用户名: 密码: 验证码:
有机废水水解酸化预处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机废水预处理中,水解酸化预处理工艺由于其具有成本低、适应性强、管理方便等特点,现已越来越广泛地被应用,但对于此工艺的一些理论和参数还不是很成熟。本课题在国内外已有研究成果的基础上,对水解酸化工艺进行了进一步的研究,旨在为此工艺的应用提供更有效的理论依据和设计参考。
     本试验通过对污泥的培养与驯化,并进行了性能测定,得到了合格的污泥,然后分三部分对水解酸化预处理工艺进行了理论和实际废水处理的研究。
     首先对水解酸化的影响因素进行了考察。用葡萄糖作唯一的碳源时,得出水解酸化的较适宜工艺条件为pH=6.10~8.02,最佳pH条件为7.0左右,COD_(Cr)浓度最好控制在5000mg/L以下。在pH=7.01、COD_(Cr)=3815.3mg/L条件下,其最大酸化率可达到44.6%,最大酸化度可达到64.6%。通过对产酸过程的分析,运用Monod方程模式,得出水解产酸的动力学参数为:V_(max)=8.42/d,K_s=1256.83mg/L。
     水解酸化预处理可明显提高酱油废水的可生化性。当pH=7.0、HRT=4h时,酱油废水的BOD_5/COD_(Cr)值从0.34提高到0.52,COD_(Cr)去除率可达15.35%。经水解酸化预处理后,同浓度的酱油废水好氧处理效果明显变好,达到COD_(Cr)同样去除60%的时间大约要缩短6小时。
     对于不易好氧和厌氧生物降解的吡啶废水,水解酸化工艺对其也有明显的降解作用。在pH=6.0、HRT=60h时,对于较低浓度的吡啶废水,废水中的吡啶基本上可以全部水解;浓度为102.7mg/L时吡啶可以降解75.27%;对于没经高浓度驯化的污泥,在吡啶浓度为198.4mg/L时,水解酸化降解率仍可达到55.86%。
Based on general survey of the home and foreign study, a further research on anaerobic hydrolysis acidification process for organic wastewater was carried out in order to provide more effective theoretic basis and design advice to its industrial practice.
    Firstly, with the glucose used as the single energy source, the effects of HRT, pH and OL on anaerobic hydrolysis acidification process were studied. The experimental result showed that the optimum condition are pH=7.0 and the influent concentration of CODcr below 5000 mg/L, and the maximum acidification efficient (AE) and acidification degree (AD) were 44.6% and 64.6% respectively under the optimum condition. The kinetics parameters were Vmax=8.42/d and Ks=1256.83 mg/L.
    Then, the process was carried out to pretreat the soy sauce wastewater, and the result indicated that it can obviously improve the biodegradability of the wastewater and shorten the residence time of the aerobic process. Under the condition of pH=7.0 and HRT=4h, the BOD5/CODcr ratio of the soy sauce wastewater was improved from 0.34 to 0.52 and it can shorten the HRT 6 hours in the latter aerobic process.
    Moreover, for the pyridine wastewater, which was hardly degraded by the aerobic and the anaerobic treatment, the process was proved to be a good pretreatment method in this experiment. Under the condition of pH=6.0 and HRT=60h, the pyridine can be degraded completely at influent concentration below 50 mg/L and the percent conversion can reach 75.27% and 55.86% at the influent concentration of 102.7 mg/L and 198.4 mg/L , respectively.
引文
1 顾夏声,废水生物处理数学模式,清华大学出版社,北京,1993(第二版)
    2 贺延龄,废水的厌氧生物处理,中国轻工业出版社,北京,1998
    3 陈新宇,难降解有机物的水解-酸化预处理,化工环保,1996,16(3):152~155
    4 Elias. Ana, Anaerobic treatment of acidified and non-acidified substrata in UASB reactors, Journal of Chemical Technology and Biotechnology 1999, 74 (10): 949~956
    5 Liu, Tuanchi, Anaerobic digestion of solid substrates in an innovative two-phase plug-flow reactor and a conventional single-phase continuously stirred-tank reactor, Water Science and Technology 1998, 38(8): 453~461
    6 Ince. O, Performance of a two-phase anaerobic digestion system when treating dairy wastewater, Water Research, 1998, 32(9): 2707~2713
    7 Charkrabarti. S.K, Biphasic biomethanation of wood-hydrolysate effluent, Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 1999, 27(5):461~467
    8 L. Guerrero, Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein, Water Research, 1999, 33 (15): 3281~3290
    
