用户名: 密码: 验证码:
永磁型无轴承电机系统的无传感器运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁型无轴承电机系统的无传感器运行,是永磁型无轴承电机研究中需要探索的新命题,这对无轴承电机实现低成本、实用化的研究具有重要实际意义。本文进行了适合于无传感器运行的永磁型无轴承电机结构设计研究,建立了永磁型无轴承电机的悬浮力模型及其控制系统。为构成五自由度悬浮系统,研究了永磁偏置径/轴向电磁轴承的设计与控制。针对永磁型无轴承电机的无位置/速度传感器的运行及无径向位移传感器运行进行了深入的理论研究及实验验证。
     论文主要工作包括:
     一、分析了永磁型无轴承电机的基本工作原理。对永磁型无轴承电机的本体设计进行了研究,提出了永磁体内插式转子结构的无轴承电机方案,其性能满足悬浮运行与控制要求,还为研究无位置、无位移传感器运行创造了条件。建立了计及转子凸极影响和定、转子定位偏心的磁悬浮力解析模型,深入分析了悬浮力模型中有关参数的获取机理,并通过有限元磁场分析方法实现了可控悬浮力和单边磁拉力计算中的计及饱和、电枢反应和悬浮中定、转子定位偏心等非线性因素的参数提取。
     二、基于扩展磁路法建立了永磁偏置径/轴向电磁轴承的精确数学模型,依据此模型进行了电磁轴承的设计并得到了电流刚度和位移刚度等控制参数。设计了一种性能优良的双向三电平PWM开关功放,实现了永磁偏置径/轴向电磁轴承的悬浮系统运行。
     三、建立了由永磁型无轴承电机与永磁偏置径/轴向电磁轴承构成的五自由度悬浮系统的转子动力学模型。为提高永磁型无轴承电机的悬浮性能,采用混合灵敏度的H∞鲁棒控制方法设计了悬浮力系统控制器。研究结果表明,所设计的控制器性能优良,对外部扰动等不确定因素有很好的鲁棒性。
     四、提出了高速下采用自适应滑模观测器法和低速下采用脉动高频信号注入法的转子位置自检测复合方法,以实现永磁型无轴承电机无位置传感器运行。该方法在低速采用高频信号注入法确保了转子位置和速度的检测精度,高速采用自适应滑模观测器方法保证了系统响应的快速性及对参数变化的鲁棒性。确定了两种方法平滑切换的原则。仿真和实验研究表明,转子位置自检测复合方法能够在全速范围内有效检测出转子的空间位置和速度,实现无传感器方式的稳定悬浮运行。随后提出了利用转矩绕组和悬浮绕组的互感,仅在转矩绕组上注入高频激励信号以同时实现转子径向位移信号和位置/速度信号提取的新方法。通过理论分析和电磁场计算证明,该方法能有效地检测转子的位置/速度和位移信号,并能精确地实现位移检测出信号在水平、垂直方向的解耦。
     五、设计了基于TMS320F2812数字信号处理器的全数字控制系统,该控制系统为实现永磁型无轴承电机系统无传感器运行研究提供了可靠的实验条件。
The sensorless operation of the permanent magnet-type bearingless motor(PMBLM) to realize the highly integration of the motor and sensor is a new research topic, which will meet the requirement of low cost and practical application of the bearingless motors.
     This dissertation focuses mainly on the sensoless operation of the PMBLM, including the motor design of the PMBLM, the development of the mathematical model of the levitation force, the robust control of the levitation system. The design and control of a three degree-of-freedom permanent magnet biased radial-axial magnetic bearing was also introduced to form a five degree-of-freedom levitation system. The position/speed sensorless operation and the displacement sensorless operation of the PMBLM were studied theoretically and experimentally.
