用户名: 密码: 验证码:
大型混流式机组水电站厂房结构水力激振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水轮发电机组的容量和尺寸日趋增大,普遍出现在某些工作区域内机组振动过大的现象。这种振动不仅影响机组的自身稳定,也引发厂房建筑物强烈振动,其中最为突出的是大型混流式机组厂房的水力共振。本文初步探讨了水力脉动引起机组乃至厂房结构振动可能性。并以三峡水电站厂房结构振动为例,采用非定常湍流数值模型分析的大涡模拟方法进行了混流式机组的水力振源模拟,并采用频谱分析方法分析振源的频谱特性;分析了厂房结构的自振特性和水力激振载荷作用下的动力响应(谐响应)分析;通过对以上结果的综合考虑得出水电站厂房结构在水力激振载荷作用下的最不利频率段和空间位置。
     此文的研究成果,可应用于与三峡机组类型相同的水电站厂房。
     文中各章节内容如下:
     第一章介绍了厂房振动问题的研究现状和本文研究的主要内容。
     第二章介绍了湍流模拟仿真原理,通过不同模拟方法在求解精度、求解消耗和对求解目的适用性等方面的比较,并通过弯管算例论证:大涡模拟(LES)方法是目前计算湍流场中脉动信息的最好方法。
     第三章对三峡水电站尾水管进行了三维非定常湍流模拟,并对脉动压力进行频谱分析,得出脉动压力的频率成分和相应的幅值。
     第四章对三峡水电站厂房结构进行了精确模态分析,利用尾水管室湍流场模拟的成果分别进行了竖向激振载荷、横向激振载荷作用时在16Hz~40Hz频率段的谐响应分析。
Today, the capacity of the water turbo-generator set is larger gradually. The phenomenon of excessive vibration in some load area is founded ubiquitously. This kind of vibration not only affects the reliability of generator unit, but also arouses violence vibration of powerhouse structure, the most outstanding is hydraulic resonance in large-sized Francis turbine. It is discussed elementarily in this paper, that the probability of the fluctuation of waterpower arouses the vibration of generator unit so much as the vibration of powerhouse structure. And the following research is made on the structure vibration of the Three Gorges Hydropower House: Using Large Eddy Simulation method of unsteady turbulent flow numerical analysis to make hydro vibration source simulation for interflow unit of the Three Gorges Hydropower; using frequency spectrum analysis method to analyze the frequency spectrum features; Analyzing structure self-vibration features and dynamic response (harmonic response) under the effect of hydr
    o excitation load. Through comprehensive consideration to above results, we can conclude the worst frequency and space location of the Three Gorges Hydropower house under the effect of hydro excitation load.
    The research result can be applied on other hydropower house whose turbine-generator set has the same type as Three Gorges Hydropower House' s
    The main contents of this paper are listed as below:
    In chapter 1, current research situation on hydropower house vibration
    11
    
    
    and main contents of this paper are introduced.
    In chapter 2, turbulent simulation theory is introduced. Through comparing different simulation methods on result precision, resolving consumption and result purpose adaptability, After simulated the the curved tube we can say that Large Eddy Simulation(LES) is regarded as the best method at present to simulate the pulsation information in turbulent field.
    In chapter 3, three dimensions unsteady turbulent flow numerical simulation is used for tail tube of the Three Gorges Hydropower, and frequency spectrum analysis is made for pulsation pressure, therefore frequency and corresponding amplitude of pulsation pressure is concluded.
    In chapter 4, precise modal analysis is carried out for the Three Gorges Hydropower House structure. By using the result from turbulent field simulation in tail tube chamber, harmonic response analysis are carried out respectively on vertical excitation load , transverse excitation load in 16Hz~40Hz frequency sect.
引文
[1]马福喜.三维紊流数值研究.水动力学研究和进展.1993.
    [2]刘清朝.水跃紊流特性的数值研究.水利学报.1993.
    [3]是勋刚.湍流直接数值模拟的进展与前景[J].水动力学研究与进展(A辑),1992:7(1):3-109.
    [4]杨建明等.用大涡模拟方法计算尾水管内非定常周期性湍流[J].水利学报,2001:(8):79-84
    [5]金忠青.N-S方程的数值解和湍流模型[M].南京:河海大学出版杜,1989
    [6]梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999.
    [7]张兆顺 湍流,北京:国防工业出版社,2002
    [8]Moore, J., Moore, J. G., Calculations of Three-Dimensional Viscous Flow and Wake Developent in aCentrifugal Impleller. j. Eng. for Power, ASME, VOL. 103, April 1981.
    [9]B.J. Boersma, F. T. M. Nieuwstadt. Large-Eddy Simulation of Turbulent Flow in a Curved Pipe[J]. Transactions of the ASME, 1996, 118(1): 248-254.
    
