用户名: 密码: 验证码:
现代水利水电工程中调压设施系统的动态模拟及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代水利水电工程中调压设施的内部流动十分复杂,物理模型试验方法的相似准则难以同时满足,所以数值模拟成为对水利水电系统动态特性研究的重要手段。因此论文主要通过数值模拟对带有变顶高尾水隧洞、气垫式调压室、虹吸断流等调压设施的水利水电工程过渡过程进行了深入的研究,并对带有调压室的复杂管系水轮机调节系统建立了状态方程,得出了对工程设计及动态仿真研究很有参考价值的结论。
    论文对溪洛渡、向家坝等具有明满交替流的电站进行了过渡过程计算,特别是对向家坝水电站进行了变顶高尾水洞和尾水调压室的方案比选。研究表明,在尾水隧洞长度小于一定值时,可以采用一定坡度的变顶高尾水洞代替尾水调压室,这样不仅节约投资,而且从大小波动的特性来看有些指标还优于尾水调压室方案;研究表明尾水洞洞顶坡度对隧洞中明满交替流产生的最大压力有显著的影响,适当加大坡度可明显减小压力极值;明满交替流最大压力发生的工况是人们关心的重要问题,研究表明在下游水位稳态线交于尾水隧洞洞顶线中部附近且流量最大时的甩全负荷工况是其极值产生的工况。
    虹吸式泵站虹吸断流模型的建立是复杂引水提水工程动态仿真中的重要问题,本文提出了建立仿真数学模型的方法------虚拟控气溢流式调压井模拟法。研究中虽然对水流挟气能力进行了线性假设,但是结果基本符合泵站的实际运行情况,能较准确的模拟出启动和停机情况下泵转速和扬程变化过程,具有一定的参考价值。
    论文结合有气垫式调压室的水电站进行仿真,提出了计算调压室水位极值时应假设气室内气体满足恒温条件,而计算压力极值时应假设其满足绝热条件,其体积设计应以小波动稳定时的气室体积为准,这对气垫式调压室型体设计将产生重要影响。
    论文推导出了带有调压室的复杂管系水轮机调节系统的状态方程,从而为判别该类调节系统的稳定性及最优控制的设计、优化调节参数、改善电力系统中机组的动态品质打下了基础。
The Press-Regulation facilities have very important function in water and hydraulic engineering.But for the resemble standards of complex flow hard to meet the demand,this limit the method of model experiment,so the method used to demonstrate feasibility of Press-Regulation facility is mainly numeric simulation.According to these, transient simulations of several water and hydraulic engineerings with Press-Regulation facility has been studied. Such as Air-Cushioned Surge Chamber , Inclined Ceiling Tailrace, Siphonic Pump Station. And then some reference conclusions are offered.
    Transient simulations of several hydropower stations with mixed Free-Surface-Pressure flow such as Xiangjiaba and Xiluodu are studied.Also surge plan is compared with inclined ceiling tailrace plan for Xiangjiaba station.The result declare that when tailrace is short than some length, the surge can be replaced by inclined ceiling tailrace,for this is less investment and better property.The inclination of tailrace has noticeable influence for the max press in tailrace.Enlarge the inclination properly can decrease the max press. Max press appear at the case that when the downstream waterline is about locate the centeral part of the tailrace ceiling.
    In siphonic pump station system, the state of water flow and the siphonic process is very complex at the section of siphonage,and there is not a satisfactory model untill now.In this paper a new model has been offered.This model is base on the method of simulating the section of siphonage with spilling surge tank.And then dynamic simulate models of the siphonic pump station system was offered. With these models, transient simulation of a pump station of interior diversion work is studied, and results meet the actual in pump station.This has a important reference value in some measure.
    Transient simulations of hydropower station with Air-Cushioned Surge Chamber declare that the gas in air chamber match heat insulation condition when calculate the max press of system,and match constant temperature condition when calculate the max level of Surge Chamber.The design of air chamber's volume should base on the
    
    volume which system is steady when small wave occur.This has significant influence to design of air chamber's volume.
    State equation of hydropower station with surge is build in the article.The stability of the turbine regulating system and it's dynamic characters can be determined and analysed,which can provide the basis for readjustment of the regulating parameter.
引文
[1] Air cushion surge chambers Source: Chalmers Tekniska Hogskola, Doktorsavhandlingar,1994,Chalmers Tekniska Hogskola,p4
    [2] Large-amplitude oscillations in closed surge chamber Yang, Xiao-Liang; Cederwall, Klas; Kung, Chen-Shan,Journal of Hydraulic Research,v30 n3,1992, p311-325
    [3] Design charts for optimum-sized air cushion surge chambers Graze, H.R.; Horlacher, H.B. 1990, BHRA Fluid Engineering, p383
    [4] Design, construction and operational experience at the Torpa air cushion surge chamber Kjolberg, R.S.; Kleiven, R. Proceedings of the International Conference on Hydropower Jun 16-18 1992 ,p119
    [5] Stability of air-cushion surge tanks with throttling Yang, Xiao-Liang; Kung, Chen-Shan ,Journal of Hydraulic Research v30 n6, 1992, p835-850
    [6] Pressure wave transmission at an air-cushion surge chamber Ma, Jiming ,Qinghua Daxue Xuebao/Journal of Tsinghua University v36 n4 ,Apr 1996, p65-69
    [7] Moose River air chamber design and performance Stewart, Edward H. III; Borg, James E. , Proceedings of the International Conference on Hydropower Aug 23-25 1989
    [8] 气垫调压室研究进展,刘德有,张健,索丽生,水电能源科学,2000年12月,p1-5
    [9] 气垫式调压室过渡过程模拟的若干问题探讨,吴时强,胡去劣,水利学报,2000年第7期,p25-32
    [10] 气垫调压室甩负荷涌浪计算公式,范波芹,张健,河海大学学报,2000年7月,p112-115
    [11] 带有气垫式调压室和溢流式调压井的引水系统的水力计算,黄细彬,宋永杰,水利水电科技进展,1998年10月,p22-25
    [12] 气垫调压室涌浪幅值解析计算,张健,索丽生,刘德有,水力发电学报,2001年第1期,p19-24
    [13] 气垫式调压室在水电厂的应用,王志敏,青海电力,2001年第1期,p36-39
    [14] 从阻抗试验值推求气垫调压室稳定断面,张健,索丽生,刘德有,水电能源科学,2000年9月,p38-40
    [15] Refurbishment of the tailrace tunnel at La Fortuna, Panama Marois, S. ,International Journal on Hydropower and Dams,2000, p48-50
    