     In this dissertation the design of PMBLM was introduced based on the principle of PMBLM operation. An inset-type permanent magnet rotor which has the concept of integration of the motor and self-sensing was proposed to enhance radial suspension force generation and to generate the saliency needed during the signal injection method for sensorless operation. A relatively accurate analytical expression of the magnetic levitation force for the PMBLM was proposed with the eccentricity of stator and rotor taken into consideration. As the parameter of the levitation force model is the key to control the suspension force and realize the stable suspension operation, the extraction principle of the key parameter was studied in detail, and realized by using the finite element method.
     Based on the extended magnetic circuit theory, the mathematical model of the permanent magnet biased radial-axial magnetic bearing was deduced and a prototype magnetic bearing was designed according to this model. The coefficients of current stiffness and displacement stiffness were also deduced. A three level PWM amplifier was proposed in this paper to reduce the current ripple and to achieve the successful suspension of the magnetic bearing.
     The dynamical model of the five degree-of-freedom rotor supported by the PMBLM and the radial-axial magnetic bearing was then deduced. An H∞robust controller was proposed to improve the suspension characteristic of the PMBLM. Result show that the performances of the proposed controller were superior to those of the traditional PID controller in the aspect of being robust to model uncertainties and disturbances.
     A novel rotor position and speed estimation scheme using the combined rotor position self-sensing method was suggested, which will meet the need of sensorless operation of the PMBLM. In this scheme, the adaptive sliding-mode observer was used at high speed and the saliency-tracking technology with the injection of high-frequency carrier signal was used at low speed. The principle of smooth switching of these two detecting technology was also proposed. Simulation and experiment studies show that the proposed combined self-sensing method was capable of precisely estimating the rotor space position in full speed range with stable suspension.
     Based on the rotor space-saliency effect and mutual inductance between the torque winding and suspension winding of PMBLM, a novel rotor position and displacement estimation scheme using the fluctuating high frequency voltage signal injection method was proposed to solve the detecting problem of the rotor space position and radial displacement. Analysis results show that this method can realize decoupling between horizontal and perpendicular directions of detected rotor radial displacement signals. The rotor radial displacement and rotor space position were also decoupled in this method.
     A digital control system for real-time control was designed based on TMS320F2812 digital signal processor(DSP). This system provides a reliable experimental platform for suspension operation and sensorless operation of the PMBLM and the permanent magnet biased radial-axial magnetic bearing.
引文
[1]R.Bosch.Development of a bearingless electrical motor[C].Prec.Int.Conf.Elec.Mach.ICEM'88,vol.3,pp:373-375.
    [2]J.Bichsel.The bcaringless electrical machine[C].Proc.Int.Symp.Magn.Suspension Technnol'91NASA Langley Research Center:561-573.
    [3]A.Chiba,K.Chida,T.Fukao.Principles and characteristics of a reluctance motor with windings of magnetic bearing[C].Proc.Int.Power Electron.Conf.Tokyo.April,1990,pp:919-926.
    [4]R.Sch(o|¨)b,J.Bichsel.Vector control of the bearingless motor.In:Proc.4~(th) Int.Symp.Magnetic Bearings,Z(u|¨)rich,Switzerland.1994:327 -332.
    [5]Y.Okada,et.Levitation control of permanent magnet type rotating motor[C].IEEJ Proc.Of Symposium on dynamics of electro magnetic force,pp:251-256,June 1992.
    [6]J.Zhou,K.J.Tseng.A disk-type bearingless motor for use as satellite momentum-reaction wheel[C].IEEE Annual Meeting on Power Electronics,2002,4(s):1971 - 1978.
    [7]Nenninger K.,Amrhein W.,Silber S.,Trauner G.Bearingless Single-Phase PM Motor with Low-Cost Rotary Angle Sensor[C].6th International Symposium on Magnetic Suspension Technology,2001,Turin,Italien.
    [8]Wang Baoguo et al.Modeling and Analysis of Levitation Force Considering Air-gap Eccentricity in a Bearingless Induction Motor[C].Proc.of the fifth International Conference on Electrical Machine and Systems,2001
    [9]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算[J].电工技术学报,2002,17(5):6-10.
