用户名: 密码: 验证码:
液态钢渣水淬工艺含尘气体净化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于马钢实业公司与东华大学的合作项目——马鞍山钢铁公司第四钢轧厂BSSF滚筒法液态钢渣水淬工艺除尘工程。
     钢铁工业自90年代起在我国得到了迅速发展。1996年以来我国的钢产量已位居世界第一位,2009年我国钢产量达5.65亿吨。而同时也产生了钢产量15%-20%的大量钢渣。钢渣中蕴藏着丰富的资源,其中含有10%左右的废钢和大量有价值的化学元素。在目前铁矿石价格高涨的情况下,钢渣中含有的废钢资源显得尤为珍贵。因此,将废钢从钢渣中分离的钢渣粒化处理技术得到了快速的推广应用。其中,BSSF滚筒法液态钢渣水淬处理工艺因具有流程短、投资少、处理成本低、粒度小而均匀和渣钢分离良好等优点而得到推广。但是钢渣水淬过程产生的水蒸气、粉尘、有害气体等污染物却导致厂房建筑的腐蚀和厂区大气环境的恶化。研究如何实现水淬过程中污染物的有效净化,对于推进钢渣综合利用,改善工人工作条件,减少大气污染具有很大的实际意义。
     本文分析了水淬工艺生产过程,水蒸气、粉尘、有害气体的发生机理,并分析了现有污染物控制系统的效果。提出了采用旋流喷雾除尘+自激式湿式除尘+机械排风的处理方式。
     研究提出了采用涡向双进口起旋旋转流作为旋流喷雾除尘的旋转流结构形式。采用流体动力学RSM湍流模型对涡向双进口起旋旋转流进行数值模拟。结果表明,双涡向进口旋转流旋流中心与管道中心基本重合,改进了单进口起旋旋转流偏心问题;其流场呈Rankine涡结构形态,由上游的强制涡逐渐向下游的强制涡和准自由涡组合形态发展,给出了准自由涡和准强制涡内切向速度、轴向速度的分布函数和径向速度的分布。
     通过对不同入口结构的起旋器产生的旋转流的数值模拟,表明旋转流最大切向速度和阻力因子随筒体入口面积比呈线性变化,随入口长宽比呈对数变化的规律,认为改变筒体入口面积比以强化旋转流效果要优于改变入口长宽比的方法。最后给出了旋转流换热Nu数随入口结构变化的拟合函数。
     通过对旋流喷雾除尘过程的理论分析,给出了旋流喷雾除尘捕集分级效率的计算方法。将各种不同参数的旋转流的数值模拟流场结果带入该公式,对各参数对捕集效率的影响进行分析。结果表明,旋流喷雾除尘的效率与喷雾流量、气流切向速度正相关,与气流轴向速度、液滴粒径、距轴心的距离负相关。最佳液气比与喷雾粒径的比值应在6-7(m2/m3)的范围内,最佳筒体入口面积比在4-5范围内,最佳筒体截面平均风速在5m/s左右。
     结合工程应用,对水淬尾气净化提出了旋流喷雾除尘+自激式湿法除尘+机械排风的设计,为治理此类污染找出了可行的方案。该方案对同类工艺过程具有一定的参考价值。
This topic comes from the cooperation project of Donghua university and Masteel industrial company——Maanshan iron & steel company fourth steel rolling mill BSSF roller method liquid steel slag water quenching process dedusting project.
     Steel industry in our country has developed rapidly since the 1990s up. Since 1996 Chinese steel production has the first place in the world. In 2009, our steel production reached 565 million tons. While it also produced a lot of steel slag which accounted for 15% to 20% of steel output. Steel slag contains rich resources. it contains 10% of scrap steel and a lot of valuable chemical element.In the current iron ore prices circumstances,the scrap steel resource in slag appear especially precious.Accordingly,the graining processing technology which isolated the scrap steel from steel slag obtained fast promotion application.Among them, BSSF roller method liquid steel slag water quenching process has been extended for its shortened, less investment, low cost, Small and uniform particle size and granularity separation good steel slag etc.However, the pollutants such as vapour, dust and harmful gas which are produced by steel slag water quenching process lead to building corrosion and atmospheric environmental deterioration in the factory. So researching how to Realize the effective cleansing of the pollutants of water quenching process has the practical significance to promote comprehensive utilization of steel slag, improve working conditions and reduce air pollution.
     This paper analyzes the water quenching production process, occurrence mechanism of vapour, dust and harmful gas and the effect of the existing pollutant control system.then it proposed combined application swirling spray dusting and self stimulated wet dusting scheme.
