用户名: 密码: 验证码:
基于环境因素预测肾综合征出血热和疟疾传播风险
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肾综合征出血热(hemorrhagic fever with renal syndrome, HFRS)是由不同型别的汉坦病毒(hantavirus, HV)引起的一种以发热、出血、肾功能损害等为主要临床特征的自然疫源性疾病。在我国引起HFRS的病原体主要是汉滩型(Hantaan virus, HTNV)和汉城型(Seoul virus, SEOV)汉坦病毒,分别引起大约10%和1%的病死率。我国是世界上HFRS发病最多的国家,HFRS病例数占世界报道病例数的90%以上。病例以青壮年人群为主,不仅对人民身体健康和生命安全造成危害,而且对社会经济发展造成严重影响,已经成为一个严重的公共卫生问题。近年来,我国HFRS的流行趋势呈现出一些新特点:由单一型疫区向混合型疫区演变,家鼠型疫区范围不断扩大,并有向大城市蔓延的趋势,形成新疫区,部分姬鼠型疫区依然维持较高的发病水平。但导致新疫区HFRS病例数增加的可能的环境因素尚不清楚,姬鼠型疫区气候因素与HFRS传播之间的定量关系有待进一步确定。
     疟疾是一种经疟蚊(Anopheles)叮咬而感染疟原虫而引起的全球性急性虫媒传染病。自2000年以来,安徽省是我国疟疾疫情波动幅度最大的一个省份,疟疾疫情呈骤升趋势,近几年安徽省每年发病数位于全国前列。各个区县的发病率具有很大的差异,那么近几年安徽省疟疾流行的时空分布有何特点、发病热点区域又在何地?这是我们疟疾防控中亟需解决的科学问题。同时,疟疾的流行具有一定周期性的特点,而且发病率的时间序列多是杂乱的、复杂的、非平稳的,以前的研究很少考虑发病率时间序列的这些特点,因此有必要开展我国一些疟疾典型疫区的流行周期性特点以及气候因素对疟疾发病的“驱动效应”的研究。
     目的:①探讨HFRS家鼠型新疫区北京市宿主动物感染HV的空间分布特点,确定影响宿主动物感染HV的主要环境因素,建立北京市宿主动物感染HV的空间预测模型;②定量评价气候因素对东北大兴安岭林区姬鼠型疫区HFRS传播的影响;③明确安徽省疟疾流行的时空分布特点,确定安徽省疟疾发病的热点区域;④阐明我国疟疾典型疫区的流行周期性特点,评价气候因素对疟疾发病的“驱动效应”。
     方法:通过现场调查与实验室检测,结合遥感影像利用Logistic回归和空间统计分析,对北京市宿主动物感染HV的风险进行预测;利用互相关分析和时间序列泊松回归分析,定量地评价我国东北大兴安岭林区气候因素对姬鼠型疫区HFRS传播的影响;利用空间自相关和空间统计分析安徽省疟疾发病的时空分布特点,利用时空扫描聚集性分析确定安徽省疟疾发病的热点地区;利用交叉小波变换和小波相干技术确定疟疾典型疫区(安徽省、海南省、云南省)流行的周期性特点,确定气候因素对疟疾流行的“驱动效应”。
     结果:①在2005年到2007年HFRS的流行季节,在北京市86个调查点共布放鼠夹22250夹夜,捕获啮齿动物1639只。经RT-PCR(Reverse transcription polymerase chain reaction)检测,获得阳性宿主动物117只,其带毒率7.14%。多因素Logistic回归分析结果显示园地、水田和40-80 m海拔是宿主动物感染HV的危险因素,而林地则是宿主动物感染HV的保护因素。最终模型是:Logit( P ) = 1.059×水田+ 0.115×园地+ 2.285×(40-80 m海拔)? 1.909×林地。建立的风险预测图显示北京市HFRS的高风险区主要位于市区和近郊区县。同时利用HFRS病例的发病地点对风险预测图的可靠性进行了验证。②在内蒙古自治区鄂伦春族自治旗和莫力达瓦达斡尔族自治旗,互相关分析的结果显示月平均降雨量、月平均地表温度、月平均相对湿度和多变量厄尔尼诺南方涛动指数(Multivariate El Ni?o Southern Oscillation Index, MEI)都与HFRS发病是相关的,但存在3-5个月不等的滞后效应。在鄂伦春族自治旗,在控制了自回归、季节性、长期趋势后,3个月前的月均降雨量、4个月前的月均地表温度、3个月前的月均相对湿度、4个月前的MEI在HFRS的传播中起了重要的作用。最终时间序列泊松回归模型提示地表温度每升高1°C HFRS发病数将会增加11.4%。降雨每增加1mm、相对湿度每增加1%、MEI每增加1个单位,HFRS发病数可能会增加1.1%、2.9%、55.3%。HFRS发病数与预期数拟合的非常好(伪R2 = 79.43%)。在莫力达瓦达斡尔族自治旗,在控制了自回归、季节性、长期趋势后,4个月前的月均降雨量、5个月前的月均地表温度、4个月前的月均相对湿度、4个月前的MEI在HFRS的传播中发挥了重要的作用。最终时间序列泊松回归模型提示地表温度每升高1°C HFRS发病数将会增加16.8%。降雨每增加1mm、相对湿度每增加1%、MEI每增加1个单位,HFRS发病数将会增加0.5%、3.2%和73.6%。建立的模型效果较好(伪R2 = 75.91%)。③安徽省各县区疟疾发病率呈现明显的地区差异,90年代后期疫情主要在安徽中部地区,2001年以后疟疾疫区流行区域迅速扩大,高发地区从安徽中部转移到淮北地区。空间趋势分析结果显示疟疾发病率在东西方向和南北方向均具有明显的趋势变化,总体上北方高于南方,在东西方向上发病率呈现“∩”型。空间自相关的结果显示在安徽省范围内疟疾的空间分布存在一定的聚集性的特点。时空聚集性分析(最大空间窗口半径为安徽省50%的总人口、最大时间窗口为研究时期的50%)确定了一级聚类区分布于安徽省北部13个县市,其高发时段为2003.06-2008.10。当时空半径设为25%时,时空聚集性分析结果显示一级聚类区分布于安徽省北部10个县市,其高发时段为2005.07-2007.11。二级聚类区分布于安徽省中东部14个县市,其高发时段为2002.06-2003.10。④连续小波变换的结果显示安徽省疟疾发病率除了发现1年的周期外,还发现了5-6年和12年的年际间的周期。海南省疟疾发病率存在8年左右的周期,1年的周期没有达到统计学水平。而云南省疟疾发病率只发现了1年的周期。当地气候因素(降雨、温度、湿度)的周期以1年周期为主,而MEI除了1年周期还发现了年际周期。交叉小波和小波相干分析结果显示:在安徽省,月均疟疾发病率和月均降雨量、温度(月平均温度、月最高温度、月最低温度)、相对湿度、MEI之间是相干的,频域上两者以1年周期模式为主(除MEI以2-4年频域为主外),两者的位相关系从同步到滞后5个月不等,并且两者之间关系是间断的、不连续的。在海南省,月均疟疾发病率和月均降雨量、温度是持续相干的,与相对湿度、MEI之间存在短暂的相干,两者的位相关系从同步到滞后1个月。在云南省,月均疟疾发病率和月均降雨量、温度、相对湿度、MEI之间是持续相干的,两者的位相关系从同步到滞后1个月,频域上都是以1年周期模式为主。