    [10]王宝国,王凤翔。磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析[J]。中国电机工程学报,2002,2(5):105-108。
    [11]Baoguo W.et al.Levitation Force Control by Current Vector Orientation for a Bearingless Motor With Hybrid Rotor Structure[C].CCECE 2003-CCGEI 2003,Montcalm.
    [12]李冰,邓智泉,严仰光,一种新颖的永磁偏置三自由度屯磁轴承[J],南京航空航天大学学报,2003,35(1).
    [13]邓智泉等,基于气隙磁场定向的无轴承异步电机非线性解耦控制[J],电工技术学报,2002,17(6):19-24.
    [14]邓智泉等,无轴承异步电机转子磁场定向控制[J],中国电机工程学报,2003,23(3):89-92.
    [15]邓智泉等,无轴承异步电机悬浮子系统独立控制的研究[J],中国电机工程学报,2003,23(9):107-111.
    [16]曹建荣等,感应型磁悬浮电动机的解耦控制[J],电工技术学报,2000,15(5):1-5.
    [17]曹建荣等,磁悬浮电动机的状态反馈线性化控制[J],中国电机工程学报,2001,21(9)
    [18]年珩、贺益康,感应型无轴承电机磁悬浮力解析模型及其反馈控制[J],中国电机工程学报,2003,23(11):139-144.
    [19]HE Yikang,NIAN Heng.Analytical Model and Feedback Control of the Levitation Force for an Induction-Type Bearingless[C].PEDS 2003,Singapore,pp:242-246.
    [20]贺益康、年珩、阮秉涛,感应型无轴承电机的优化气隙磁场定向控制[J],中国电机工程学报,2004,24(6):116-121.
    [21]年珩、贺益康、秦峰,永磁型无轴承电机的无传感器运行研究[J],中国电机工程学报,2004,24(11):101-105
    [22]年珩,贺益康.永磁型无轴承电机无径向位移传感器运行研究.电工电能新技术[J],2006,25(4):15-18.
    [23]年珩,贺益康,黄雷,内插式永磁无轴承电机转子位置/位移综合自检测[J],中国电机工程学报,2007,27(9):52-58.
    [24]A.Chiba et al.An analysis of bearingless ac motors[J],IEEE Trans on Energy Conversion,1994,9(1):61-68.
    [25]A.Chiba et al.Analysis of no-load characteristics of a bearingless induction motor[J].IEEE Trans on IA,1995,31(1):77-83.
    [26]R.Sch(o|¨)b,J.Bichsel.Vector control of the bearingless motor[C].Proc.4~(th) Int.Symp.Magnetic Bearings,Zurich,Switzerland.1994:327-332.
    [27]R.Furuichi,Y.Aikawa et al.A stable operation of induction type bearingless motor under loaded conditions[C].31th IAS Annual Meeting,IAS '96.vol.1,1996,pp:603-609.
    [28]A.Chiba,R.Furuichi et al.Sable operation of induction type bearingless motor under loaded conditions[J].IEEE Trans.On IA,1997,33(4):919-924.
    [29]T.Suzuki et al.An Air-Gap-Flux-Oriented Vector Controller for Stable Operation of Bearingless Induction Motors[J].IEEE Trans.on IA,2000,36(4):1069-1076.
    [30]T.Suzuki,A.Chiba,M.A.Rahman.An air-gap flux oriented vector controller for stable magnetic suspension during high torque acceleration in bearingless induction motors[J].34~(th) IAS Annual Meeting.1999,vol.3,pp:1543 - 1550.
    [31]Rik W.De Doncker,et al.The Universal Field Oriented Controller[J].IEEE Trans.on IA,1994,30(1):92-100.
    [32]Deng Zhiquan,Wang Xiaolin,et al.An independent controller of radial force subsystem for super-high-speed bearingless induction motors[C].9~(th) international symposium on magnetic bearings,Kentuchky,USA,2004,#17.
    [33]A.Chiba,D.T.Power,M.A.Rahman.Analysis of no-load characteristics of a bearingless induction motor[J].IEEE Trans.on IA,1995,31(1):77-83.