     The research proposes using vortex double-inlet injected swirling flow as swirling spray dedusting rotational flow structure.calculation and analysis the flow field by RNG RSM antagonistic turbulent numerical analysis model.The result shows that, the vortex double-inlet injected swirling flow in pipe presents an axisymmetric and attenuation swirling flow field, improved the off-centre problem of single-inlet swirling flow. tangential velocity distribution approximate Ranking vortex structure; Axial velocity distribution along radial direction looks like a saddle, the center area existing backflow area; Radial velocity is less than Tangential, axial velocity an order of magnitude, along the tangential approximate sine and cosine distribution.
     According to the numerical simulation of the swirling flow which has different entrance structure, it shows that, the maximum tangential velocity and the resistance coefficient of the swirling flow linear change with the ratio of the Piping cross-sectional area and entrance area, Logarithmic change with the Entrance length-width ratio.it considers that, to aggrandizement rotational flow, the method of changing the ratio of the Piping cross-sectional area and entrance area is superior to changing the Entrance length-width ratio. At last, it proposes the fitting function of the changing of swirling flow's Nu with the entrance structure.
引文
[1]杨华明,张广业.钢渣资源化的现状与前景[J].矿产综合利用,1999(06).
    [2]相会强,刘彦君,智艳生.钢渣在建筑领域的综合利用及展望[J].砖瓦,2005(04).
    [3]孙世纯译.转炉熔融渣的风淬[J].炼钢.1986
    [4]《中国钢铁工业环保工作指南》编辑委员会.中国钢铁工业环保工作指南[M].北京:冶金工业出版社,2005:79-82.
    [5]WEEDEJ,DHIRVK. Critical Heat Flux Enhancement Using Local Tangential Flow Injection[J]. Nucl tech,1983, (4):483-388.
    [6]尹晓霞,沈恒根.旋转流改变圆管内颗粒浓度场分布的理论分析.全国暖通空调制冷2002年学术文集[C].建筑工业出版社,2002.
    [7]吴启兵,杨家宽,肖波等.钢渣热态资源化利用新技术[J].工业安全与环保,2001,27(9).
    [8]乌传和.钢渣的回收利用[J].金属矿山,1998,(1):4045.
    [9]OUZtrk.Nese, Bektas.T.Ennil.Nitrate removral form aqueous solution by adsorption onto various materials.Journal of Hazardous Materials,2004,112(1-2):155-162.
    [10]Agyei.N.M, Styrdom.C.A,Potgieter.J.H.The removal of phosphate ions from aqueous solution by fly ash,slag,ordinary portland cement and related blends.Cement and concrete Research,2002,32(12):1889-1897.
    [11]S.H.Lee, Vingeswaran.S, Bajracharya.K.PhosPhorus transport in saturated slag columns: experiments and mathematical models.Water Science and Technology,1996,34(1-2):153-160
    [12]Agyei.N.M, Strdom.C.A.potgieter.J.H.An investigation of phosphate ion adsorption from aqueous solution by ash and slag.Cement and Concrete Research,2000,30(5):823-826.
    [13]张钊,谢维民.钢渣对污水中磷酸盐的去除[J].环境工程,1993,11(4):47-50.
    [14]邓雁希,许虹.钢渣在含磷废水中的应用[J].有色矿冶,2002,18(3):43-45.
    [15]Jain.A.k, Gupta. V.K, Bhatnagar.A.Utilization of industrial waste Product as adsorbents for the removal of dyes.Journal of Hazardous Materials,2003.101(1):31-42.
    [16]Bhatnagar.Amit, Jain.A.K.A. Comparative adsorption study with different industrial waste as adsorbents for the removal of cationic dyes from water.Journal of colloid and interface science,2005,281(1):49-55.
    [17]Gupta..V.K, Ali.I, Suhas.Equilibrium uptake and sorption dynamics for the removal of a basic dye(basic red) using low-cost adsorbents.Journal of Colloid and Interface Science,2003,265(2):257-264.
    [18]]Ramakrishna, Konduru.R, Viraraghavan.T.Dye removal using low-cost adsorbents.water Science and Technology,1997,36(2-3):189-196.
    [19]Ramakrishna, Viraraghavan.T, Konduru.R.Use of slag for dye removal. waste Management, 1997,17(8):483-488.
    [20]徐美涓,胡惠仁.用废渣自制絮凝剂处理棉浆黑液的研究[J].上海造纸,2003,34(3):49-52
    [21]郑礼胜,王士龙,张虹等.用钢渣处理含砷废水.化工环保,1996,16(6):342-345.
    [22]郑礼胜,王士龙.用钢渣处理含铬废水[J].化工环保,1999,32(5):40-41.