    
    [10]Bardin J., Ferziger J. H., Reynolds W. E; Improved Subgrid Scale Models for Large Eddy Simulation. AIAA Paper. 1980, 80-1357
    [11]Vu T.C., Shyy W., Navier-Stokes flow analysis for hydraulic turbine draft tubes[J]. J of Fluid Eng, 1990, 112: 199-204.
    [12]adabhushi R. K., Vanka S. P. Large-Eddy Simulation on Turbulence-Driven Secondary Flow in Square Duct[J]. Phys. Fluids, A., 1991; 3(11): 2734-2745.
    [13]Su, M. D., Test of SGS-model in LES of inner turbulent flow, International Congress of Fluid Mechanics and Theoretical Physics, Beiging, 1992.
    [14]F. Sotiropoulos, et al. A computational comparison of two incompressible Navier-Stokes solvers in three-dimensional laminar flows[J]. Computers Fluids, 1994,23(4):627-646.
    [15]B. J. Boersma, F. T. M. Nieuwstadt. Large-Eddy Simulation of Turbulent Flow in a Curved Pipe[J]. Transactions of the ASME, 1996, 118(1): 248-254.
    [16]王泉龙.浅谈水轮机振动的研究[J].大电机技术,2001;(7):12-14.
    [17]三峡总公司技术委员会.岩滩水电站厂房振动问题考察报告[R].1997年4月.
    [18]唐培甲.岩滩水电站水轮机振动问题的研究[J].红水河,2000;19(3):59-62.
    [19]袁蕊.五强溪水电厂机组振动原因分析与处理[J].华中电力,1998;11(5):38-41.
    [20]黄源芳.三峡机组设计性能及结构特点[J].人民长江,2001;32(5):1-3.
    [21]何捍东.天生桥一级水电站水轮机振动原因分析[J].红水河 2001;20(4):61-73
    [22]HT.依泰普水轮发电机组的振动分析[J].国外大电机 1984;3
    [23]赵德海.巨型压力钢管取消厂坝间伸缩节研究及厂房结构静动力分析[D].博士学位论文.大连:大连理工大学,2001.
    [24]彭新民,崔广涛.漫湾水电站厂房泄洪振动的模拟研究[J].水利水电技术,2001;32(7):44-48.
    [25]潘家铮.中国水利建设成就、问题和展望[J].中国工程科学,2002;4(2):42-51.
    [26]金钟元,伏义淑.水电站.中国水利水电出版社.1994.
    [27]东北水利水电学校编.水轮机[M].北京:电力工业出版社,1980.
    [28]沈可.水电站厂房结构振动研究.广西大学博士论文.2002.
    [29]Vu T.C., Shyy W., Navier-Stokes flow analysis for hydraulic turbine draft tubes[J]. J of Fluid Eng, 1990,112:199-204.
    [30]中国科学院、水利电力部.水轮机水力振动译文集.水利水电出版社.1979
    [31]王辉.大型水轮机振动分析及粘性流体和弹性结构耦合的有限元格式.清华大学博士论文.1997.
    [32]董毓新,李彦硕.水电站建筑物结构分析[M].大连:大连理工大学出版社,1995.
    [33]马震岳.水轮发电机组及压力管道的动力特性[D].博士学位论文.大连:大连理工大学,1988.
    [34]彭新民,崔广涛.漫湾水电站厂房泄洪振动的模拟研究[J].水利水电技术,2001;32(7):44-48.
    [35]陆宗磐.中国水电站厂房设计和展望[J].水利水电工程设计,2000;19(4):1-3.
    
    
    [36]高建铭,林洪义,杨永萼.水轮机及叶片泵结构[M].北京:清华大学出版社,1992
    [37]2-301[苏] И200-54动荷载作用下的建筑物承重结构设计与计算规范[S]..
    [38]2-302[苏] E.C.索罗金.厂房承重结构动力计算[M].北京:中国工业出版社,1963.
    [39]2-303 刘启年.肋形楼板的振动计算[J].西安冶金建筑学院学报,1983;(3):1-12.
    [40]2-304 陈少峰,郭长城.实际多层厂房振动层间影响的计算和分析[J].哈尔滨建筑工程学院学报,1990;23(1):69-84.
    [41]2-305YBJ 55-90,YSJ009-90 机器动荷载作用下建筑物承重结构的振动计算和隔振设计规程[S].北京:冶金工业出版社,1990.
    [42]2-306GB50190-93 多层厂房楼盖抗微振设计规范[S].北京:中国计划出版社,1994.
    [43]温科伟.大型灯泡贯流式机组的振动、优化及在随机荷载下响应的分析[D].博士学位论文.大连:大连理工大学,1994.
    [44]王辉.大型水轮机振动分析及粘性流体与弹性结构耦合的有限元格式[D].博士学位论文.北京:清华大学,1997.
    [45]姜培林.推力轴承对转子系统横向振动的影响及水轮发电机组轴系动力特性的研究[D].博士学位论文.西安:西安交通大学,1998.
    [46]路观平.随机脉动水压力作用下的结构响应[J].水利学报,1993,(12):70-75.
    [47]顾鹏飞,喻远光.水电站厂房设计[M].北京:水利电力出版社,1987.
    [48]王珂嵛.水力机组振动[M].北京:水利电力出版社,1986.
    [49]SL266—2001 水电站厂房设计规范[S].
    [50]红石水电站机组振动及诱发厂坝振动分析[J].水力发电,2000.9
    [51]水利水电科学研究院.水轮机水力振动译文集[M].北京:水利电力出版社,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700