    [34]M.Ohsawa,S.mori,T.Satoh.Study of the induction type bearingless motor[C].7~(th) Int.Symp.Magnetic Bearings,2000:389-394.
    [35]S.Nomura,A.Chiba,F.Nakamura,et al.A Radial Position Control of Induction type Bearingless motor considering phase delay caused by the Rotor Squirrel Cage[C].IEEE Power Conversion Conference.Yokohama 1993.pp:438 - 443.
    [36]Y.Okada,S.Shimura,A.Chiba.Optimal design of rotor circuits in induction type bearingless motors[J].IEEE Trans.On Magnetics.1998,34(4):2108-2110.
    [37]M.Yamashita,K.Yasuda,K.Kobayashi,et al.Power Generation of Radial Force Windings in Induction Type Bearingless Motors with 2-pole Drive[J].IEEJ SPC99:31-36.
    [38]M.Yamashita,K.Yasuda,K.Kobayashi,et al.An optimal signal injection of self-excited operation in Induction Type Bearingless Motors with 2-pole Drive[J].IEEJ LD99:39-44.
    [39]K.Kobayashi,M.Yamashita,A.Chiba.principles of self-excitation at radial force winding terminals in bearingless induction motors with a squirrel cage rotor[C].IEEE Industry Applications Conference,2000.vol.1,pp:235 - 240.
    [40]Koji Kiryu,et al.A Radial Force Detection and Feedback Effects on Bearingless Motors[J].IEEE IAS Annual Meeting Conf.Rec.,vol.1,2001:64-69
    [41]Masahide Oshima,et al.Characteristics of a Permanent Magnet Type Bearingless Motor[J].IEEE Trans.On IA,1996,32(2):363-370.
    [42]M.Oshima,S.Miyazawa,T.Deido,et al.Design and analysis of permanent magnet type bearingless motor[J].IEEE Trans.On industry electronics.I996,43(2):290-299.
    [43]Kohei inagaki,A.Chiba,M.RAHMAN.Performance characteristics of inset-type permanent magnet bearingless motor drives[C].Power conversation conference,Nagaoka,2000,vol.2:202-207.
    [44]M.Oshima,K.Yamaida et al.An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation[J].IEEE Trans on Energy Conversion,19(3),2004.pp:569 - 575
    [45]W.Amrhein,S.Silber,K.Nenninger.Levitation forces in bearingless permanent magnet motors[J].IEEE Trans.On magnetics.1999,35(5):4052-4054.
    [46]Y.Okada,S.Miyamoto,T.ohishi.Levitation and torque control of internal permanent magnet type bearingless motor[J].IEEE Trans.On control Syst.Techn,1996,32(2):363-369.
    [47]M.Ooshima,S.Miyazawa,A.Chiba.A rotor design of a permanent magnet-type bearingless motor considering demagnetization[C].IEEE Proc.Power Conversion Conf.Nagaoka,1997:655-660.
    [48]M.Ooshima,S.Miyazawa,Y.Shima,et al.Increase in radial force of a bearingless motor with buried permanent magnet type rotor[C].Proc.Of the fourth international conference on MOVIC,1998,vol.3,pp:1077-1082.
    [49]D.Dorrell,M.Ooshima,A.Chiba.Force analysis of a buried permanent-magnet bearingless motor[C].IEEE International Electric Machines and Drives Conference,2003.Vol.2,pp:1091 -1097.
    [50]Baoguo Wang;Zheng Wang;Fengxiang Wang.Levitation forces control by current vector orientation for a bearingless motor with hybrid rotor structure[C].IEEE Electrical and Computer Engineering,2003,Canadian,Vol.1,pp:383 - 386.
    [51]Fengxiang Wang,Baoguo Wang,Longya Xu.A novel bearingless motor with hybrid rotor structure and levitation force control[C].37~(th) IAS Annual Meeting.Conference Vol.1,2002,pp:212-215.
