用户名: 密码: 验证码:
赣北红壤坡面水土保持措施保水减沙作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面水土流失一直是国内外的研究重点和热点,目前国内对于其调控机制等进行了很多的研究工作,但现有研究成果多集中于黄土地区,其它水蚀地区(如南方红壤区)该力一面的研究成果还不多。本研究在典型南方红壤区——江西水土保持生态科技园设置16个径流小区,对2001~2009年次降雨条件下的降雨、地表径流、侵蚀泥沙进行了长期定位观测和土壤理化性质测定,以探讨典型红壤坡面水蚀特征,系统研究几种水土保持措施(林草覆盖、农林间作、清耕和林果梯田等措施)对红壤坡面减流减沙、理水调洪和土壤抗侵蚀性的影响及作用,为红壤坡面水土流失防治提供技术支撑。主要研究成果如下:
     (1)在南方红壤区,受降雨年内分配的影响,裸露坡面汛期(4-9月)径流深占年均径流深的86.3%,汛期泥沙流失量占年均泥沙流失量的96.5%,汛期是防治水土流失的重点时段。受天然降雨强度非均匀性的影响,实际产流产沙过程是不稳定和不连续的,呈现出一峰或多峰的特性;同一场降雨裸露坡面产流、产沙过程基本一致,累积产沙量和累积径流量随时间延长呈现出先小幅增长后快速增加最后趋于平稳的变化。同降雨强度相比,降雨量的变化对裸露坡面径流量的影响更为显著,这与当地以蓄满产流为主有关。与平均雨强相比,I30能更好地反映降雨强度与土壤流失量的关系。裸露坡面径流量与降雨量、降雨动能呈直线回归关系,与I30为幂函数回归关系;侵蚀泥沙量与降雨量、降雨动能、I30和径流损失量均呈幂函数回归关系。
     (2)在南方红壤区,所研究的几种水土保持措施均能有效降低地表径流量,减少土壤侵蚀量。其中:林草覆盖措施的年均减流率在90%以上、年均减沙率在99%以上,农林间作措施的年均减流率在65%以上、减沙率在75%以上,柑橘清耕的年均减流率在33%以上、年均减沙率在58%以上,林果梯田措施的年均减流率在70%以上、年均减沙率在89%以上。在林草覆盖措施中,全园覆盖、带状覆盖、带状覆盖+间作作物的减水效益都在95%以上、减沙效益都在99%以上,差别不大,因此考虑降低成本,避免物种竞争,采取等高水平草带(作物)措施更优;百喜草=、阔叶雀稗、狗牙根三种牧草的减水减沙效益都很好,且无明显差别,因此这三种草均可推广于条带种草。在农林间作措施中,横坡农林间作的累积减流减沙效应优于顺坡农林间作,且在大暴雨、特大暴雨的特殊情况下优势表现得史为突出。因此,横坡套种作物增加覆盖可作为防治坡耕地水土流失的有效措施。但由于每年的4~9月是研究区水土流失较严重季节,故应注意选择那些收获和栽种时间不在强降雨多发期的作物。柑橘清耕在某些特殊情况下,其减流减沙效应大大降低甚至出现减流减沙效果还不如裸露对照的现象,这也很好地解释了我国南方林下水土流失的现象。在林果梯田措施中,前埂后沟技术、梯壁植草技术和梯面内斜技术的减流减沙优势明显,在特大暴雨的特殊情况下表现得更为突出。因此,可集成这三项单项技术,增强对暴雨侵蚀的抵抗力。
     (3)在南方红壤区,通过几种水土保持措施(柑橘+百喜草全园覆盖、柑橘+作物(横坡间作)、柑橘清耕、柑橘+水平梯田(梯壁植草))的滞流削峰效应分析,发现与裸露对照相比,这些水土保持措施具有一定的削减地表径流洪峰和减少地表径流总量的效益,其中以柑橘+百喜草全园覆盖最优,其削峰效益均值为93.7%、减流效益均值为99.1%;柑橘清耕最差,其削峰效i益均值为53.8%、减流效益均值为49.8%;柑橘+作物(横坡间作)和柑橘+水平梯田(梯壁植草)居二者之间。除柑橘清耕外,其余3种水土保持措施还具有一定的产流滞后和峰值滞后效益,其中以以柑橘+百喜草全全园覆盖最优,其产流滞后效益均值为93.3%、洪峰滞后效益均值为57.5%。柑橘清耕因幼龄林下无灌草覆盖,其产流对降雨较为敏感,产流与峰现滞后时间要短得多,甚至出现产流滞后、峰值滞后效应不如裸露对照的现象。同一种水土保持的削峰减流效应较稳定,变幅不大;但产流与峰现滞后效应变化幅度较大,这与径流滞后效应受当场降雨、前期降雨和下垫面等多因素影响有关。
     (4)赣北红壤荒坡地土壤抗蚀性差,不同水土保持措施治理后土壤抗蚀性有所提高。灰色关联法计算结果表明:土壤最佳抗蚀性指标依次为团聚度和受蚀性指数(Eva);土壤最差抗蚀性指标分别是湿筛水稳性团聚体平均重量直径(EMWD)和干湿筛团聚体平均重量直径差值(MWDC);土壤颗粒分散特性对土壤侵蚀量影响较大,而土壤稳定性参数对土壤侵蚀量影响较小,它们的均关联度依次为0.618和0.599。以田间实测K值为依据,对多种K值估算方法(诺谟图法、修正诺谟图法、EPIC模型法、平均几何粒径模型法和Torri模型法)进行了评价,发观这些估算方法的不确定性都较大,具体应用时需进行优化。建立了试验区修正诺谟图法的优化模型。
The research of water erosion on slopes has been priorities and hotspots at home and abroad. So far, lots of research work was carried on its regulation mechanism. While, most of the research results in China are about the water erosion in the Loess Area, and the targeted outcomes of other areas, such as the Southern Red Soil Area, are still relatively limited. To study the mechanism of different soil and water conservation measures affecting water erosion in red soil slopes in southern China, field experiments were performed on the representative area named Jiangxi Eco-science Park of Soil and Water Conservation(SWC), including sixteen runoff plots treated by different measures,i. e. forest and grass measures, agricultural cultivation measures, clean tillage in orchard, fruit terraced measures and bare control. The precipitation, surface runoff and soil loss of each treatment under each natural rainfall events were recorded from 2001-2009 and the physical soil properties and chemical soil properties were tested after 9 years. This research explores the effects of SWC measures on runoff and sediment yield, water and flood regulation and soil anti-erodibility in red soil sloping land which can provide a scientific refference for the optimization of SWC measures and sustainable development of ecological environment construction. The main results are as follows:
