用户名: 密码: 验证码:
水性油墨废水处理技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于油性油墨原材料—石油供应的紧张,人们在印刷包装业上从传统的油性油墨转向了水性油墨的研究和应用。随着材料科学的发展,水性油墨的连接料得到改进,大大地拓宽了它的应用领域,水性油墨废水的排放量也相应地急剧增加。作为一种典型的新型印染废水,水性油墨废水仍属于纺织染整工业水污染物的一部分,它的突出特点是高CODcr、高色度和难生物降解。它一旦进入水体,会对水环境造成极大的污染,严重威胁着人类的生产生活和自然界的生态平衡,这引起了社会各界的广泛关注。为满足公众对环境质量不断提高的要求,国家对其制订了严格的排放标准,开发经济、高效的水性油墨废水的处理技术已成为水污染治理领域研究的重点和热点。
     本文以西安某水性油墨企业产生的高浓度水性油墨废水为处理对象,通过实验材料的制备、模拟废水的处理、水性油墨废水的处理三步对水性油墨废水的处理技术进行初步的研究。探讨了超细高岭土分子筛复合光催化剂处理模拟废水的优化工艺;酸沉降、化学絮凝、光催化、生物法对水性油墨废水的处理条件等。得出如下结论:
     (1)、针对水性油墨废水的特点,系统地选择了它的测定指标和国家标准方法,筛选亚甲基蓝溶液为模拟废水,并制备出超细高岭土分子筛复合光催化剂。
     (2)、采用六因素五水平正交实验,以模拟水性油墨废水为处理对象,讨论了过氧化氢浓度、光催化剂剂量、模拟废水浓度、光源、pH值、反应时间对模拟废水的处理效果。实验表明,处理模拟废水最佳条件为:过氧化氢为2 000 mg/L,高岭土超细分子筛复合光催化剂为500 mg/L,模拟废水初始浓度为80 mg/L,光源为20 W紫外线消毒灯,pH值为10.00,反应240 min,此时的去除率达99.46%,溶液透明,色度由3 200倍降到17.37倍,反应后pH值降到7.58,达到GB 4287—92纺织染整工业废水Ⅰ级排放标准。
     (3)、通过酸沉降、化学絮凝、光催化、生物法对实际水性油墨废水的处理,找出最佳的工业化应用的方案:水性油墨废水加酸调pH至4.36酸沉12h,上清液在水解酸化池停留1 d,进入SBR系统,活性污泥的剂量按SV30=25%,温度为20±1℃,过量曝气(使溶解氧DO饱和,在20℃时DO=9.07 mg/L)8 h,可以稳定运行半个月。SBR出水的pH值6~9之间、色度<40倍(原水色度为106 375)、BOD5<25 mg/L达到Ⅰ级排放标准;CODcr<500 mg/L(原水CODcr为31 040 mg/L),达到Ⅲ级排放标准,接近Ⅱ级排放标准;上清液SS和浊度未检出。此方法节约了传统生物法处理废水的能源,且出水各项指标基本达到或超过Ⅲ级排放标准。
Because of the shortage of petroleum, people in printing and packaging turned around the research and appliance of oil-based ink from water-based ink. With the development of material science, the binder of water-based ink was improved that exploits its application area, which resulted in water-based ink wastewater discharge increasing greatly. As a new kind of printing and dyeing wastewater, water-based ink wastewater which outstanding characteristic is high chemical oxygen demand, high chroma and difficultly biodegraded is still part of dyeing and finishing of textile industry. Once the wastewater enters water body, it will greatly pollute water environment that will seriously threaten human production and life and the natural ecological balance, which has attracted wide attention in the social life. In order to the request of improving environmental quality, the government drawn strick discharge standard of water-based ink wastewater, and developing economical, high efficient treatment of this wastewater has become the emphasis and hotspot of water treatment technology.