    [23]谢维民,周伟明.改性钢渣的除铅性能[J].环境工程,1992,10(6):30-33.
    [24]张从军,甘义群.利用钢渣处理含铜废水的试验研究[J].环境科学与技术,2005,28(1):85-86.
    [25]王士龙,张虹,刘军等.用钢渣处理含镍废水[J].贵州环保科技,2003,18(3):43-45.
    [26]石枚梅.钢渣的处理和综合应用[J].新疆钢铁,1998(4)
    [27]章耿.宝钢钢渣综合利用现状[J].宝钢技术,2006(1)
    [28]栾克森.钢渣水淬新技术在钢渣处理中的应用[J].节能信息,1995(3).
    [29]谢良槐,朱承业.炼钢水淬排渣工艺设计[J].钢铁,1995,30(7).
    [30]崔之祯.钢渣处理及水淬粒化工艺分析[J].废钢铁,1990(3).
    [31]黄成典,何乃.平炉钢渣水淬及综合利用[J].冶金环境保护,1999,(1).
    [32]晓信.转炉钢渣粒化处理工艺[J].钢铁,2005,40(2).
    [33]曹志栋,谢良德.宝钢滚筒法液态钢渣处理装置及生产实践[J].冶金环境保护,2001,(4).
    [34]李文翔.大型高温液态钢渣风碎粒化技术应用[J].冶金环境保护,1999(1).
    [35]李永治,李文祥.钢渣风碎技术研究[J].炼钢,1994,10(5).
    [36]刘佩忠,张建良.钢渣风淬粒化技术[J].金属世界,1997(1).
    [37]解连文,司海波,何妹,何义忠.嘉恒法炉渣粒化工艺的应用与发展[J].炼铁,2003(2).
    [38]孙明明.冶金钢渣风淬回收工艺排风系统的研究[硕士学位论文].上海:东华大学,2010..
    [39]肖永力,李永谦,刘茵.宝钢BSSF渣处理工艺技术的研究与工业应用[J].宝钢技术,2009(1 z):90-94.
    [40]肖永力,李永谦,刘茵.渣处理技术的发展[J].世界钢铁,2009(6):47-51.
    [41]陈伟.转炉钢渣的处理和利用[J].湖南有色金属.2000,16(4):36-38.
    [42]吕梁.粉煤灰砂浆粉[J].硅酸盐建筑制品.1992,34
    [43]Shi C, Day RL. Early strength development and hydration of alkali-activated blast furnace slag[J].fly ash blends. Adv Cem Rees.1999,11(1):89-96.
    [44]Tang M.1973.Investigation of Mineral Compositions of Steel Slag's for Cement Production,Research Report. Nanjing:Nanjing Institute of Chemical Technology.
    [45]Sun S.1983.Investigations on steel slag cements. In:Collections of Achievements on the Treatment and Applications of Metallurgical. Industrial Wastes. Beijing:Chinese Metallurgical Industry Press,1973,1:1-71.
    [46]姜从盛,丁庆军,王发洲等.钢渣的理化性能及其综合利用技术发展趋势[J].国外建材科技,2002,23(3).
    [47]刘茵,肖永力,李永谦.喷雾除尘技术在宝钢BSSF渣处理装置上的应用研究[J].宝钢技 术,2009,3:21-23.
    [48]Wu H.Y, Cheng H.Er, Shuai R.J.,et al.An analytical model for decaying swirl flow and heat transfer inside a tube[J],Transactions of the ASME,2000,2(122):204-208.
    [49]M.W.Blaclllllnna, M.Lippmnna, Performance characteristics of the multi-cyclone[J].aerosol sampler, American Industrial Hygiene Association Journal,1979,35:311-316.
    [50]W.John, G.Reisch.A cyclone for size-selective sampling of ambient air[J].Journal of the Air Pollution Control Association,1980,30(8):872-876.
    [51]H.Buttner. Size separation of particles from aerosol samples using impactors and cyclones[J]. Particle and Particle System Characteristics,1988,5:87-93.
    [52]D. W.Cooper. Theoretical comparison of efficiency and power for single-stage and multiple-stgae particulate scrubbing[J]. Atmospheric Environment,1976,10:1001-1004.
    [53]D.W.Cooper. Minimizing cyclone energy consumption[J]. Journal of Air Pollution Control and Assessment.1981,31:1193-1194.
    [54]D.W.Cooper. Cyclone design:Sensitivity, elasticity, and error analysis[J].Atmospheric Environment,1983,17(3):485-489.
    [55]J.B.Wedding, M.A.Weigand, T.A.Carney.A 10μm cutpoint inlet for the dichotomous Sampler[J]. Environmental Science and Technology,1982,16:60-606.
