat pump. Geothermics,2011,40(3):221-232
    [71] S.P. Lohani. Energy and exergy analysis of fossil plant and heat pump buildingheating system at two different dead-state temperatures. Energy,2010,35(8):3323-3331
    [72] J.G. Cervantes, E. Torres-Reyes. Experiments on a solar-assisted heat pump andan exergy analysis of the system. Applied Thermal Engineering,2002,22(12):1289-1297.
    [73] Arif Hepbasli. Exergetic modeling and assessment of solar assisted domestic hotwater tank integrated ground-source heat pump systems for residences. Energyand Buildings,2007,39(12):1211-1217
    [74] Arif Hepbasli. A comparative investigation of various greenhouse heatingoptions using exergy analysis method. Applied Energy,2011,88(12):4411-4423
    [75] Chau J, Sowlati T, Sokhansanj S, et al. Techno-economic analysis of woodbiomass boilers for the greenhouse industry. Applied Energy,2009,86(3):364-371
    [76]谢平,唐新贵,谢驰.不可逆焦耳一布雷顿功热并供系统火用分析.热力透平,2008,37(4):259-262.
    [77] xiaoli Hao, guoqiang Zhang. Exergy optimisation of a Brayton cycle—basedcogeneration plan. Exergy,2009,6(1):34-48
    [78] T. Morosuk, G. Tsatsaronis. Comparative evaluation of LNG–basedcogeneration systems using advanced exergetic analysis. Energy,2011,36(6):3771-3778
    [79] Ricardo Vasquez Padilla, G kmen Demirkaya, D. Yogi Goswami, et al. Analysisof power and cooling cogeneration using ammonia-water mixture. Energy,2010,35(12):4649-4657
    [80] Ali Behbahani-nia, Mahmood Bagheri, Rasool Bahrampoury. Optimization offire tube heat recovery steam generators for cogeneration plants through geneticalgorithm. Applied Thermal Engineering,2010,30(16):2378-2385
    [81] Viviana Cocco Mariani, Leandro dos Santos Coelho, P.K. Sahoo. Modifieddifferential evolution approaches applied in exergoeconomic analysis andoptimization of a cogeneration system. Expert Systems with Applications,2011,38(11):3886-13893
    [82] E. Cortés, W. Rivera. Exergetic and exergoeconomic optimization of acogeneration pulp and paper mill plant including the use of a heat transformer.Energy,2010,35(3):1289-1299
    [83] Omer F. Can, Nevin Celik, Ihsan Dagtekin. Energetic–exergetic-economicanalyses of a cogeneration thermic power plant in Turkey. InternationalCommunications in Heat and Mass Transfer,2009,36(10):1044-1049
    [84] Leonardo S. Vieira, Jo o L. Donatelli, Manuel E. Cruz. Exergoeconomicimprovement of a complex cogeneration system integrated with a professionalprocess simulator. Energy Conversion and Management,2009,50(8):1955-1967
    [85] Aysegul Abusoglu, Mehmet Kanoglu. Exergetic and thermoeconomic analyses ofdiesel engine powered cogeneration: Part1–Formulations. Applied ThermalEngineering,2009,29(2-3):234-241
    [86] P.K. Sahoo. Exergoeconomic analysis and optimization of a cogeneration systemusing evolutionary programming. Applied Thermal Engineering,2008,28(13):1580-1588
    [87]陶桂生,陈林根,孙丰瑞.内可逆回热式燃气轮机热电联产装置的火用经济性能优化.工程热物理学报,2009,30(6):919-922
    [88]陶桂生,陈林根,孙丰瑞.实际回热式布雷顿热电联产装置的火用经济性能I.循环模型与参数分析.燃气轮机技术,2009,22(2):30-36
    [89]陶桂生,陈林根,孙丰瑞.实际回热式布雷顿热电联产装置的火用经济性能II.热导率分配与压比优化.燃气轮机技术,2009,22(4):17-23
    [90] Yilmaz T, Bayraktar S. Tasci F. Efficiency optimisation of gas turbine basedcogeneration cycle. Journal of the Energy Institute,2008,81(2):110-113
    [91] Deng-Chern S, Chia-Chin C. Engineering design and exergy analyses forcombustion gas turbine based power generation system. Energy,2004,29(8):1183-1205
    [92] M. Badami, M. Mura. Exergetic analysis of an innovative small scale combinedcycle cogeneration system. Energy,2010,35(6):2535-2543
    [93] S.C. Kamate, P.B. Gangavati. Exergy analysis of cogeneration power plants insugar industries. Applied Thermal Engineering,2009,29(5-6):1187-1194
    [94]廉乐明.工程热力学.北京:建筑工业出版社,2007,39-42 
    [95]杨世铭,陶文铨.传热学.北京:高等教育出版社,2006,1-6