     This paper taking high concentration water-based ink wastewater from a corporation in Xi’an as the researching object, studied on its treatment technology via the preparation of experimental material, degradation of methylene blue—simulating water-based ink wastewater and the treatment of water-based ink wasterwater. This thesis aimed at finding out the optimum conditions of photocatalysis degrading methylene blue by Kaolin ultrafine zeolite composite photocatalyst, and establishing the economical treatment technology on water-based ink wastewater by acid precipitation, chemical flocculation, photocatalysis and biological method.The main findings were as following:
     (1) In allusion to the characteristic of water-based ink wastewater, we have choosed reasonable determining quota and the standard manual method, filtrated methylene blue as the simulant water-based ink wastewater and prepared Kaolin ultrafine zeolite composite photocatalyst.
     (2) Using L25(56) orthogonal experiment, we have discussed the effect of the light source, pH, reaction time and the concentration of H2O2, photocatalyst and methylene blue on photodegrading methylene blue. The result showed that the optimum conditions were 2 000 mg/L, 500 mg/L and 80 mg/L respectively being as the concentration of H2O2, photocatalyst and methylene blue, pH=10.00, ultraviolet disinfection lamp (20 W) irradiating 240 minutes, then the decoloration rate, the chroma and pH for methylene blue were 99.46%, 17.37, 7.58 respectively, which reached theⅠd ischarge standard of water pollutionts for dyeing and finishing of textile industry(GB 4287—92).
     (3) Through acid precipitation, chemical flocculation, photocatalysis and biological method, the economical treatment technology on water-based ink wastewater was established: the optimum pH value and standing time of acid precipitation was 4.36 and 12 hours respectively, the residence time of supernatant in the hydrolysis-acidification pool was 24 hours, then entering the sequencing batch reactor, the optimum dose of activated sludge was by SV30=25%, the temperature was 20±1℃,the dissolved oxygen was 9.07 mg/L and the aeration time was 8 hours, which could stablely operate half a month at least. The effluent of SBR: the pH value was between 6 and 9, the chroma was less than 40(dilution multiple method: the initial chroma was106 375), the BOD5 was less than 25 mg/L, which reached theⅠdischarge standard of water pollutionts for dyeing and finishing of textile industry. The CODcr was less than 500 mg/L (the initial was 31 040 mg/L), which was close to theⅡdischarge standard of water pollutionts for dyeing and finishing of textile industry. The SS and turbidity of supernatant were not detected. The optimum condition not only saved energy sources of traditional biological method but also the indexs of effluent reached or exceeded theⅢd ischarge standard of water pollutionts for dyeing and finishing of textile industry.
引文
[1] GB 4287—92.纺织染整工业水污染物排放标准.
    [2] 蔡炎兴,张振家.环保水性油墨及其废水处理[J].上海化工,2006,31(5):23-26.
    [3] 张华良,刘筱霞,刘乘.瓦楞纸箱印刷的发展方向[J].包装工程,1996,17(3):28-29.
    [4] 白木.水性油墨发展综述[J].化工科技市场,2004,2:22-24.
    [5] 孙志勇.水基油墨的发展.中国包装报,2004-03-29(7).
    [6] 金振华.环保型水性油墨的研发与市场展望[J],天津化工,2001,1:33-34.
    [7] 金振华,秦明南.环保型水性油墨的应用及应注意的几个问题[J].包装工程,2003,24(3):125-127.
    [8] 陈永常.瓦楞纸箱的印刷与成型[M].北京:化学工业出版社,2005:161-164.
    [9] 李凤华,王尚伟.浅谈水性油墨[J].印刷世界工艺技术,2006,11:24-25.
    [10] 王守鸿.柔印水性墨的成分及作用[N],今日印刷,2004-10:43-44.
    [11] 陈永常.纸张、油墨的性能与印刷适性[M].北京:化学工业出版社,2004.
    [12] 周恩民,吴忠山,陈岚等.水性油墨废水处理工艺[P].CN: 200610039189.0, 2006-09-20.
    [13] W.Herbst, K.Hunger. Industrial Organic Pigments (Second Completely Revised Edition), 1997.
