用户名: 密码: 验证码:
生化/芬顿试剂氧化组合工艺处理印染废水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水具有污染物浓度高、色度大、成分复杂和水质水量多变等特点,是一种较难处理的有机工业废水。为此在实验室中进行水解酸化—好氧生物接触氧化—Fenton试剂氧化法处理印染废水试验研究,通过分析处理过程中的COD、色度等污染指标的去除效果和变化规律,检验该工艺的处理效果,得出该工艺的设计和控制参数。
     首先,进行水解酸化—好氧生物接触氧化法处理印染废水试验研究。试验装置前段设置水解酸化单元,目的在于提高废水可生化性和去除色度,从而为后续处理创造有利条件。后续为两级生物接触氧化单元,主要起去除COD、BOD5的作用。
     分别以活性艳蓝KN-R染料废水和活性艳红K-2BP、活性艳橙X-GN、直接大红4BS配置的混合染料废水为原水进行了水解酸化—生物接触氧化反应器的挂膜启动,运行结果表明,用该工艺分别处理活性艳蓝KN-R染料废水和混合染料废水,系统运行稳定,得到了很好的处理效果,出水水质前者达到《纺织染整工业水污染物排放标准(GB4287-92)》中的一级标准,后者达到二级标准。
     通过正交试验对影响水解酸化-生物接触氧化反应器运行效果的因素如进水流量(水力停留时间)、一级生物接触氧化柱气水比和二级生物接触氧化柱气水比进行了影响分析,正交试验结果表明,影响废水处理效果的因素主次顺序为:进水流量(水力停留时间)>一级生物接触氧化柱气水比>二级生物接触氧化柱气水比。以COD去除率和色度的去除率为评价指标,采用综合评分法中的指标叠加法,将多指标问题转化为单指标问题,得出了反应器处理活性艳蓝KN-R染料废水的最佳运行条件:进水流量10L/h(反应器总的水力停留时间30h),一级生物接触氧化柱气水比8:1,二级生物接触氧化柱气水比7.2:1。反应器处理混合染料废水的最佳运行条件:进水流量5L/h(反应器总的水力停留时间60h),一级生物接触氧化柱气水比为11:1,二级生物接触氧化柱的气水比为9:1。
     进行了水解酸化—生物接触氧化—芬顿试剂氧化工艺处理偶氮胭脂红G废水试验研究,结果表明该工艺处理偶氮胭脂红G废水是可行的。当进水COD为724.6mg/L,色度为300倍时,出水COD小于50mg/L,色度小于30倍,不但达到国家标准《纺织染整工业水污染物排放标准(GB4287—92)》中的一级标准,而且达到要求更高的江苏省地方标准《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值(DB32/T1072—-2007)》以及山东省地方标准《山东省纺织染整工业水污染物排放标准(DB37/533—2005)》。
     根据莫诺(Monod)方程,在假设水解酸化—生物接触氧化处理偶氮胭脂红G废水系统中单个反应池是一个完全混合的稳态反应器的条件下,推导了该系统中单个反应池生化反应的动力学方程,通过试验测定和线性回归方程确定了动力学方程中的相关参数,得到水解酸化池生化反应的动力学方程为v=0.3096(Le-0.4238)(d-1),一级生物接触氧化池生化反应的动力学方程为v=0.4532(Le-0.0647)(d-1),二级生物接触氧化池生化反应的动力学方程为v=0.2882(Le-0.0647)(d-1)。
     在温度保持不变的条件下,Fenton氧化降解偶氮胭脂红G的反应影响因素主要有:初始pH值、染料初始浓度、亚铁离子初始浓度以及过氧化氢初始浓度。在反应初始pH值保持不变的条件下,根据化学反应动力学原理,建立了Fenton氧化降解偶氮胭脂红G的动力学模型,通过试验测定Fenton氧化反应过程中各时间段的染料浓度,计算出动力学模型中的参数,从而得到Fenton氧化降解偶氮胭脂红G的动力学方程为v=-dC/dt=0.0228C0.9050R0.5150S0.3478(mg L-1min-1)。
Printing and dyeing wastewater contained high concentration of pollutant, high chromaticity and complex component. And its quality and quantity changes frequently. So it is a kind of organic industrial wastewater which is difficult to treat. In this paper, hydrolytic acidification-biological contact oxidation-Fenton's reagent oxidation processes were used to treat printing and dyeing wastewater in the laboratory. The effective design and control parameters of the processes were found out by analyzing the removal efficencies, variation of COD and chromaticity in the processes.