     (1) The rain process mostly happened in the rainy season(from April to September), so the runoff amount from the bare slope in the rainy season accounted for 86.3% of the average annual runoff loss, and the sediment yield from the bare slope in the rainy season accounted for 96.5% of the average annual soil loss. Thus, the rainy season is the key period to control and prevent soil and water loss. Under the conditions of national rainfall, the rainfall intensity was not stable and continuous, so the runoff process of the bare slope was also unstable and uncontinuous, with one or more peak values. The process of runoff and sediment under the same rainfall condition was the same in barren slope. The cumulative sediment yield and the cumulative runoff with time showed a slight growth at the first, then a rapid growth and a smooth change finally. Due to runoff yield under saturated storage, the relation of runoff with rainfall was higher than that with rainfall intensity. There existed linear regression between runoff and rainfall, rainfall energy, while there was power function regression between runoff and I30-Comparing to average rainfall intensity,Ⅰ-30 can better reflect the relation between soil erosion and rainfall intensity. There existed power function regressions between runoff andⅠ30, rainfall, rainfall energy and runoff amount.
     (2) These SWC measures can effectively reduce the amount of soil and water loss. Comparing to the control plot, the runoff of forest and grass measures (Citrus+grass) were reduced by more than 90% and the sediment were reduced by more than 99%. The runoff of agricultural cultivation measures were reduced by more than 65% and the sediment were reduced by more than 75%. The runoff reduction rates of clean tillage in orchard were above 33%, and its sediment reduction rates were above 58%. The runoff reduction rates of fruit terraced measures (Citrus+terrace) were above 70%, and their sediment reduction rates were above 89%. Among the Citrus+grass treatments, the benefits of water reduction was above 95% among grass full covered, grass stip covered and grass+crops stip covered, while their benefits of soil reduction rates were above 99%. Therefore, to reduce the cost and avoid species competition, grass or crops strip covered in orchard are suggested. Among the three species of Bahia grass, Broadleaf paspalum and Cynodon dactylon, their reduction benefits of runoff and sediment had no obvious difference. Therefore, the three grasses can all be applied to orchard with grass strip covered. Among strip intercropping in Citrus orchards, the cumulative SWC benefits of contour strip intercropping was better than that of downslope strip intercropping, and the former's SWC benefits were more outstanding under the special case of stroms. Therefore, contour strip intercropping to increase the coverage rate in new orchards is an effective measure to prevent soil erosion. As it is known, soil and water loss concentrated in the rainy season in this area. When planting intercropping crops, we should try to choose those their harvest and planting time aren't in the rainy season. On some special cases, the runoff and sediment reduction effects of clean tillage in Citrus orchard were significantly decreased even had more soil and water loss than that of the bare control. This can well explain that only tree layer without the coverage of litter, shrub or grass, is easy to cause the forest soil erosion phenomenon in South China. Among Citrus+terrace measures, SWC benefits of mound before and ditch behind on terrace platform, grass planting on the terrace wall, and inward inclined terrace were well, especially in the special case of storms. Thus, integrating these three individual technologies will obtain better SWC benefits, to enhance the erosion resistance of orchards to storms.