    [14] B.Sens. Pigment Physical Aspects in Modern Industrial Research, 1995.
    [15] H.M.Smith. High Performance Pigments .WILEY—VCH, 1999.
    [16] Juan—Antonlo, Gonzaloz—Gomez (BASF). Innovative XFASTTM Stir—in Pigments and Their Impact on Modern Paint Making, 2002.
    [17] 耿耀宗.现代水性涂料工艺、配方、应用[M].北京:中国石化出版社,2003.
    [18] 周春隆.精细化工文献检索手册[M].天津颜料工业公司,1993.
    [19] 周春隆.高档有机颜料结构特征与发展趋势[J].上海染料,2001,29(4):21.
    [20] 周春隆,穆振义.有机颜料—结构、特性与应用[M].北京:化学工业出版社,2001.
    [21] 周春隆,穆振义.有机颜料索引卡[M].北京:中国石化出版社,2004.
    [22] A.Mttes, D.Kovacevic, D.Vujevic, S.Papic. the role of zeolites in wastewater treatment of printing inks. Water Research 2004, 38:3373-3381.
    [23] K.Hunger. 有机颜料的毒性 [OL].2007-12-17[2008-04-16] . http://info.coatings.hc360.com/2007/12/17083683095.shtml.
    [24] y2308.吸附剂[OL].2008-03-16[2008-04-17].http://baike.baidu.com/view/467624.htm
    [25] 郝瑞霞等.铁屑过滤法预处理可生化性差的印染废水[J].化工环保,1999,19(3).
    [26] 李亚新.国外印染废水的电化学处理[J].给水排水,1999,25(7).
    [27] 李家珍主编.染料、染色工业废水处理[M].北京:化学工业出版社,1997.6.
    [28] 张林生等.染料废水的脱色方法[J].化工环保,2000,20(1).
    [29] 苏玉萍等.以活性染料为主要成分的印染废水的混凝脱色试验[J].化工环保,2000,20(2).
    [30] 杨正男等.絮凝剂[OL].2007-06-07[2008-04-17]. http://baike.baidu.com/view/152373.htm.
    [31] Fujishima A, Honda K.Electrochemical photolysis of water at semiconductor electrode [J].Nature, 1972, 238(5358):37~38.
    [32] Gratzel M.Resources Through Photochemistry and Catalysis [M].New York: Academic Press, 1983.
    [33] 沈伟韧,赵文宽,贺飞等.TiO2光催化反应及其在废水处理中的应用[J].1998,10(4):351-361.
    [34] Wang K,Tsai H,Hsieh Y. A study of photocatalytic degradation of trichloroethylene in vapor phase onTiO2 photocatalyst[J].Chemosphere,1998,36(13):2763-2773.
    [35] 张涛等.水性油墨废水的混凝工艺试验[J].环境科学与技术,2005,28(3):93-95.
    [36] 张涛等.铁屑微电解法处理水性油墨废水的试验[J].环境染治理技术与设备,2005,6(5):67-70.
    [37] 梁建庄.气浮-生化法处理高浓度印刷油墨废水[J].环境技术,2003(增刊):52-54.
    [38] 刘林等.混凝气浮-微电解-SBR 工艺处理油器和粘合剂混合废水[J].环境工程,2001,19(5):16-18.
    [39] 杨裴等.氧化-混凝法处理油墨废水的研究[J].天津化工,2004.18(5):60-62.
    [40] Cagatayhan B Ersu, Washingtion Braida, Keh-Ping Chao,et a1.Uhrafihration of ink and latex wastewater using cellulose membranes[J].Desalination,2004,164:63-70.
    [41] 梁文兴,梁劲洪.油墨废水处理研究[J].环境,2005,z1:83-85.
    [42] 马香娟,夏会龙.水性油墨废水处理工艺[P].CN:200510060787.1,2006-05-03.
    [43] 汤纯霄,蔡凌,钮静等.颜料、油墨废水物化、生化法综合治理技术[M].城市环境与城市生态,1999,12(3):1-3.