     Firstly, the experiment on hydrolytic acidification-biological contact oxidation processes to treat printing and dyeing wastewater was carried out. Hydrolytic acidification cell in the first part was used to improve biodegradability of the wastewater and reduces chromaticity, which was benefical for subsequent treatment. Two subsequent biological contact oxidation stages was aimed mainly to reduce COD and BOD5.
     Hydrolytic acidification-biological contact oxidation processes were started up to treat two kinds of printing and dyeing wastewater, i.e. reactive brilliant blue KN-R dye wastewater and mixed dyes wastewater which contained reactive brilliant red K-2BP, reactive brilliant orange X-GN and direct scarlet4BS. The results showed that the system run well, and the effluent qualities respectively meet standard I and standard Ⅱ of 《Discharge standard of water pollutants for dyeing and finishing of textile industry(GB4287-92)》
     By orthogonal tests the impacts of reactor effect factors such as influent flow (hydraulic retention time), gas water ratio of the first and the secondary bio-contact oxidation column were analyzed. The final results showed that influent flow is the most prominent effect factor, followed by gas water ratio of the first bio-contact oxidation column and gas water ratio of the secondary bio-contact oxidation column.
     Selecting the removal rate of COD and color as evaluation indexes, multi-index problem was transformed into a single index problem by the index overlay method. The best operation conditions of the reactor to treat reactive brilliant blue KN-R dye wastewater were obtained, which are:influent flow=10L/h (hydraulic retention time =30h), gas water ratio of the first bio-contact oxidation column=8:1, and gas water ratio of the secondary bio-contact oxidation column=7.2:1. The best operation conditions of the reactor to treat mixed dyes wastewater are:influent flow=5L/h (hydraulic retention time=60h), gas water ratio of the first bio-contact oxidation column=11:1. gas water ratio of the secondary bio-contact oxidation column=9:1.
     Secondly, the experiment on hydrolytic acidification-biological contact oxidation-Fenton's reagent oxidation processes to treat azocarmine G wastewater was carried out. The results showed it was a feasible process for treating azocarmine G wastewater, with effluent COD and chromaticity of less than50mg/L and30, respectively. The effluent qualities not only meet standard I of 《Discharge standard of water pollutants for dyeing and finishing of textile industry(GB4287-92)》, but also meet two more stringent local discharge standard of water pollutants for dyeing and finishing of textile industry standards of Jiangsu Province and Shandong Province.
     According to the Monod equation, when the single reaction cell in the hydrolytic acidification-biological contact oxidation processes to treat azocarmine G waste water was assumed as a completely mixed steady-state reactor, its kinetic equation was derived and the relevant parameters of the equation were determined by experimental measurements and linear regression equations. The kinetic equation of biochemical reaction in the hydrolytic acidification cell was v=0.3096(Le-0.4238)(d-1). The kinetic equation of biochemical reaction in the first biological contact oxidation cell was v=0.4532(Le-0.0647)(d-1). The kinetic equation of biochemical reaction in the secondary biological contact oxidation cell was v=0.2882(Le-0.0647)(d-1).
     When temperature remained unchanged, the influencing factors of Fenton oxidative degradation of azocarmine G are:initial pH, initial dye concentration, initial concentration of ferrous ions and initial concentration of hydrogen peroxide. When initial pH remained unchanged, the apparent kinetic model of Fenton oxidative degradation of azocarmine G was derived. Then the parameters of the model were calculated by measuring the dye concentrations in different time when the reaction of Fenton oxidative degradation of azocarmine G was conducted. The kinetic equation of reaction of Fenton oxidative degradation of azocarmine G was v=-dC/dt=0.0228C0.9050R0.5150S0.3478(mg L-1min-1)。
引文
[1]戴日成,张统,郭茜,等.印染废水水质特征及处理技术综述[J].给水排水,2000,26(10):33-37.
    [2]黄长盾,杨西昆,汪凯民.印染废水处理[M].北京:纺织工业出版社,1987.
    [3]朱虹,孙杰,李剑超.印染废水处理技术[M].北京:纺织工业出版社,2004.