    [52]Y.Okada,H.Konishi,H.Kanebako,et al.Lorentz force type self-bearing motor[C].Proc.7~(th) Int.Symp.Magnetic Beatings,Switzerland.2000,pp:353-358.
    [53]T.Tokumto,D.Timms,Y.Okada,et al.Development of Lorentz force type self-bearing motor[C].8~(th) Int.Symp.Magnetic Bearings,Japan,2002,pp:59-64.
    [54]A.Chiba,M.A.Rahman,T.Fukao.Radial force in a bearingless Reluctance Motor[J].IEEE Trans.on Magnetics,1991,27(2):786-791.
    [55]C.Michioka,T.sakamoto,O.Ichikawa,et al.A decoupling control method of reluctance type bearingless motors considering magnetic saturation[C].30~(th) IAS Annual Meeting,1995,Vol.1,pp:405-411.
    [56]C.Michioka,T.sakamoto,O.Ichikawa,et al.A decoupling control method of reluctance type bearingless motors considering magnetic saturation[J].IEEE Trans.On IA,1996,32(5):1204-1210.
    [57]A.Chiba,M.Hanazawa,T.Fukao,M.A.Rahman,et al.Effects of magnetic saturation on radial force of bearingless synchronous reluctance machines[C].Industry Applications Society Annual Meeting,1993,vol.1,pp:233 - 239.
    [58]A.Chiba,M.Hanazawa,T Fukao,M.A.Rahman.Effects of magnetic saturation on radial force of bearingless synchronous reluctance motors[J].IEEE Trans.on Industry Applications,1996,32(2),pp:354 - 362
    [59]M.Takemoto,M.A.Chiba,A.T.Fukao.A method of determining advanced angle of square-wave currents in bearingless switched reluctance motors[C].IEEE Industry Applications Conference,2000.Vol.1,2000,pp:241 - 248.
    [60]M.Takemoto,A.Chiba,T.Fukao.A method of determining the advanced angle of square-wave currents in a bearingless switched reluctance motor[J].IEEE Trans.on Industry Applications,2001,37(6),pp:1702 - 1709.
    [61]M.Takemoto,A.Chiba,T.Fukao.A new control method of bearingless switched reluctance motors using square=wave currents[C].IEEE Power Engineering Society Winter Meeting,2000.vol.1,pp:375 - 380.
    [62]M.Takemoto,H.Suzuki,H.A.Chiba,et al.Improved analysis ofa bearingless switched reluctance motor[J].IEEE Transactions on Industry Applications,2001,37(1):26- 34.
    [63]M.Takemoto,H.Suzuki,H.A.Chiba,et al.Improved analysis of a bearingless switched reluctance motor[J].Electric Machines and Drives,1999.pp:773 - 775.
    [64]邓智泉,王晓琳,张宏荃,等.无轴承异步电机的转子磁场定向控制[J].中国电机工程学报,2003,23(3):89-92.
    [65]王凤翔,王宝国,徐隆亚.一种新型混合转子结构无轴承电动机磁悬浮力的矢量控制[J].中国电机工程学报,2005,25(5):98-103.
    [66]Takemoto M,Uyama M,Chiba A,et al.A deeply-buffed permanent magnet bearingless motor with 2-pole motor windings and 4-pole suspension windings[J].IEEE Industry Applications Society,2003,38th lAS Annual Meeting Conference,2003,2(16):1413-1420.
    [67]Cao Jianrong,Chen Quanshi,Yu Lie.Input-output linearizing control for levitated rotating motors[J].IEEE Industry Applications Society,2002:1650-1654.
    [68]费德成,朱熀秋.基于逆系统理论的无轴承永磁同步电机解耦控制研究[J].中国工程科学,2005,7(11):48-54.
    [69]M.Oshima,T.Kurokawa,M.Sakagami et al.An identification method of suspension force and magnetic unbalance pull force parameters in buried-type IPM bearingless motors[C].IEEE Power Engineering Society General Meeting,2004,Vol.2:1276 - 1279.