    [44] 王 子 谦 , 华 明 良 , 杨 智 淳 等 .PLC 控 制 系 统 在 油 墨 废 水 处 理 中 的 应 用 [J]. 自 动 化 仪表,2002,23(8):46-48.
    [45] 曾 涛 , 赵 建 华 , 刘 建 伟 等 . 混 凝 — 吸 附 法 处 理 油 墨 废 水 工 艺 研 究 [J]. 环 境 污 染 与 防治,1998,20(2):14-16.
    [46] 霍莹,张艳芳,张敏莉等.天津爱普生有限公司油墨废水处理方案及运行情况[J].工业水处理,2000,23(11):64-67
    [47] 闫庆松.颜料生产废水治理技术研究与工程实践[J].给水排水,2003,29(5):40-43.
    [48] 高华星,陆兴章,赵德仁.阳离子高分子絮凝剂用于印刷油墨废水处理[J].环境污染与防治,1995,17(3):9-13.
    [49] Jae-Hyunbae Adsorption of anionic dye and surfactant from water onto organo-morillonite [J]. Separation Science and Technology, 2003, 35(3):353-365.
    [50] Ramakrishna K P.Viraraghavant T.Dye Removal using low cost adsorbents [J].Water Science Technology, 1997, 36(2):189-196.
    [51] Swaminathan K, Sandhya S, Carmalin Sophia A.Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system[J].Chemosphere,2003,50(5):619-625.
    [52] Fockedey E, Lieede A Van.Coupling ofanodic and cathod reactions for phenol electro— oxidation using three--dimesional elec--todes[J].W ater l~esearch,2002,36:416-417、
    [53] Xiong Ya He Chun, Karlsson Kans T.performance ee-phase three-dimensional electrode reactor for the reduction of COD in simulated wastwater-containing phenol[J].Chemoshere,2003,50:131-136
    [54] Cenek novotny.Biod.geradation of synthetic dyes by Irpex Lacteus under various growth conditi- ons[J].International biodeterioration and biodegeradation, 2004, 54:215-223.
    [55] K.K.Deepa, M.Sathishkumar, A.R.Binupriya, G.S.Murugesan, et a1.Sorption of Cr from dilute solutions and wastewater by liveand pretreated biomass of ASpergi11uSavus [J].Chemosphere, 2006, 62:833-840.
    [56] Jian-JunQin, MaungHtunOo, KiranA.Kekre.Nanofihration forrecovering wastewater from a specific dyeing facility [J].Separation and Purification Technology,2007.56:199-203.
    [57] s.Barredo-Damas.M.I.Iborra-Clar, A.Bes-Piaeta1.Study ofpreozonation influence on the physical- chemical Treatment oftextile wastewater [J].Desalination, 2005,182:267-274.
    [58] GeJ, Quj.Ultrasonic irradiation enhanced degradation of azo dye on MnO2 U1.Applied Catalysis B:Environmental, 2004, 47(2):133-140.
    [59] TauberM M, Guebitz GM, l~ehorek A.Degradation of azo dyes by laccase and ultrasound treatment [J].Applied and Environmental M icrobiology, 2005, 71(5):2600-2607.
    [60] Okitsu K, 1wasaki K, Yobiko Y, et a1.Sonochemical Degradation of Azo Dyes in Aqueous Solution: A New Heterogeneous Kinetics Model Taking Into Account the Local Concentration of OH Radicals and Azo Dyes [J].Ultrasonics Sonochemistry, 2005,1 2(4):255-262.
    [61] Metesˇ A, Koprivanac N, Glasnovic′ A. Flocculation as a treatment method for printing ink wastewater [J]. Water Environ Res 2000:72(6):680–688.
    [62] A.Metes, D.Kovacevic, D.Vujevic, et al. The role of zeolites in wastewater treatment of printing inks [J].Water Res, 2004, 38:3373-3381.
    [63] TAPAS NANDY,SUNITA SHASTRY,P.P.PATHE,et al.PRE-TREATMENT OF CURRENCY PRINTING INKWASTEWATER[J].Water,Air,and Soil Pollution,2003,148:15-30.