    [4]杨书铭,黄长盾.纺织印染工业废水治理技术[M].北京:化学工业出版社,2002.
    [5]Slokar Y M, Le Marechal A Majcen. Methods of decoloration of textile wastewaters [J]. Dyes and Pigments,1998,37(4):335-356.
    [6]韩月,卢徐节,陈方雨,等.印染废水处理技术现状研究[J].工业安全与环保,2008,34(7):12-14.
    [7]刘旭东,胡桂玲,解英丽,等.改性粉煤灰处理印染废水的试验研究[J].工业安全与环保,2008,34(4):14-16.
    [8]严煦世,范瑾初.给水工程[M].中国建筑工业出版社,1999.
    [9]苏威.无机絮凝剂发展与建议[J].工业水处理,1993,13(1):3-7.
    [10]卢俊瑞.溴氨酸活性染料生产废水治理[J].工业水处理,1999,19(3):20-21.
    [11]汪学英,曾小君,郑珺.新型脱色絮凝剂(KD-800)处理印染废水的研究[J].工业用水与废水,2004,35(3):78-81.
    [12]杜仰民.印染废水铁盐絮凝脱色的研究[J].给水排水,1992.8(5):20-22.
    [13]苏玉萍,奚旦立.活性染料印染废水混凝脱色研究[J].上海环境科学,1999,18(2):88-90.
    [14]陈凌,沙琳,张正红,等.聚硅酸铝铁(Ⅱ)镁混凝剂的制备及其对印染废水的处理[J].水处理技术,2011,37(12):42-45
    [15]王海龙,张玲玲,王新力,等.臭氧氧化工艺在印染废水处理中的应用进展[J].工业水处理,2011,31(7):18-21
    [16]Faria P C C, Orfao J J M, Pereira M F R. Mineralization of Substituted Aromatic Compounds by Ozonation Catalyzed by Cerium Oxide and a Cerium Oxide-activated Carbon Composite[J]. Catal. Lett.,2009,127(1-2):195-203
    [17]Lucas M S, Peres J A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation [J]. Dyes and Pigments,2006,71(3):236-244.
    [18]Arslan I, Balcioglu I A, Bahnemann D W. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes[J]. Dyes and Pigments,2000,47(3):207-218.
    [19]Tryba B, Piszcz M, Grzmil B, et al. Photodecomposition of dyes on Fe-C-TiO2 photocatalysts under UV radiation supported by photo-Fenton process[J]. Journal of Hazardous Materials, 2009,162(1):111-119.
    [20]Nerud F, Baldrian P, Gabriel J, et al. Decolorization of Synthetic Dyes by the Fenton Reagent and the Cu/pyridine/H2O2 System [J]. Chemosphere,2001,44:957-961.
    [21]相欣奕,郑怀礼,甄卓廉.光助Fenton反应降解水溶性染料曙红Y脱色研究[J].能源环境保护,2006,20(1):27-30.
    [22]雷乐成.光助Fenton氧化处理PVA退浆废水的研究[J].环境科学学报,2000,20(2):139-144.
    [23]郑怀礼,彭德军,李宏,等.光助Fenton催化氧化反应降解孔雀石绿试验研究[J].光谱学与光谱分析,2007,27(5):1006-1009.
    [24]Akbari A, Remigy J C, Aptel P. Treatment of textile dye effluent using a polyamide-based nanofiltration membrane[J]. Chemical Engineering and Processing,2002,41(7):601-609.
    [25]郭豪,宋淑艳,张宇峰,等.纳滤膜在印染废水处理中的应用研究[J].天津工业大学学报,2007,26(1):28-31.
    [26]范苏,邱鸣慧,周邢,等.多通道Ti02超滤膜的制备及其在印染废水中的应用[J].南京工业大学学报(自然科学版),2011,33(1):44-47.
    [27]曾杭成,张国亮,孟琴,等.超滤/反渗透双膜技术深度处理印染废水[J].环境工程学报,2008,2(8):1021-1025.
    [28]Hung Hui-Ming, Hoffmann Michael R. Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons:Frequency effects[J]. Journal of Physical Chemistry A,1999, 103(15):2734-2739.
    [29]吴文军.用超声波气振技术处理染料废水[J].污染防治技术,1994,7(1):26-27.