    [70]An Chen LEE,Foam Zone HSIAO,Dennil KO.Analysis and Testing of Magnetic Beating with Permanent Magnets for Bias[J].JSME International Journal,1994,37(4):774-782
    [71]An Chen LEE,Foam Zone HSIAO,Dennil KO.Performance Limits of Permanent-Magnet-Biased Magnetic Bearings[J].JSME International Journal,1994,37(4):783-794
    [72]Fukata,S.,and K.Yutani.Analysis of Magnetic Systems of Magnetic Beatings Biased with Permanent Magnets[D].Memoirs of Fac.Engg.,Kyushu University,1997,57(1):17-35
    [73]Y.Zhilichev.Analysis of a Magnetic Bearing Pair with a Permanent Magnet Excitation[J].IEEE Transactions on Magnetics,2000,36(5):3690-3692
    [74]曾励.永磁偏置电磁轴承的研究[D].南京航空航天大学博士后出站报告.南京:南京航空航天大学,1999.
    [75]李冰.电磁轴承系统集成化技术的研究[D],南京航空航天大学博士学位论文.2003,9.
    [76]Schob R,Barletta N.Principle and application ofa bearingless slice motor[C].Kanazawa,Japan:Proceedings of the 5th International Symposium on Magnetic Bearings,1996:313-318.
    [77]Okada Y,Shimonishi T,Kim Seung-Jong,et al.Development of hybrid type self-bearing slice motor for small and high speed rotary machines[C].Chicago,USA:Thirty-Sixth IAS Annual Meeting,Conference Record of the 2001 IEEE,2001:2005-2012.
    [78]徐龙祥,朱小春,姚凯.片状无轴承磁电机的研究[J].中国电机工程学报,2006,26(6):141-145.
    [79]Tomohiro Takenaga,Yutaka Kubota,Akira Chiba,et al.A principle and a design of a consequent-pole bearingless motor[C].The 8th International Symposium on Magnetic,Bearing,2002:259-264.
    [80]Tapia J A,Franco Leonardi,Lipo T A.Consequent pole permanent magnet machine with field weakening capability[C].Electric Machines and Drives Conference,Australia,2001,IEEE International:126-131.
    [81]Dorrell D G,Amemiya J,Chiba A,et al.Analytical modelling of a consequent-pole bearingless permanent magnet motor[C].The Fifth International Conference on Power Electronics and Drive Systems,Singapore,2003,1:247-252.
    [82]Jun Amemiya,Akira Chiba,Dorrell D G,et al.Basic characteristics of a consequent-pole-type bearingless motor[J].IEEE Transactions on Magnetics,2005,41(1):82-89.
    [83]廖启新,邓智泉,王晓琳,仇志坚,刘艳君,黄燕,交替极无轴承永磁电机的悬浮力脉动分析[J].中国电机工程学报,2007,27(30):49-54.
    [84]Anerdi G.et al.Technology Potential of Fly Wheel Storage and Application Impact on Electric Vehicle[C],Proc.of 12th Int.Electic Vehicle Symp,1994
    [85]Bimal,K.Bose.Modern Power Electronics and AC Drives.Beijing[M]:China Machine Press,2003.
    [86]Low T S,Lee T H,Chang K T.A nonlinear speed observer for permanent-magnet synchronous motors[J].IEEE Trans.Ind.1993,40(3):307-316.
    [87]Solsona J,Valla M I,Muravchik C.A nonlinear reduced order observer for permanent magnet synchronous motors[J].IEEE Trans.Ind.1996,43(4):492-497.
    [88]黄雷,赵光宙,年珩.基于扩展反电势估算的内插式永磁同步电动机无传感器控制[J],中国电机工程学报,2007,27(9):59-63.
    [89]黄雷,赵光宙,贺益康.PMSM的自适应滑模观测器无传感器控制[J],浙江大学学报,2007,41(7):1107-1110.
    [90]Young S.K.,Sang K.K.and Young A.K.MRAS based sensorless control of permanent magnet synchronous motor[C].SICE 2003 Annual Meeting,2003,2:1632-1367.