    [64] Cagatayhan B Ersu,Washingtion Braida,Keh-Ping Chao,et al.Ultrafiltration of ink and latex wastewater using cellulose membranes[J].Desalination,2004,164:63-70.
    [65] Guojun Zhang, Zhongzhou Liu. Membrane fouling and cleaning in ultrafiltration of wastewater from banknote printing works[J].Journal of Membrane Science,2003,211:253-249.
    [66] G.J. Zhang , Z.Z. Liu , L.F. Song et al. One-step cleaning method for flux recovery of an ultrafiltration membrane fouled by banknote printing works wastewater[J]. Desalination, 2004, 170:271-280.
    [67] Guojun Zhang, Z.Z. Liu, L.F. Song et al. Post-treatment of banknote printing works wastewater [J]. Water Research, 2004, 38:3587-3595.
    [68] 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [69] 呼世斌,任丽萍,赵晓农等.无机及分析化学实验[M].北京:中国农业出版社,2003:166-167.
    [70] 董振海,胥维昌.光催化降解染料废水的研究现状及展望[J].染料与染色,2003,40(3):175-178.
    [71] 赵彦巧,张继炎,陈吉祥.光催化反应与应用研究进展[J].化学工业与工程,2004,21(3):216-219.
    [72] 黄艳娥,刘会媛.TiO2光催化剂固定化载体及固化方法[J].唐山师范学院学报,2001,23(5):31-32.
    [73] 王红娟,李忠.半导体多相光催化氧化技术[J].现代化工,2002.22(2):56-60.
    [74] 董德贵,温青,矫彩山等.光催化降解水中污染物的研究[J]. 应用科技,2004,31(3):63-65.
    [75] 岳林海,樊邦棠.半导体复合体系对表面活性剂及印染废水的光催化降解研究[J].环境污染与防治,1994,6(2):24-26.
    [76] 周晓红,赵秀琴.氧化锌光催化降解六种可溶性染料的研究[J].安庆师范学院学报(自然科学版).2003.9(2):4-6.
    [77] 孙彦刚.纳米ZnO粉体的制备及其光催化性能[J].化学工程师,2006,4:1-2.
    [78] MASAKAZU ANPO.Utilization of TiO2 photocatalysts in green chemistry [J].Pure & Applied Chemistry, 2001, 72(7): 1265-1270.
    [79] WEN T F, GAO J P, SHEN J Y.Preparation and characterization of TiO2 thin films by the sol-gel process [J]. Journal of Materials Science, 2001, 36: 5923-5926.
    [80] S.I.Shah, W.Li, et al. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles [J].PNAS, 2002, 99: 6482-6486.
    [81] Min Cho, Hyenmi Chung, et al. Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO2 Photocatalytic Disinfection [J]. Applied and Environmental Microbiology, 2005, 1(71):270-275.
    [82] 周广阔,冯贵颖,呼世斌等.氧化钛/活性炭纳米光催化剂氧化苯酚的研究[J].西北农林科技大学学报:自然科学版,2006,34(3):78-82.
    [83] 刘超,汤心虎,莫测辉等.低温燃烧合成纳米Ni掺杂TiO2光催化剂的表征及活性研究[J].环境科学, 2006,27(11):2150-2153.
    [84] WANG Bo, MA Hong-zhu, et al. Synthesis of Nanosized NaY Zeolite by Confined Space Method [J]. Chinese Chemical Letters, 2002, 13(4):385-388.
    [85] 施平平 , 王银叶 , 秦永宁等 . 煅烧高岭土制备 X 型纳米沸石分子筛试验研究 [J]. 天津化工,2004,18(3):19-21.
    [86] 沈永德,漆虹,林晓等.NaY 型分子筛膜的合成及表征[J].南京工业大学学报,2006,28(4):22-26.
    [87] 吴杰,秦永宁,马智等.由煤系高岭土合成小颗粒NaY分子筛及其应用[J].化学工业与工程,2006,23(1):18-20.