    [96] Moran MJ, Shapiro HN. Fundamentals of engineering thermodynamics. NewYork: John Wiley&Sons,1996,232-235
    [97] Shukuya M. Energy, entropy, exergy and space heating systems. In: Proceedingof3rd international conference on healthy buildings. Tokyo,1994,369-74
    [98] Ma. Guadalupe Alpuche, Christopher Heard, Roberto Best, et a1. Exergyanalysis of air cooling systems in buildings in hot humid climates. AppliedThermal Engineering,2005,25(4):507-517
    [99] Balta MT, Dincer I, Hepbasli A. Development of sustainable energy options forbuildings in a sustainable building. Sustainable Cities and Society,2011,1(2):72-80
    [100] Rosen MA, Dincer I. Effect of varying dead-state properties on energy andexergy analyses of thermal systems. International Journal of Thermal Science,2004,43(2):121-133
    [101] H. Torío, A. Angelotti, D. Schmidt. Exergy analysis of renewable energy-basedclimatisation systems for buildings: A critical view. Energy and Buildings,2009,41(3):248-271
    [102]傅献彩.物理化学(第5版).北京:高等教育出版社,2008,277-280
    [103] K. T. Andersen. Theory for natural ventilation by thermal buoyancy in one zonewith uniform temperature. Building and Environment,2003,38(11):1281-1289
    [104] G. R. Hunt, P. P. Linden. The fluid mechanics of natural ventilation--displacement ventilation by buoyancy-driven flows assisted by wind. Buildingand Environment,1999,34(6):707-720
    [105] L. Yang, G. Zhang, Y. Li, et al. Investigating potential of natural driving forcesfor ventilation in four major cities in china. Building and Environment,2005,40(6):738-746
    [106] Y. Jiang, Q. Chen. Buoyancy-driven single-sided natural ventilation in buildingswith large openings. International Journal of Heat and Mass Transfer,2003,46(6):973-988
    [107] J. Tanny, V. Haslavsky, M. Teitel. Airflow and heat flux through the verticalopening of buoyancy-induced naturally ventilated enclosures. Energy andBuildings,2008,40(4):637-646.
    [108] M. M. Aboulnaga. A roof solar chimney assisted by cooling cavity for naturalventilation in buildings in hot arid climates: An energy conservation approach inal-ain city. Renewable Energy,1998,14(1-4):357-363
    [109] R. Priyadarsini, K. W. Cheong, N. H. Wong. Enhancement of natural ventilationin high-rise residential buildings using stack system. Energy and Buildings,2004,36(1):61-71
    [110] S. Chungloo, B. Limmeechokchai. Application of passive cooling systems in thehot and humid climate: The case study of solar chimney and wetted roof inThailand. Building and Environment,2007,42(9):3341-3351
    [111] X. Q. Zhai, R. Z. Wang, Y. J. Dai et al. Experience on integration of solarthermal technologies with green buildings. Renewable Energy,2008,33(8):1904-1910
    [112] R. Petela. Exergy of undiluted thermal radiation. Solar Energy,2003,74(6):469-488
    [113] S. Gunes, N. S. Sariciftci. Hybrid solar cells. Inorganica Chimica Acta,2008,361(3):581-588
    [114] J. Labidi, E. Boulet, J. Paris. On intrinsic exergy efficiency and heat pumps.Chemical Engineering Research and Design,2000,78(2):180-183
    [115]杨世铭,陶文铨.传热学(第3版).北京:高等教育出版社,1998,189-190
    [116] M. Lemouari, M. Boumaza, I. M. Mujtaba. Thermal performances investigationof a wet cooling tower. Applied Thermal Engineering,2007,27(5-6):902-909
    [117] D. G. K. J.C. Kloppers. A critical investigation into the heat and mass transferanalysis of counterflow wet-cooling towers. International Journal of Heat andMass Transfer,2005,48(3-4):765-777
    [118] B. A. Qureshi, S. M. Zubair. A complete model of wet cooling towers withfouling in fills. Applied Thermal Engineering,2006,26(16):1982-1989
    [119] R. Al-Waked. Crosswinds effect on the performance of natural draft wet coolingtowers. International Journal of Thermal Sciences,2010,49(1):218-224
    [120] C. A. X. Marques, C. H. Fontes, M. Embiru u, et al. Efficiency control in acommercial counter flow wet cooling tower. Energy Conversion andManagement,2009,50(11):2843-2855