    [91]Yang J.,Zhao J.,Qin C.and Cui J.Model reference adaptive sensorless control for surface permanent synchronous machine under severe starting conditions[C].Power Electronics and Motion Control Conference,2004,2:1018-1022.
    [92]Liang Yah,Li Yongdong.Sensorless control of PM synchronous motors based on MRAS method and initial position estimation[C].The Sixth Conference on Electrical Machines and Systems,2003,1:96-99.
    [93]Jang J H,Sul S K,Ha J I.Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency[J].IEEE.Trans.on Industry Applications,2003,39(4):1031-1038.
    [94]Jang J H,Ha J I et al.Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection[J].IEEE Trans.on Industry Applications,2004,40(6):1595-1604.
    [95]秦峰,贺益康,刘毅等.两种高频注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [96]Jeong Y,Lorenz R D,Jahns T M,Sul S K.Initial rotor position estimation of an interior permanent magnet synchronous machine using carrier-frequency injection methods[J].IEEE Trans.on Industry Applications,2005,41(1):38-45.
    [97]Degner M W,Lorenz R D.Using multiple saliencies for the estimation of flux,position and velocity in AC machines[C].IEEE-IAS Conference Record,New Orleans,1997:760-767.
    [98]Briz F,Degner M W,Diez A,Lorenz R D.Static and dynamic behavior of saturation-induced saliencies and their effect on cartier-signal-based sensorless AC drives[J].IEEE Trans.on Industry Applications,2002,38(3):670-678.
    [99]Hyunbae Kim,Lorenz R D.Cartier signal injection based sensortess control methods for IPM synchronous machine drives[C].Conference Record of the 39th IAS Annual Meeting,2004,2:977-984.
    [100]Li H R,Wang J H,Gu S S,Yang T.A neural-network-based adaptive estimator of rotor position and speed for permanent magnet synchronous motor[C].IEEE ICEMS 2001,2:735-738.
    [101]李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报,2002,22(12):32-35.
    [102]Mastuda K,et al.Self-sensing magnetic bearings using the differential transformer principle[J].Journal of TSME,Series C,1997,63(609):1441-1447.
    [103]Noh M D,Malsen E H.Self-sensing magnetic bearings using parameter estimation[J].IEEE Transactions on Instrumentation and Measurement,1997,46(1):45-50.
    [104]Sivadasan K K.Analysis of self-sensing active magnetic bearings working on inductance measurement principle[J].IEEE Transactions on Magnetics,1996,32(2):329-334.
    [105]Vischer D,Bleuler H.Self-sensing active magnetic levitation[J].IEEE Transaction on Magnetics,1993,29(2):1276-281.
    [106]K.Muronoi,N.Andoh,A.Chiba,and T.Fukao.Characteristics of Induction type Self-Sensing Bearingless Motors[C].Proc.1PEC-Tokyo 2000:2109-2114.
    [107]T.Kuwajima,T.Nobe,A.Chiba,et al.An estimation of the Rotor Displacements of bearingless motors based on a high frequency equivalent circuit[J].IEEE,2001:725-731.
    [108]年珩,贺益康.永磁型无轴承电机无径向位移传感器运行研究[J].电工电能新技术.2006,25(4):15-18.
    [109]T.Mizuno,H.Namiki,and K.Araki,Self-sensing Operations of Frequency-Feedback Magnetic Bearings[C].Proe.Filth International Symposium on Magnetic Bearing,Kanazawa Univ.,1996:119-123.
    [110]K.Matsuda,Y.Okade,J.Tani.Self-sensing Magnetic Bearing using the Principle of Differential Transformer[C].Proc.Fifth International Symposium on Magnetic Bearing,Kanazawa Univ.,1996
    [111]Takeshi Mizuno,Kenji Araki,Hannes Bleuler,Stability Analysis of Self-sensing Magnetic Bearing Controllers[J].IEEE Trans.on Control Systems Technology,1996,4(5):572-579.
    [112]年珩,贺益康,周媛.内插式永磁型无轴承电机磁悬浮力模型及其关键参数萃取[J].机械工程学报.2006,42(10):53-58.