    [88] 闵恩泽. 超微 NaY 分子筛的合成(Ⅰ) —添加轻稀土离子的影响[J]. 高等学校化学学报,2000,21(9):1353-1358.
    [89] 王永睿,舒兴田,宗保宁等.纳米分子筛的过滤方法[P].CN: 03122854.2, 2004.11.03.
    [90] 刘超,杨良准,杜立芬等.不同金属离子掺杂TiO2薄膜的制备及光催化活性的研究[J].工业催化,2006,14(1):56-60.
    [91] 吴杰,秦永宁,马智等.由煤系高岭土合成小颗粒NaY分子筛及其应用[J].化学工业与工程,2006,23(1):18-20.
    [92] 罗一斌,胡颖,舒兴田等.一种细晶粒超稳Y型分子筛的制备方法[P].CN: 97112269.5, 1999.01.27.
    [93] ZHENG Zhan-wang, LEI Le-cheng, XU Sheng-juan, et al. Heterogeneous UV/Fenton catalytic degradation of wastewater containing phenol with Fe-Cu-Mn-Y catalyst[J]. Journal of Zhejiang University Science, 2004, 5(2): 206-211.
    [94] 杨 春 维 , 王 栋 .Fenton 试 剂 对 亚 甲 基 蓝 氧 化 褪 色 的 反 应 动 力 学 实 验 研 究 [J]. 环 境 技术,2004,24(6):24-29.
    [95] 史载锋,范益群,徐南平等.不同光源对光催化降解亚甲基蓝的影响[J].南京化工大学学报,2000, 22(1):59-63.
    [96] 房 发 俐 , 冯 贵 颖 , 赵 志 萍 等 . 改 进 的 Fenton 法 对 曙 红 Y 的 脱 色 研 究 [J]. 西 北 农 业 学报,2006,15(4):163-166.
    [97] 付川,祁俊生.正交试验优化电镀Zn—Ni—P合金工艺[J].表面技术,2003,32(6):43-45.
    [98] 王文.电解法在油墨废水处理中的应用[J].茂名学员学报,2007,17(3):15-18.
    [99] 肖德瑞,阮复昌.印染废水的混凝脱色实验研究[J].化学反应工程与工艺,2002,18(3):245-259.
    [100] 刘向东,郭鹏,褚衍洋.Fenton试剂氧化苯酚的影响因素与过程研究[J].污染防治技术,2008,21(2): 1-5
    [101] 郝瑞霞.SBR工艺在废水处理中的应用[J].河北科技大学学报,1999,48(1):64-68.
    [102] 张学铭,何北海,李军荣等.pH值和金属阳离子对水性油墨胶体稳定性的影响[J].中国造纸学报,2007,22(1):59-62.
    [103] 王菊霞,舒燕.投药条件对结团凝聚工艺的影响[J].包钢科技,2000,26(4):87-91.
    [104] 莫德清.电絮凝法处理模拟罗丹明B废水的研究[J].化工技术与开发,2006,35(4):40-43.
    [105] 王超,张伶,谢雄飞.印染废水脱色絮凝剂浅析[J].广东化工,2001,1:42-44.
    [106] NORINITO TAMBO H.HOZUMI.physical characteristics of Flocs-ⅡStrength of Floc[J].WaterResearch.1978,13:421-427.
    [107] 刘文亚,吕宝兴,刘国菊.沉降比在活性污泥法处理污水运行管理中的指导作用[A].第四届全国给水排水青年学术年会论文集[C],2000:290-295.
    [108] 计建洪.纺织废水处理工程改造[J].给排水,2008,34(2):70-72.
    [109] 王相金,陈放,郭婉茜等.絮凝—水解酸化—一体化好氧工艺处理印染废水[J].东北农业大学学报,2006,37(6):799-802.
    [110] 黄彩海,李合义,王彩金等.水中饱和溶解氧热力学经验计算式的建立与应用[J].陕西环境,1996,3(2):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700