    [30]陶媛,胡祺昊,王黎明,等.超卢技术降解染料废水的实验研究[J].高电压技术,2002,28(120):47-48.
    [31]Simonsson D. Electrochemistry for cleaner environment[J]. Chem. Soc. Rev.,1997, 26(3):181-189.
    [32]史亚君,张婉佳.电解—内电解复合处理印染废水的试验研究[J].上饶师范学院学报,2004,24(6):50-54
    [33]温学友,张燕君,杨景亮.接触氧化-电解工艺处理印染废水[J].环境工程,2003,21(4): 18-19
    [34]Sahinkaya E, Uzal N, Yetis U. Biological treatment and nanofiltration of denim textile wastewater for reuse[J]. Journal of Hazardous Materials,2008,153(3):1142-1148.
    [35]Khelifi E, Gannoun H, Touhami Y. Aerobic decolourization of the indigo dye-containingtextilewastewater using continuous combined bioreactors[J]. Journal of Hazardous Materials,2008,152(2):683-689.
    [36]李旭东,杨俊仕,李国欣,等.活性污泥-接触氧化法处理印染废水[J].环境工程,2003,21(1):21-24.
    [37]方旭,付振强,韩宏大.复合式好氧生物法处理印染废水[J].环境保护科学,2004,30(3):20-23.
    [38]鲁玉龙.厌氧-好氧工艺处理印染废水技术的现状及发展[J].污染防治技术,1998,11(1):12-14.
    [39]戚新.气浮-厌氧-好氧工艺处理高浓度印染废水[J].环境污染与防治,1997,19(1):16-19.
    [40]肖文胜,徐文国,杨桔才.水解酸化/曝气生物滤池处理印染废水试验研究[J].北京理工大学学报,2004,24(11):1009-1011.
    [41]朱怀兰,史家樑,张明.生物难降解有机污染物微生物处理技术的进展[J].上海环境科学,1997,16(3):10-12.
    [42]张旭,陈胜,孙德智.印染废水生物法处理技术研究进展[J].长春工业大学学报(自然科学版),2009,30(1):26-32.
    [43]Brahimi-Horn M -C, Lim K -K, Liang S -L, et al. Binding of textile azo dyes by Myrothecium verrucaria[J]. Journal of Industrial Microbiology,1992,10(1):31-36.
    [44]Wang Yuxin, Yu Jian. Adsorption and degradation of synthetic dyes on the mycelium of Trametes versicolor[J]. Water Science and Technology,1998,38(4-5):233-238.
    [45]乐毅全,王士芬,朱核光.脱色菌腐败希瓦氏菌的分离及其脱色性能研究[J].环境科学与技术,2004,27(3):14-15.
    [46]董卫华,杨健,张淑芬,等.纯氧曝气的研究进展[J].中国资源综合利用,2006,24(11):28-30.
    [47]肖羽堂,许建华,陈伟,等.难生化降解的某丝绒印染废水处理新工艺(A/O2)工程应用研究[J].工业水处理,1999,19(3):14-16.
    [48]娄金生,姜广信,于连清,等.酸化水解—接触氧化—生物炭法处理印染废水的应用[J].给水排水,1997,23(2):28-31.
    [49]李盼,李方.印染废水处理工艺升级改造工程实例[J].水处理技术,2011,37(12):134-136.
    [50]Fenton H J H. Oxidation of tartaric acid in the presence of iron [J]. J. Chem. Soc.,1894, 65:899-910.
    [51]阎克路,宋心远,Schaefer K,等.牦牛绒选择性漂白工艺的研究[J],纺织学报,2002,23(]):7-9.
    [52]李景川,王雪燕.大豆蛋白织物的选择性漂白[J].印染,2002,(8):8-10.
    [53]Tripathi G N R. Electron-transfer component in hydroxyl radical reactions observed by time resolved resonance Raman spectroscopy[J]. Journal of the American Chemical Society, 1998,120(17):4161-4166.
    [54]Barb W G, Baxendale J H, George P, et al. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II. The ferric ion reaction[J]. Transactions of the Faraday Society, 1951,47:591-616
    [55]Kremer M L, Stein G. The catalytic decomposition of hydrogen peroxide by ferric perchlorate[J]. Transactions of the Faraday Society,1959,55:959-973.