     (3) Reducing effects and lagging effects of runoff and its peak of several typical SWC measures, i.e. Citrus+Bahia grass full covered, Citrus+contour strip intercropping, clean tillage in Citrus orchard, Citrus+level terrace with mound before and ditch behind+grassed wall were analyzed. It was found that compared with the bare control, all these SWC measures had obvious benefits to reducing surface runoff amount and its peak values. Citrus+Bahia grass full covered had the greatest benefits, with 93.7% of runoff amount reduction rate and 99.1% of runoff peak reduction rate. While, clean tillage in Citrus orchard had the lowest benefits, with 53.8% of runoff amount reduction rate and 49.8% of runoff peak reduction rate. In addition to clean tillage in Citrus orchard, these three measures also have certain benefits to lagging runoff and its peak. Citrus+ Bahia grass full covered had the greatest benefits, with 93.3% of runoff lagging rate and 57.5% of runoff peak lagging rate. Clean tillage in young Citrus orchard hasn't the coverage of litter, shrub or grass, runoff is more sensitive to rainfall. So, its lagging time of runoff and its peaks were significantly shortened, even shorter than that of the bare control. Tor the same SWC measure, the benefit to reducing surface runoff amount and its peak valus was relatively stable. While, the benefit to lagging runoff and its peak was more unstabcle, mainly due to its multi-factors of rainfall (including early rainfall) and surface conditions.
     (4) Red-soil anti-erodibility was poor on barren slope in North of Jiangxi. Different SWC measures were applied to improve soil anti-erodibility. By grey correlation analysis of different anti-erodibility parameters on soil erosion modulus, it was shown that in the 10 anti-erodibility parameters, the first 2 factors affecting soil erosion modulus was soil agglomeration and soil erodibility index. The descending rank of the last 2 factors affecting sediment yield was EMWd and MWDC. The effects of soil particle dispersivity on sediment yield was better than that of stability of soil water-stable aggregates, their average grey correlation value were 0.618 and 0.599, respectively. Based on observed K factors of red soil in the study area, uncertainties of six K-factor prediction models(i-e-, nomogragh model, modified nomogragh model, EPIC model, two kind of geometricmean particlemodel, and Torri model) were evaluated. Results show that the six models were all high in uncertainty. Immeasurable error might result from direct indiscriminate use of these empirical models in estimating K factor. So, an optmized modified nomogragh model can minmize the uncertainty.
引文
蔡丽平,陈光水,谢锦升,等.南亚热带侵蚀赤红壤治理前后土壤抗蚀性的变化[J].水土保持学报,2001,15(6):129-131,139.
    蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].1989,1989(4):84-91.
    蔡庆,唐克丽.植被对土壤侵蚀影响的动态分析[J].水上保持学报,1992,6(2):47-51.
    蔡志发,黄炎和,李发林,等.侵蚀坡地果园土壤—植被组分中N、P、K质量分数及其分布[J].福建农业大学学报,2000,29(4):494-497.
    查小春,唐克丽.黄土丘陵林地土壤侵蚀与土壤性质变化[J].地理学报,2003,58(3):464-469.
    常福宣,丁晶,姚健.降雨随历时变化标度性质的探讨[J].长江流域资源与环境,2002,11(11):79-83.
    陈桂波,刘艳军,吴立军.浅谈水平梯田在水土保持中的作用[J].吉林水利.2001,(9):22,33.
    陈浩,蔡强国,陈永宗,等.晋西黄土高原土壤侵蚀规律实验研究文集.坡度对坡面径流深、入渗量影响的试验研[C].北京:水利水电出版社,1990.
    陈洪松,邵明安,张兴昌,等.野外模拟降雨条件下坡面降雨入渗、产流试验研究[J].水土保持学报,2005,19(1):5-8.
    陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展,2003,14(4):513-520.
    陈明华,周福建,黄炎和,等.土壤可蚀性因子的研究[J].水土保持学报,1995,9(1):19-24.
    陈文贵.水土保持在珠江防洪减灾中的作用与地位刍议[J].人民珠江,2007(4):32-34.
    陈余道,蒋亚萍.从防洪减灾谈水土保持[J].中国农村水利水电,1997(10):35-37.
    程冬兵.百喜草及其枯落物对防洪减灾作用的研究[D].江西农业大学硕士学位论文,2005
    董月群,李淑芹,原翠萍,等.黑麦草对黄土坡而降雨产流产沙过程的影响[J].中国农业大学学报,2011,16(4):67-73
    鄂竟平.中国水土流失与生态安全综合科学考察总结报告[J].中国水土保持,2008,(12):3-6.