    [56]M.E.Moore, A.R.McFarlnad. Design of Stairmand-type sampling cyclones[J]. American Industrial Hygiene Association Journal,1990,51:151-159.
    [57]M.E.Mooer, A.R.McFarland. Performance modeling of single-inlet aerosol sampling Cyclones[J].Environment Science and Technology,1993,27:1842-1848.
    [58]M.E.Moore, A.R.McFarland. Design methodology for multiple-inlet air sampling cyclones[J]. Environment Science and Technology,199,30:271-276.
    [59]H.Yoshida. Three-dimensional simulation of air cyclone and particle separation by a revised type cyclone[J].Colloids and Surfaces,1996,109:1-12.
    [60]H.Yoshida. A.Sugitate, K.Fukui, E.Shinoda, J.Ma. Effect on the duct shape on particle separation performance of cyclone separator[j]. Journal of Chemical Engineering of Japan, 2000,33(2):273-276。
    [61]H.Yoshida, K.FukuiA, K.Yoshida, E.Shinoda.Particle separation by Iinoya's type gas cyclone[J]. Powder Technology,2001,118:16-23.
    [62]L.C.Kenny, R.A.Gussman. Characterization and modeling of a family of cyclone aerosol preseparators[J]. Journal of Aerosol Science,1995,26:5777-5778.
    [63]L.C.Kenny, R.A.Gussman. A direct approach to the design of cyclones for aerosol-monitoring application[J].Journal aerosol Science,2000,31(12):1407-142
    [64]沈恒根,党义荣,刁永发,许晋源.双进口旋风器内流场的实验研究[J].西安建筑科技大 学学报,1997.29(3):275-277.
    [65]宋贤良,朱利,李永胜,朱江.轴对称进口旋风分离器性能的研究.郑州工程学院学报,2000.21(4):34-37。
    [66]赵兵涛.轴对称旋转流气固分离理论与技术[博士学位论文].上海:东华大学,2004.
    [67]林玮.直流式旋风分离器内部流场的实骏研究[J].华东工业大学学报,1997,19(113):26-30.
    [68]黄震.直流式旋风除尘器流场实验研究[J].江苏环境科技,1996,1:1-4.
    [69]郑洽馀,鲁钟琪.流体力学[M].北京:机械工业出版社,1979:51,262-266.
    [70]丁华.直流旋风分离器的剖析与进展[J].南化科技,1990,3:1-5.
    [71]吴国江.旋风筒内旋转气流的测量及分析[J].上海交通大学学报,1998,7(32):66-69.
    [72]姚建奎.循环流化床旋风分离器的研究[硕士学位论文].杭州:浙江大学,1992.
    [73]Chen HanPing. A down-exhaust cyclone separator[J].Industrial Engineering Chemical Research,1999,38(4):1605-1610.
    [74]Gauthier T.A. Uniflow cyclone efficiency stud[J]. Powder Technology,1990(62):217-225.
    [75]顾锦鸿.旋转直流内循环式旋风分离器流畅测定与分析[J].粉体技术,1973,3(3):8-19
    [76]邓兴勇.直流式旋风除尘器流动特性及性能的实验研究[J].工程热物理学报,1999,5(20):589-592..
    [77]徐继润,罗茜.水力旋流器流场理论.北京:科学出版社,1998:59.
    [78]Kreith.F,Sonju. The decay of a turbulent swirl in a pipe[J]. Fluid Mech,1965,22(2):257-271.
    [79]Chang.F. Turbulent flow field in tangentially injected swirl flows in tubes[J].Heat and Fluid Flow,1994,15(5):346-356.
    [80]张小艳,郭强,李全.微细水雾除尘技术的实验研究[J].环境污染与防治,2003,25(4):234-236.
    [81]张东辉,鲁民,关中吉.利用雾化射流技术治理输煤皮带转运点粉尘污染[J].黑龙江电力,2004,26(1):61-63.
    [82]于洪林,田海宏.一种治理选煤粉尘的有效途径[J].煤炭技术,2004,23(6).
    [83]吴琨,王京刚,毛益平等.荷电水雾振弦栅除尘技术机理研究[J].金属矿山,2004,8:59-62.
    [84]赵立门,赵安平.选煤厂煤尘防治技术[J].中国煤炭,2004,30(2):42-44.
    [85]周威明,余澄海.粉尘控制新技术[J].工业安全与环保,2004,30(3):6-8.
    [86]李飞,蔡伟民.水雾荷电净化空气飘尘与细菌的研究[J].上海环境科学,2004,23(1):20-22.