    
    [16] Study on the configuration of hydropower station tailrace tunnel with sloping ceiling Yang, Jiandong; Chen, Jianzhi; Chen, Wenbin; Li, Shixi,Wuhan Univ of Hydraulic and Electric Engineering ,p9-12
    [17] 长引水隧洞电站调压室的水力计算及工况选择,刘保华,水力发电学报,1995年第5期,p47-55
    [18] 导流洞改作发电尾水洞过渡过程中明满流的数学模型,丁振华,水利学报,1996年第9期,p1-10
    [19] 明满混合瞬变流动仿真计算分析,樊红刚,陈乃祥,刘立宪,李辉,清华大学学报(自然科学版),2000年第11期,p63-66
    [20] 具有明满交替流动的三峡右岸地下电站的动态仿真,李辉,陈乃祥,樊红刚,刘立宪,林宵汉,清华大学学报(自然科学版),1999年第39卷第11期,p29-31
    [21] 三峡地下电站变顶高尾水洞水动力特性,薛阿强,罗禹权,王列,严伟,长江科学院院报,2001年8月,p9-13
    [22] 水电站的水击计算,于奎,王正君,李广胤,黑龙江水专学报,2000年9月 ,p12-14
    [23] 替代调压室的主要调节保证技术措施分析,杨建国,何文学,西北农业大学学报,1999年12月,p117-119
    [24] 变顶高尾水洞水电站机组运行稳定性研究,赖旭,陈鉴治,杨建东,水力发电学报,2001年第4期,p102-107
    [25] 大型水电站变顶高尾水洞工作特性研究,赖旭,杨建东,中国电力,2001年10月,p24-27
    [26] 导流洞改作发电尾水洞过渡过程中明满流的数学模型,丁振华,许景贤,水利学报,1996年9月,p1-10
    [27] 某电站变顶高尾水洞水力工作特性模型试验研究,雷艳,杨建东,赖旭,孙利华,楚湘林,武汉水利电力大学学报,1999年12月,p23-27
    [28] 三峡地下电站变顶高尾水洞水动力特性,薛阿强,罗禹权,王列,严伟,长江科学院院报,2001年8月,p9-13
    [29] 水电站变顶高尾水洞体型研究,杨建东,陈鉴治,陈文斌,李世熙,水利学报, 1998年3月,p9-12
    [30] 彭水水利枢纽电站厂房布置方案研究,邵年,费文平,刘小江,人民长江,1999年10月,p23-25
    [31] 李辉,三峡右岸地下电站动态数字仿真研究,[硕士学位论文],清华大学流体机械教研室,1998
    [32] 美国土木工程学会编.水电工程规划设计土木工程导则,第二卷,规划设计总院、水科院译(英文版1990年)
    
    
    [33] Moose River Air Chamber Design and Performance. Proceedings of the International Conference on Hydropower ,Stewart, EdwardH, Borgetal, NY,USA,1989.
    [34] Experiences in Norwegian Hydropower,GuZhaoqi, LiXingxing,Guo jun , Norway TAPIR PUBLISHER,1985,p56~82
    [35] The Use of Air Chambers to Suppress Hydraulic Resonance, Garden PEJ,Gummer J H, WaterPower,1973(3),p102-105
    [36] Analysison Closed Surge Chamber Stability, Chaudry MH,Sabbah MA, Journal of Fluid Engineering,1985,7(2),p79-96
    [37] Developtment of Unilined Pressure Shaftsand Tunnels in Norway.,BrochE. , Underground Space,1984,8(3),p177-184
    [38] Rockbursts Imperil Construction of Norway's Largest Underground PowerStation, Martin,David.,Tunnels and Tunnelling,1982,p23-25
    [39] An Innovation in Surge Chamber Design, RatheL. ,WaterPower,1975(5),p224-248
    [40] 关于水电站地下气压式调压室,库别尔曼,朱熙译,水工建设,1990年第11期,p31-35
    [41] 设置气垫式调压室的引水系统研究,陈家远,水力发电学报,1992年第1期p61-70
    [42] 挪威托帕水电厂气垫调压室的设计、建设和运行经验,科吉,丁学琦译,水力发电,1994年第5期,p57-59
    [43] 气垫调压室设计的探索,方丽芳,王怀良,广东水电科技,1995年第4期,p9-16
    [44] 气压式调压室大波动稳定断面分析,马跃先,季奎,水利学报,1992年第12期,p41-47
    [45] 大型电力排灌站,水利电力出版社,1984
    [46] 虹吸式轴流泵站抽真空启动讨论,董毅,汤正军,田明云,张坚,水泵技术2000年第l期,p32-33
    [47] 大型虹吸式轴流泵站启动振动原因分析,董毅,张坚,中国农村水利水电,2000年第5期,p31-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700