    方继有,盖颜欣,郭辅民.坡耕地聚流覆盖型改造利用技术模式研究[J].水土保持通报,1996,16(6):31-35.
    方少文,郑海金,杨洁,等.梯田对赣北第四纪红壤坡地土壤抗蚀性的影响[J].中国水土保持,2011,(12):13-15.
    傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    傅涛.三峡库区坡面水土流失机理与预测评价建模[D].西南农业大学博士学位论文,2002.
    高德武.黑龙江省土壤流失方程中土壤可蚀性因子(K)的研究[J].国土与自然资源研究,1993,3:40-43.
    高智慧,陈顺伟,蒋妙定,等.亚热带岩质海岸不同类型植被的水土保持效益[J].浙江林学院学报,1999,16(4):380-386.
    耿晓东.主要水蚀区坡面土壤侵蚀过程与机理对比研究[D].中国科学院研究生院博士学位论文,2010.
    管日顺.水土保持与江西省“四大安全”[J].中国水土保持.2005,(1):6-8.
    贺康宁,张建军,朱金兆.晋西黄土残源沟壑区水土保持林坡面径流规律研[J].北京林业大学学报,1997,19(4):2-6.
    胡建民,胡欣,左长清,红壤坡地坡改梯水土保持效应分析[J].水土保持研究,2005,12(4):271-273.
    黄炎和,朱鹤健,郑达贤.闽南地区土壤侵蚀与治理[M].北京:中国农业出版社,2002.
    姜小三,潘剑君,杨林章,等.土壤可蚀性K值的计算和K值图的制作方法研究——以南京市方便 水库小流域为例[J].上壤,2004,36(2):177-180.
    焦菊英,王万忠,李靖.黄土源区不同降雨条件水平梯田的减水减沙效益分析[J].土壤侵蚀与水土保持学报,1999,5(3):59-63.
    琚彤军,刘普灵,徐学选,等.不同次降雨条件对黄土区主要地类水沙动态过程的影响及其机理研究[J].泥沙研究,2007(4):65-71.
    康玲玲,王云璋,刘雪,等.水土保持措施对土壤化学特性的影响[J].水土保持通报,2003,23(1):46-48.
    克汉M J.秸秆和作物覆盖对土壤流失的影响[J].水土保持科技情报,1992,(2):50-51.
    雷瑞德.华山松林冠层对降雨动能的影响[J].水土保持学报,1988,2(2):31-39.
    李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究进展[J].地球科学进展,2005,20(1):74-80.
    李世泉,刘顺宗,潘庆宾.论水上保持工程在大江大河防洪减灾中地位与作用[J].中国水土保持,2000(1):17-19.
    李文华,何永涛,杨丽韫.森林对径流影响研究的回顾和展望[J].自然资源学报,2001,11(5):390-406.
    李小强.水土保持是山区防洪减灾的基础[J].中国水土保持,2004(2):39-30.
    廖义善,蔡强国,程琴娟.黄土丘陵沟壑区坡面侵蚀产沙地形因子的临界条件[J].中国水土保持科学,2008,6(2):32-38.
    林昌虎.砂页岩山地土壤侵蚀性降雨因子的研究[J].水土保持通报,1991,11(4):11-14.
    林光耀,杨玉盛,杨伦增,等.杉木林取代杂木林后上壤结构特性变化的研究[J].福建林学院学报,1995,15(4):289-292.
    林素兰,黄毅,聂振刚,等.辽北低山丘陵区坡耕地土壤流失方程的建立[J].土壤通报.1997,28(6):251-253.
    刘宝元,毕小刚,符索华,等.北京土壤流失方程[M].北京:科学出版社,2010.
    刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-361.
    刘宝元,谢云,张科利.土壤侵蚀模型[M].北京:中国科学技术出版社,2001.
    刘汗,雷廷武,赵军.土壤初始含水率和降雨强度对黏黄土入渗性能的影响[J].中国水土保持科学,2009(4),7(2):1-6.
    刘汗,雷廷武,赵军.土壤初始含水率和降雨强度对黏黄土入渗性能的影响[J].中国水土保持科学,2009(4),7(2):1-6.
    刘卉芳,曹文洪,张晓明,等.黄土小流域水沙对降雨及土地利用变化相应研究[J].干旱地区农业研究,2010,28(2):237-242.
    刘向东,吴钦孝,赵鸿雁.森林植被垂直截流作用与水土保持[J].水土保持研究,1994,1(3):8-13.
    刘洋,张展羽,张国华,等.天然降雨条件下不同水土保持措施红壤坡地养分流失特征[J].中国水土保持,2007,(12):14-17.