    [87]张明星,陈海焱,潘成君等.对喷流除尘技术[J].暖通空调,200,36(8):105.
    [88]Bon.Ki.Ku, Sang.Soo.Kim.Electrohydrodynarnic spraying characteristics of glycerol solutions in cacuum[J].Journal of Electrostatics,2003,57:109-128.
    [89]Michel Cloupeau, Bernard Prunet-Foch.EIectrohydrodynarnic spraying functioning modes:a critical review[J].Journal of Aerosol Science,1994,25:1021-1036.
    [90]O'Rourke.P.J.Collective Droplets on Vaporizing Liquid Sprays[D].Princeton:University Princeton,1981.
    [91]Amsden.A.A, O'Rourke.P.J, Butler.D.KIVAII:A Computer Program for Chenically Reactive Flows with Sprays[R].Los Alamos National Laboratory Report,LA-11560-MS,1989.
    [92]魏明锐,文华,刘永长等.喷雾过程液滴碰撞模型研究[J]内燃机学报,2005,23(6):518-523.
    [93]陈明基,吴光兴,张大中等.除尘技术的基本理论与应用[M].北京:中国建筑出版社,1981.
    [94]张国权.气溶胶力学-除尘净化理论基础[M].北京:化学工业出版社,1987,12.
    [95]赵兴本.山脚树煤矿综采工作面喷雾降尘技术改造[J].煤矿机械,2002,11:70-72.
    [96]杨玉军.原料场水雾降尘设计的探讨[J].工业安全与环保,2003,6:1-2.
    [97]梁彤,马素平.应用于喷雾降尘的喷嘴设计浅析[J].机械管理开发.2003,2:13-14.
    [98]张小艳.微细水雾除尘系统设计及试验研究[J].工业安全与环保,2001,27(8):1-4.
    [99]徐立成,孙和平.超声雾化抑尘器及其应用[J].工业安全与防尘,1995,5:13-15.
    [100]叶钟元编著.矿尘防治[M].徐州:中国矿业大学出版社,1991.
    [101]熊鳌魁.湍流模式理论综述[J].武汉理工大学学报(交通与工程科学版),2001,25(4):451-455.
    [102]李福田,倪浩清.工工程湍流模式的研究开发及其应用[J].水利学报,2001,(5):22-31.
    [103]B.E.Luander, D.B.Spalding.Comput. Methods Appl. Mech. Eng.,1974,3:269-289.
    [104].VC.Patel, W.Rodi, G.Scheuerer, Turbulence models for near-wall and low Reynolds Number flows:A Review, AIAA Journal,1984,23:1308-1319.
    [105]B.Lakshminarayana. Turbulence Modeling for Complex Flows. AIAA Journal,1986, 24:1900-1917.
    [106]C.G.Speziale.Discussion of turbulence modeling:Present and future.Porc.whitherWofkshop Ithaca[J].N.Y.Lect.NotePhys.,ed.J.L.Lumley,1990:490-512
    [107].V.Yakhot, S.A.Orszag, S.Thangma, T.B.Gatski, C.G.Speziale, Development of turbulence models for shear flows by A double expansion technique[J].Phys.Fluids A,1992,4: 1510-1520
    [108]姜宗琳,陈耀松.关于RNG代数湍流模式的研究[J].力学学报,1995,27(1):99-103.
    [109]张健,S.Nieh强旋湍流气-固两相流动的颗粒随机轨道法模拟[J].力学学报,1994,26(6):657-663.
    [110]符松.非线性湍流模式研究及进展[J].力学进展,1995,25(3):318-328.
    [111]李福田,倪浩清.工工程湍流模式理论综述及展望[J].力学进展,1996,26(2):145-165
    [112]B.E.Launder, G. J.Reece, W.Rodi. Progress in the development of a Reynolds-Stress turbulence closure[J].Jounral of Fluid Mechanics,1975,68(3):537-566.
    [113]M.M.Gibson, B.E.Lnander. Ground effects on pressure fluctuations in the atmospheric boundary layer[J] Journal of Fluid Mechanics,1978,86:491-511.
    [114]S.A.Morsi, A.J.Alexander. An investigation of particle trajectories in two-phase flow systems[J].Journal of Fluid Mechanics,1972,55(2):193-208.
    [115]孙明明,沈恒根,刘钰天.内切入口长圆管内旋转流的模拟分析研究[J].建筑热能通风空调,2010,29(5):89-92.
    [116]尹晓霞.切向起旋器产生旋转流场的实验研究[硕士学位论文].上海:东华大学,2002
    [117]张殿印,王纯.除尘器手册[M].北京:化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700