    
    9 刘义等,水解酸化—气浮—SBR工艺处理乳品废水的研究,环境工程,1998,16(15):19~21
    10 Yilmazer, Gulum, Two-stage anaerobic treatment of cheese whey, Water Science and Technology, 1999, 40(1): 289~295
    11 霍明昕,酸化—SBR法处理啤酒废糟液,中国给水排水,1999,15(10):56~58
    12 Ng.W.J, Effect of acidogenic stage on anaerobic toxic organic removal, Journal of Environmental Engineering, 1999, 125(6): 495~500
    13 Beccari. M, Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents, Water Science and Technology, 1998, 38(4): 53~60
    14 马文林等,土霉素结晶母液酸化水解过程的研究,环境科学,2001,22(5):41~43
    15 沈耀良等,厌氧折流板反应器处理垃圾渗滤混合废水,中国给水排水,1999,15(5):10~12
    16 贾洪斌,挡板式水解酸化池处理印染废水中试试验研究,工业水处理,2001,21(1):39~41
    17 陶有胜,水解酸化-生物接触氧化工艺处理啤酒废水工程实例,环境工程,1998,16(4):20~22
    18 周焕祥,水解酸化-生物接触氧化法处理啤酒污水,工业水处理,1998,18(2):31~33
    19 朱月海,啤酒废水处理工艺及浅析,给水排水,1999,25(1):11~17
    20 卓奋等,水解酸化-序批式活性污泥法在处理屠宰废水工程中的应用,环境工程,1998,16(5):7~9
    
    
    21 许闽明等,水解酸化-生物吸附再生工艺处理肉类加工废水的应用,环境工程,1998,16(3):11~13
    22 丁春生等,大型针织印染废水处理工程的设计与运行,环境工程,2001,19(4):60~62
    23 曾丽璇等,优势菌处理印染废水中水解池的脱色机理,中国环境科学,1998,18(5):423~426
    24 支蓉蓉,厌氧-好氧-生物炭系统处理印染废水实例,环境导报,1999,4:19~21
    25 相会强等,水解酸化—生物接触氧化工艺处理制药废水,给水排水,2002,18(1):54~56
    26 袁欣波等,HA-SBR法在中成药废水处理中的应用,工业用水与废水,2000,31(5):26~28
    27 国家环保局《水和废水监测方法》编委会,《水和废水监测方法》(第三版),1989
    28 《PHS-25型pH计使用指南》,上海雷磁仪器厂
    29 戴友芝等,含五氯酚废水的生物降解性和微生物毒性试验,环境科学,2000,21(2),40~45
    30 李亚新等,紫外分光光度法测定焦化废水的主要污染物,中国给水排水,2001,17(1):54~56
    31 L. Gueerrero, Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein, Water Researcher, 1999, 33(15), 3281~3289
    32 王宝泉等,厌氧酸化法的启动及控制因素探讨,西安建筑科技大学学报,1997,29(2):142~146
    33 许保玖等,当代给水与废水处理原理(第二版),高等教育出版社,北京,2000
    34 [美]R.E.斯皮思著,李亚新译,工业废水的厌氧生物技术,中国建筑工业出版社,北京,2001
    
    
    35 胡鹏嘉,中日酱油文化比较,中国调味品,2002,(4),3~5
    36 鲁肇元,酱油生产技术,中国调味品,2002,(1),43~46
    37 王福源主编,现代食品发酵技术,轻工业出版社,北京,1998
    38 马承愚等,酱油废水处理工程,给水排水,1995,21(11),21~23
    39 孙椿年,采用生物转盘法的水处理实例,西南给排水,1996,(3),35~39
    40 杨宝林等,生物转盘技术简介,西南给排水,1991,6,(2):20~22
    41 林中煌,调味食品厂的废水处理,中国调味品,1998,(6),30~31
    42 杨云龙等,焦化废水中几种典型难降解有机物的特性研究及处理技术,重庆环境科学,2001,23,(4):39~41
    43 申海虹,缺氧反硝化去除难降解杂环化合物吡啶研究,上海环境科学,2001,20,(11):530~533
    44 何苗等,杂环化合物好氧生物降解性能与其化学结构相关性的研究,中国环境科学,1997,17,(3):199~202
    45 何苗等,杂环化合物好氧生物降解性能的研究,中国环境科学,1997,17,(6):481~484
    46 葛红光等,污泥驯化和共代谢对吡啶和苯降解特性的研究,上海环境科学,2002,21(3):169~171
    47 申海虹等,缺氧反硝化去除难降解杂环化合物吡啶研究,上海环境科学,2001,10(11):530~533
    48 张晓健等,杂环化合物及多环芳烃厌氧酸化降解性能的研究,中国给水排水,1997,13(3):13~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700