    [113]孙岩桦,虞烈.实心转子电磁轴承涡流损耗分析[J].中国电机工程学报,2002,22(2):116-120.
    [114]杨静,虞烈.圆锥电磁轴承静态工作点的规划与可行域分析[J].中国电机工程学报,2005,25(24):133-138.
    [115]Partie T.McMullen,Co S.Huynh,Richard J.Hayes.Combinational radial-axial magnetic bearings[C].7th international symposium on magnetic beatings.Zurich,Switzerland,August 2000:473-478.
    [116]朱煜秋,邓智泉,袁寿其,李冰,严仰光,王德明.永磁偏置径向.轴向磁悬浮轴承工作原理和参数设计[J].中国电机工程学报,2002,22(9):54-58.
    [117]Xu Yanliang,Dun Yueqin,Wang Xiuhe,and Kong Yu.Analysis of hybrid magnetic bearing with a permanent magnet in the rotor by FEM[J].IEEE Trans.Magn,vol.42,no.4,pp.1363-1366.Apr.2006.
    [118]杨静,虞烈,谢敬.永磁偏置磁轴承动特性研究[J].中国电机工程学报,2005,25(5):122-125.
    [119]陈俊峰.永磁电机[M].北京:机械工业出版社。
    [120]王毓东.电机学[M].杭州:浙江大学出版社,1990.
    [12l]张亮,房建成.永磁偏置磁轴承三电平PWM开关功放的研究[J].电力电子技术,2006,40(1):1-3.
    [122]张亮,房建成.电磁轴承脉宽调制型开关功放的实现及电流纹波分析[J].电工技术学报,2007,22(3):13-20.
    [123]王晓光.磁悬浮转子系统的耦合理论分析及实验研究[D],武汉理工大学博士学位论文,2005年9月.
    [124]张钢.磁悬浮轴承转子系统的机电耦合动力学研究[D],西安交通大学博士学位论文,1999.
    [125]G.施韦策,H.布鲁勒,A.特拉克斯勒,虞烈,袁崇军译,谢友桕校.主动磁悬浮轴承基础、性能及应用[M].新时代出版社1997.
    [126]Matsumura F.et al.Application of Gain scheduled H_∞ robust controller to a magnetic bearing[J]IEEE Trans on Control System Technology.1996,9(5):484-492.
    [127]T.Zhou,M.Fujita and F.Matsumura.Robust control of a two-axis,magnetic suspensior flexible-beam system based on H-infinity optimization theory[J].International Journal of Robus and Nonlinear Control,1992,2(3):165-182.
    [128]Masayuki F,Kazuhiro H,Fumio M.Loop shaping based robust control of a magnetic bearing[J]IEEE Trans on Control System.1993,8:57-65.
    [129]薛定宇.反馈控制系统设计与分析-MATLAB语言应用[M].北京:清华大学出版社,2000.
    [130]Chen Zhiqian,Mutuwo Tomita,Shinji Doki,et al.An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors[J].IEEE Trans.Ind.Electron.,2003,50(2):288-295.
    [131]Li Jingchuan,Xu Longya,Zhang Zheng.An adaptive sliding-mode observer for induction motor sensorless speed control[J].IEEE Trans.Ind.Electron.,2005,41(4):1039-1046.
    [132]Mutuwo Tomita,Tomonobu Senjyu,Shinji Doki,et al.New sensorless control for brushless DC motors using disturbance observer and adaptive velocity estimation[J].IEEE Trans.Ind.Electron.1998,45(2):274-282.
    [133]Wang limei,Lorenz R.D.Rotor position estimation for permanent magnet synchronous motor using saliency-tracking self-sensing method[C].Proc.IEEE-IAS 2000 Annual Meeting,Rome,Italy,Oct.8-12,pp.445-450.
    [134]TMS320F28 I0,TMS320F2812 Digital Signal Processors Data Manual[Z].Literature Number:.SPRS-174H,April 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700