    刘益军.三峡库区坡地森林理水调洪功能研究与评价——以缙云山为例[D].北京林业大学博士学位论文,2003.
    卢程隆,黄炎和,郑添发,等.闽东南花岗岩地区土壤侵蚀的研究[J].土壤学报,1990,27(2):121-131.
    陆宝宏,汤有光,识识合适的降雨强度-历时-频率模型的方法[J].河海大学报(自然科学版),2001,29(4):109-115.
    马良.红壤坡地不同水土保持措施的的效应研究[D].江西农业大学硕士研究生毕业论文,2004.
    苗孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997,8(1):94-98.
    穆兴民,李锐.论水土保持在解决中国水问题中的战略地位[J].水土保持通报,1999,19(3):1-5.
    牛俊,赵西宁,吴普特,等.典型黄土坡面天然草地产流产沙规律试验[J].中国水土保持科学,2009,7(4):88-93,99.
    潘成忠,上官周平.牧草对坡面侵蚀动力参数的影响[J].水利学报,2005,36(3):371-377.
    彭世琪.四川省坡耕地的一种聚上改上垄作栽培新形式[J].中国水土保,1990,(9):32-33.
    邱仁辉,杨玉胜,俞新妥.不同栽植代数杉木林土壤结构特性研究[J].北京林业大学学报,1998,20(4):6-11.
    冉大川,赵力仪,王宏等.黄河中游地区梯田减洪减沙作用分析[J].人民黄河,2005,27(1):51-53.
    沈林洪,黄炎和,谢晋生,等.闽南不同土壤侵蚀强度的土壤性状特征[J].福建农业学报,2002,17(2):95-97.
    石生新,蒋定生.几种不同水保措施对土壤入渗和水土流失的影响[J].水土保持研究,1994,1(1):82-88.
    史立人.长江中上游水土流失的综合防治[J].中国水土保持,2002(9):2-4.
    史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国热带上壤可蚀性[J].土保持学报,1995,9(3):38-40.
    史学正,于东升,邢廷炎.用田间实测法研究我国亚热带土壤的可蚀性K值[J].土壤学报,1997,34(4):399-405.
    水利部,中国科学院,中国工程院.中国水土流失防治与生态安全·南方红壤区卷[M].北京:科学出版社,2010.
    唐克丽,陈永宗.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社,1990.
    唐克丽,史立人,史明德.中国水土保持[M].北京:科学出版社,2004.
    田光进,张增祥.中国耕地土壤侵蚀的空间分布特征及生态背景研究[J].中国水土保持,2002,(7):28-29.
    田积莹,黄义端.子午岭连家砭地区土壤物理性质与上壤抗蚀性能指标的初步研究[J].土壤学报,1964,12(3):286-296.
    男其云,曹艳英.西吉县黄土高原农业生态系统稳定性控制[J].干旱地区农业研究,1991,4:81-87.
    万延朝,黄丘五副区降雨和地形因素与坡面水上流失关系研究[J].中国水土保持,1996,(12):26-29.
    王辉,王全九,邵明安.前期土壤含水量对坡面产流产沙特性影响的模拟试验[J].农业工程学报,2008,24(5):65-68.
    王娟,史文娟,王全九,等.陕北坡地产流产沙特性及径流模拟[J].水土保持学报,201J,25(1):16-19.
    王坤平,黄建胜,赵院.黄河流域生态工程重点小流域治理经验与做法[J].中国水土保持,2002(10):13-14.
    王礼先,朱金兆.水土保持学[M].北京:中国林业出版社,2005.
    王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996.
    王万忠,焦菊英.黄土高原坡面降雨产流产沙过程变化的统计分析[J].水土保持通报,1996,16(5):21-28.
    王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-20.
    王万忠.黄土地区降雨特性与土壤流失关系的研究[J].水土保持通报,1984,4(2):58-62.
    王学强.红壤地区水土流失治理模式效益评价及其治理范式的建立[D].华中农业大学硕士学位论文,2008.
    王云琦,王玉杰,朱金兆.重庆缙云由曲型林分林地土壤抗蚀性分忻[J].长江流域资源与环 境,2005,14(6):775-780.
    王占礼,邵明J安.黄土高原典型地区土壤侵蚀共性与特点[J].山地学报,2001,(1):1-8.
    巫明强,沈波.水上保持是防洪减灾之木[J].中国国水土保持,1998(11):10-13.
    吴发启,赵晓光,刘秉正,等.黄土高原南部缓坡耕地降雨与侵蚀的关系[J].水土保持研究,1999,6(2):53-60.
    吴饮孝,赵鸿雁,汪有科.黄土高原油松林地产流产沙及其过程研究[J].生态学报,1998,18(2):151-157.