    [56]Kremer M L. Complex versus free radical mechanism for the catalytic decomposition of H2O2 by ferric ions[J]. International Journal of Chemical Kinetics,1985,17:1299-1314.
    [57]Koppenol W H. The centennial of the Fenton reaction. Free Radical Biology and Medicine, 1993,15(6):645-651.
    [58]谢银德,陈锋,何建军,等Photo-Fenton反应研究进展[J].感光科学与光化学,2000,18(4):357-365.
    [59]刘冬莲,黄艳斌.·OH的形成机理及在水处理中的应用[J].环境科学与技术,2003,26(1):44-46.
    [60]张林竹Fenton试剂处理印染废水的实验研究[硕十学位论文].武汉理工大学,2009.
    [61]Dong Y H, Fujii H, Hendrich M P, et al. A high-valent nonheme iron intermediate structure and properties of [Fe2(μ-O)2(5-Me-TPA)2](ClO4)3[J]. J. Am. Chem. Soc.,1995,117(10): 2778-2792.
    [62]Walling C, Kato S. The oxidation of alcohols by Fenton's reagent:The effect of copper ion[J]. J. Am. Chem. Soc.,1971,93(17):4275-4281.
    [63]Walling C, Goosen A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide:Effect of organic substrates[J]. J. Am. Chem. Soc,1973,95(9): 2987-2991.
    [64]Eckenfelder W W. Inderstrial Water Pollution Control[M]. New York:McGraw-Hill Book ComPany,1989.
    [65]郑元景.污水厌氧生物处理[M].北京:中国建筑工业出版社,1988.
    [66]郑元景,沈光范,邬扬善.生物膜法处理污水[M].北京:中国建筑工业出版社,1983.
    [67]上海市环境保护局.废水生化处理[M].上海:同济大学出版社,1999.
    [68]余淦申.生物接触氧化处理废水技术[M].北京:中国环境科学出版社,1991.
    [69]赵健良,童昶,沈耀良.厌氧(水解酸化)—好氧生物处理工艺及其在我国难降解有机废水处理中的应用[J].苏州大学学报(工科版),2002,22(2):84-88.
    [70]魏复盛.《水和废水监测分析方法》(第四版)[M].北京:中国环境科学出版社,2002.
    [71]金建华,王松.水解酸化与生物接触氧化挂膜探讨[J].中国农村水利水电,2006,(12):56-57.
    [72]王松.水解酸化—生物接触氧化工艺处理印染废水的试验研究[硕士学位论文].武汉理工大学,2005.
    [73]鲍雅菊.接触氧化法处理工业废水运行的条件控制[J].污染防治技术,1994,7(1):43-44.
    [74]国家环境保护局.环境工程治理技术丛书之纺织工业废水治理[M].北京:中国环境科学出版社,1991.
    [75]谭洋.水解酸化—生物接触氧化法处理水溶性染料废水的试验研究[硕士学位论文].武汉理工大学,2007.
    [76]柴晓煜.水解酸化—生物接触氧化法处理印钞废水的试验研究[硕士学位论文].武汉理工大学,2006.
    [77]赵炜.水解酸化—生物接触氧化法处理印染废水影响因素的研究[硕十学位论文].武汉理工大学,2009.
    [78]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社,2003.
    [79]张自杰.排水工程(下册))(第4版)[M].北京:中国建筑工业出版社,2000.
    [80]顾夏声,李献文,俞毓馨.水处理微生物学基础[M].北京:中国建筑工业出版社,1987.
    [81]柳广飞,周集体,王竞,等.细菌对偶氮染料的降解及偶氮还原酶的研究进展[J].环境科学与技术,2006,29(4):112-114.
    [82]全燮,杨风林,李和平.几种偶氮染料生物降解性研究[J].环境科学,1991,12(3):27-30.
    [83]李芸UV-Fenton/纳米Ti02催化氧化法处理印染废水的研究[硕士学位论文].武汉理工大学,2010.
    [84]朱虹.印染废水生物处理中剩余污泥减量化技术研究[博十学位论文].东华大学,2005.
    [85]天津大学物理化学教研室.物理化学[M].高等教育出版社,2001.
    [86]李宏Fenton高级氧化技术氧化降解多环芳烃类染料废水的研究[博十学位论文].重庆大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700