    [121] T. Muangnoi, W. Asvapoositkul, S. Wongwises. Effects of inlet relativehumidity and inlet temperature on the performance of counterflow wet coolingtower based on exergy analysis. Energy Conversion and Management,2008,49(10):2795-2800
    [122] B. A. Qureshi, S. M. Zubair. Second-law-based performance evaluation ofcooling towers and evaporative heat exchangers. International Journal ofThermal Sciences,2007,46(2):188-198
    [123] G. T. A. Bejan, M.J. Moran. Thermal design and optimization. New York: JohnWiley&Sons,1996
    [124] A. Klimanek, R. A. Bialecki. Solution of heat and mass transfer in counterflowwet-cooling tower fills. International Communications in Heat and MassTransfer,2009,36(6):547-553
    [125] P. C. A. Angelotti. The exergy approach for the evaluation of heating andcooling technologies; first results comparing steady-state and dynamicsimulations. In: Proceedings of the2nd PALENC and28th AIVC Conference.Crete Island,2007,59-64
    [126] S. T. Simpson WM. Performance of small mechanical draft cooling towers.Refrigerating Engineering,1946,52(6):574-576
    [127]彦启森.建筑热过程.北京:中国建筑工业出版社,1986,74-95
    [128] ASHRAE. ASHRAE handbook-fundamentals. Atlanta: ASHRAE,1993
    [129] L. Mei, Y. J. Dai. A technical review on use of liquid-desiccant dehumidificationfor air-conditioning application. Renewable and Sustainable Energy Reviews,2008,12(3):662-689
    [130] P. Gandhidasan, M. R. Ullah, C. F. Kettleborough. Analysis of heat and masstransfer between a desiccant-air system in a packed tower. Journal of SolarEnergy Engineering,1987,109:89–93
    [131] S. Jain, P. L. Dhar, S. C. Kaushik. Experimental studies on the dehumidifier andregenerator of a liquid desiccant cooling system. Applied Thermal Engineering,2000,20(3):253-267
    [132] V. Oberg, D. Y. Goswami. Experimental study of the heat and mass transfer in apacked bed liquid desiccant air dehumidifier. Journal of Solar EnergyEngineering,1998,120(4):289-297
    [133] X. H. Liu, Y. Zhang, K. Y. Qu, Y. Jiang. Experimental study on mass transferperformances of cross flow dehumidifier using liquid desiccant. EnergyConversion and Management,2006,47(15-16):2682-2692
    [134] X. W. Li, X. S. Zhang, G. Wang, R. Q. Cai. Research on ratio selection of amixed liquid desiccant: Mixed licl-cacl2solution. Solar Energy,2008,82(12):1161-1171
    [135] L. F. Chen, A. N. Soriano, M. H. Li. Vapour pressures and densities of themixed-solvent desiccants (glycols+water+salts). The Journal of ChemicalThermodynamics,2009,41(6):724-730
    [136] A. de Lucas, M. Donate, J. F. Rodríguez. Vapour pressures, densities, andviscosities of the (water+lithium bromide+potassium acetate) system and(water+lithium bromide+sodium lactate) system. The Journal of ChemicalThermodynamics,2006,38(2):123-129
    [137] C. S. Khalid Ahmed, P. Gandhidasan, A. A. Al-Farayedhi. Simulation of ahybrid liquid desiccant based air-conditioning system. Applied ThermalEngineering,1997,17(2):125-134
    [138] Q. Ma, R. Z. Wang, Y. J. Dai, X. Q. Zhai. Performance analysis on a hybridair-conditioning system of a green building. Energy and Buildings,2006,38(5):447-453
    [139] C. K. Lee, H. N. Lam. Computer simulation of ground-coupled liquid desiccantair conditioner for sub-tropical regions. International Journal of ThermalSciences,2009,48(12):2365-2374
    [140] X.Q. Zhai, M. Qu, Yue. Li, R.Z. Wang. A review for research and new designoptions of solar absorption cooling systems. Renewable and Sustainable EnergyReviews,2011,15(9):4416-4423
    [141]戴永庆.溴化锂吸收式制冷技术及应用.北京:机械工业出版社,2001,56-80
    [142]黄少君,卢玫,朱家贤等.两级双效溴化锂制冷-热泵复合循环.制冷学报,2012,33(2):7-11
    [143]邱泽正,龚宗烈,马伟斌等.国内外吸收压缩式热泵研究综述.化工进展,2011,30(2):264-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700