    谢锦升,杨玉盛,陈光水,等.严重侵蚀红壤封禁管理后土壤性质的变化[J].福建林学院学报,2002,22(3):236-23.
    谢颂华,郑海金,杨洁,等.南方丘陵区水土保持植物措施减流效应研究[J].水土保持学报,2010,24(3):35-38.
    徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    徐乃民,张金慧.水平梯田蓄水减沙效益计算探讨[J].中国水上保持,1993,(3):32-34.
    薛萐,李占斌,李鹏,等.不同植被恢复模式对黄土丘陵区土壤抗蚀性的影响[J].农业工程学报,2009,25(1):69-72.
    杨红薇,张建强,唐家良,等.紫色上坡地不同种植模式下水土和养分流失动态特征[J].中国生态农业学报,2008,16(3):615-619.
    杨洁.红壤坡地柑橘园水土保持水文效应研究[D].江西农业大学博士学位论文,2011.
    杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截留和树干茎流[J].林业科学研究,1992,5(2):158-162.
    杨文元,张奇,林超文,等.紫色丘陵小流域土壤侵蚀特征与调控[J].山区开发,1997(增):32-35.
    杨艳生.史德明.关于土壤流失方程中K因子的探讨[J].中国水土保持,1982,(4):39-42.
    杨玉盛,何宗明,林光耀,等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528-535.
    杨玉盛,何宗明,林光耀,等.不同治理措施对闽东雨侵蚀性赤红壤肥力的研究[J].植物生态学报,1998,22(3):281-288.
    杨玉盛.杉木林可持续经营研究[M].北京:中国林业出版社,1998.
    姚文艺,肖培青,申震洲,等.坡面产流过程及产沙临界对立地条件的响应关系[J].水利学报,2011,42(12):1438-1444.
    姚治君.云南玉龙山东南坡降下雨因子与土壤流失关系的研究[J].自然资源学报:,1991,6(1):45-53.
    于国强,李占斌,张霞,等.野外模拟降雨条件下径流侵蚀产沙试验研究[J].水土保持学报,2009,23(4):10-14.
    余新晓,陈丽华,周常青,三峡花岗岩地区坡面暴雨产流过程的研究究[J].北京林业大学学报,1995,17(4):67-73.
    余新晓.森林植被减弱降雨侵蚀能量的数理分析[J].水土保持学报,1988,2(3):90-96.
    张保华,徐佩,廖朝林,等.川中丘陵区人工林土壤结构性及对土壤侵蚀的影响[J].水土保持通报,2005,25(2):25-28.
    张光辉,蒋定生,邵明安.用非饱和土壤物理参数模拟坡面产流过程研究[J].山地学报,2001,19(1):14-18.
    张光辉,梁(?)民.模拟降雨条件下人工草地产流产沙过程研究[J].土壤侵蚀与水土保持学报,1996,2(3):56-59
    张光辉,梁一民.山区人工草地季节变化及其水保效益研究[J].水上保持通报,1995,15(2):38-43.
    张国华,张展羽,左长清,等.红壤坡地不同类型梯田的水土保持效应[J].水利水电科技进展,2007,27(2):77-80.
    张洪江,杜上才,程厶,等.重庆四面山森林植物群落及其上壤保持与水文生态功能[M].北京:科学出版社,2010.
    张会茹,郑粉莉,耿晓东.地面坡度对红壤坡面土壤侵蚀过程的影响研究[J].水土保持研究,2009,16(4):52-54,59.
    张会茹,郑粉莉.不同降雨强度下地而坡度对红壤坡面土壤侵蚀过程的影响[J].水上保持学报,201],25(3):40-43.
    张文太,于东升,史学正,等.中国亚热带土壤可蚀性K值预测的不确定性研究[J].土壤学报,2009,36(2):185-191.
    张贤明.坡地百喜草处理之土壤水文研究[D].中兴大学博士学位论文,2001.
    张展羽,大长消,刘玉含,等.水土保持综合措施对红壤坡地养分流失作用过程研究[J].农业工程学报,2008,24(11):41-45.
    赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    赵院,程燕妮,黄建胜.黄河流域重点小流域治理成效[J].中国水土保持,2002(6):37-38.
    中国科学院黄土高原综合科学考察队.黄上高原地区自然环境及其演变[M].北京:海洋出版社,1991.
    中国科学院黄土高原综合科学考察队.中国黄土玉木可原地区坡度分级数据集[M].北京:海洋出版社,1990.
    中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社.1978.
    中国农业百科全书编辑委员会.中国农业百科全书:土壤卷[M].北京:农业出版社,1986.
    中华人民共和国国家标准.水土保持综合治理效益计算方法(GB/T15774—2008)[S].北京:国家质量监督检验检疫总局发布,2008.
    周跃,David Watts, i高山峡谷区云南松林土壤侵蚀控制的水文效应[J].土壤侵蚀与水土保持学报,1998,4(3):31-38.
    朱显漠.黄土地区植被因素对水上流失的影响[J].上壤学报,1960,8(2):110.
    朱智勇,解建仓,李占斌,等.坡面径流侵蚀产沙机理试验研究[J].水土保持学报,2011,25(5):1-7.
    左长清.水土保持措施防洪减灾效应及机理研究[D].河海大学博士位论文,2007.
    Anderson H W. Supended sediment discharge as related to streamflow, topography, soil and land use[J]. Transaction American Geophysical Union,1954,35:268-281.
    Andreassian V. Waters and forests:from historical controversy to scientific debate[J]. Journal of Hodrology,2004,291:l-27.
    Anger D A.Changes in soil aggregation and organic carbon under com and alfalfa[J]. Soil Science Society of America Journal,1992,56:1244-1249.
    Arne Tollan.Land-use change and floods:what do we need most.research or management[J].Water Science and Technology,2002,45(8):183-190.
    Bennet H H. Somr comparisons of properties of humid-tropical and humid-temperate American soils; with special reference to indicated relations between chemical composition[J].Soil Science,1926,21:349-375.
    Bosch J M, Hewlett J D. A review of catchment experiments to determine the effects of vegetation changes on water yield and evapotranspiration[J]. Journal of Hydrology,1982,55:3-23.
    Bouyoucos G J. The clay ratio as a criterion of susceptibility of soils to erosion[J]. Journal of American Society of Agronomy,1935,27:738-741.
    Cerda A. Parent material and vegetation affected soil erosion in Eastern Spain[J]. Soil Science Society of America,1999,(63):362-368.
    Caitcheon G G, Olley J M., Pantus F. et al. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Old) Rivers[J]. Geomorphology,2012,151:188-195.
    Degens B P. Macro-aggregation of soils by biological bonding and binding and the factors affecting these:a review[J]. Australian Journal of Soil Research,1997 (35):431-459.
    Dong Q L, Tu K, Guo L Y, et al. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions[J].Food Microbiology,2007(24):624-632.
    Ekern P C. Problems of raindrop impact erosion[J]. Agriculture. Engineer,1953,34:23-25.
    Finney, H J. The effect of crop covers on rainfall characteristics and splash detachment [J].Journal of Agricultural Engineering Research,1984,29:337-343.
    Foster G R, McCool D K, Renard KG, et al. Conservation of the universal soil loss equation to SI metric units[J]. Journal of Soil Water Conservation,1981,36:355-359.
    Foster G R. Science documentation. Revised universal soil loss equation version 2(RUSLE2) (In draft). U. S. Department of Agriculture. Washington, D C,2005. Available at: ftp://far-go.nser.l purdue.edu/pub/RUSLE2/RUSLE2_Program_File/United States Department of Agriculture. EHPIC-erosion/productivity impact calculator. Model Documentation, Technical Bulletin Number 1768[R].Washington, D.C:USDA-ARS,1990.
    Freeze R. A. A stochastic conceptual analysis of rainfall-runoff processes on a hillslope[J]. Water Resources Research,1980,16:391-408.
    Freeze R. A. Mathematical models of hillslope hydrology[M], Hillslope hydrology, Kirkby M J, Norwich:Ailey-Interscience Publication,1978.
    Kiepe P. No runoff, no soil loss-soil and water conservation in hedgerow barrier systems[J]. Tropical resource management. Wageningen Agricultural University, the Aletherlands,1995.
    Kirkby M J.Hillslope hydrology[M]. Norwich:A Wiley-Interscience Publication,1978.
    Laffen J M, Lwonard J L, Foster G T. WEEP—new generation of erosion prediction technology[J]. Journal of Soil and Water Conservation,199l,46(1):34-38.
    Liu B Y, Nearing M A, Risse L M, Slpoe gradient effects on soil for sleeps[J].Transaction of the ASAE,1994,37(6):1835-1840.
    Liu B Y, Nearing, Shi P J, Jia Z W. Slope length effects on soil loss for sleep slopes[J]. Soil Science. Society of America,2000,64(5):1759-1763.
    Middleton H E. Properties of soils which influence soil erosion[J|. USDA Technical Bulletions, 1930,178:16.
    Morgan P R C. Soil erosion and conservation[M].London:longman,1986.
    Morgan, R P C. Effect of corn and soybean canopy on soil detachment by rainfall[J]. Transactions of the ASAE,1985,28(4):1135-1140.
    Morgan, R P C.Splash detachment under plant covers:results and implications of a field study[J].Transactions of the ASAE,l982,25(4):987-991.
    Moslcy M P. Streamflow generation in a forested watershed[J]. Hydrology,1975,15(4):19-26.
    Moslcy M P. The effect of a New Zealand beech forest canopy on the kinetic energy of water drops and on surface erosion[J]. Earth Surface Processes and Landforms,1982(7):103-107.
    Olson T C, Wischmeier W H. Soil erodibility evaluations for soils on the runoff and erosion stations[J].Soil Science Society of America Proceedings,1963,27(5):590-592.
    Pearce A J. Streamflow generation processes: and Australian view[J]. Water Resource Research,1990,26:3037-3047.
    Philip J R. Hillslope infiltration:Planer slope[J]. Water Resource Research,1991,27(6):1035-1040.
    Perovic V, Dordevic A, Zivotic L, et al. Soil erosion modelling in the complex terrain of pirot municipality[J]. Carpathian Journal of Earth and Environmental Sciences,2012,7(2):93-100.
    Renard K G, Foster G R.Weesies G A, et al. RUSLE a guide to conservation planning with the revised soil loss equation[M].USDA Agricultural Handbook,1997:703.
    Renner F G.. Conditions influencing erosion of the Boise river watershed [J]. US Department of Agriculture,1936:528.
    ROmkens M J, Prasad S N, Poesen J W. Soil erodibility and properties[R]. In:Proceechings of 13th Congress of the International Society of Soil Science.1986,492-504.
    Ruysschaert G., Poesen J, Wauters A, et al. Factors controlling soil loss during sugar beet harvesting at the field plot scale in Belgium [J]. European Journal of Soil Science,2007,58(6):1400-1409.
    Ruysschaert G, Poesen J, Verstraeten G, et al. Soil loss due to crop harvesting:significance and determining factors[J]. Progress in Physical Geography,2004,28(4):467-501.
    Shirazi M A, Boersma L, Hart W. A unifying analysis of soil texture:improvement of precision and extension of scale[J]. Soil Science Society ofAmerica Journal 1988,52(1):181-190.
    Shirazi M A, Boersma L. A unifying quantitative analysis of soil texture[J]. Soil Science Society of America Journal,1984,48(1):142-147.
    Stephen Clandillon,Paul De Fraipoint.Environmental Risks Within Natural Areas,The III River's Flood Plain, Alsace, France-Water Quality And Flooding[J].Urveys in geophysics.2000,21(2-3):223-228.
    Tanaka T, Yasuhara M, Sakai H, et al.The Hachioji experimental basin study—torm runoff processes and the mechanism of its generation[J]. Journal of Hydrology,102:139-164.
    Torri D, Poesen J, Borselli L. Predictability and uncertainty of the soil erodibility factor using a global dataset[J].Catena,1997,31:1-22.
    Torri D, Poessen J, Borselli L. Corrigendum to"Predictability and uncertainty of the soil erodibility factor using a global data-set"[Catena 31 (1997) 1~22] and to"Erratum toPredictability and uncertainty of the soil erodibility factorusing a global data-set"[Catena 32 (1998) 307-308]. Catena,2002, 46:309-310.
    Wander M M, Traina S J, Stinner B R, et al.Organic and convertional management effects on biologically active soil organic matter pools[J].Soil Science of America,1994,58:1130-1130.
    Wischmeier W H, Johnsn C B, Cross B V. A soil erodibility nomograph for farmland and construction cites[J]. Journal of Soil and Water Conservation,1971,26(5):189-193.
    Wischmeier W H, Johnson C B, Cross B V. A soil erodibility nomograph for farmland and construction sities [J].Journal of Soil and Water Conservation,1971,26(5):189-193.
    Wischmeier W H, Smith D D. Predicting rainfall erosion losses:a guide to conservation planning USDA Agriculture Handbook No 537[M]. USDA. Washington, D C,1978.
    Wischmeier W H, Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains[M]. USDA Agricultural Handbook, No.292,1965.
    Wischmeier, W H, Smith D D. Rainfall energy and its relationship to soil loss[J]. Transactios American Geophysical Union,1958,39 (2):285-291.
    Wood E F, Lettenmaier D P, Zatarian VGA land-surface hydrology parametersiation with sub-grid variability for general circulation models[J]. Journal of Geophysical Research,1992,97(D3):2717-2728.
    Woodburn R, Kozachyn J. Study of relative erodibility of a group of Mississippi gully soils[J]. Trans. Am. Geophyics,1956,37:749-753.
    Wu L, Long T Y, Liu X, et al. Simulation of soil loss processes based on rainfall runoff and the time factor of governance in the Jialing River Watershed, China[J]. Environmental Monitoring and Assessment,2012,184(6):3731-3748.
    Zhang K L, Li S, Peng W, et al. Erodibility of agricultural soilson the loess plateau of China[J]. Soil&Tillage Research,2004,76:157-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700