     结论:本研究明确了HFRS新疫区北京市宿主动物感染HV的空间分布特点,确定了影响宿主动物感染HV的主要环境因素,建立了北京市宿主动物感染HV的空间风险预测地图;定量地评价了我国东北大兴安岭林区气候因素对姬鼠型疫区HFRS传播的影响;明确了安徽省疟疾流行的时空分布特点,确定了安徽省疟疾发病时空热点区域;确定了我国疟疾典型疫区的疟疾流行的周期性特点,评价了气候因素对疟疾发病的“驱动效应”。
Background: Hemorrhagic fever with renal syndrome (HFRS) is a zoonosis caused by different species of Hantavirus (HV). China is one of the most severe endemic countries, where there are 90% of the total reported HFRS cases in the world. The causative agents of HFRS in China are predominately Hantaan virus (HTNV) and Seoul virus (SEOV), which cause case fatality rates around 10% and 1%, respectively. HFRS has become a significant public health problem in mainland China because it not only affects the people’s health and safety, but also impacts on the socio-economic development. In recent years, the prevalence of HFRS has shown some new features: on the one hand, the scope of HFRS endemic area is expanding and HFRS has spread to major cities, and on the other hand, HFRS incidence still maintains high in the HTNV-type natural foci. However, the environmental factors facilitating the spread and expansion of the virus in a newly-identified focus remain unclear, and the quantitative relationship between climate variation and the transmission of HFRS remains to be determined in HTNV-type foci.
     Malaria is a parasitic disease caused by the bite of Anopheles. Since 2000, malaria resurgence has occurred in China. And Anhui Province is the most seriously affected area with the highest number of malaria cases after 2005. The incidence of malaria shows high variability at the county level in Anhui Province. What are the characteristics of temporal and spatial distribution of malaria in this province, and where are the hot spots? This is the urgent scientific questions addressed in the prevention and control of malaria. Meanwhile, the prevalence of malaria has a certain cyclical characteristics, and the incidence time series are typically noisy, complex and strongly non-stationary. However, previous studies have rarely considered these features of the incidence time series, so it is necessary to characterize the seasonality of the malaria in the typical endemic areas in China and also to identify the association between climatic factors and malaria incidences.
     Objectives:①T o understand the spatial distribution of HV infection in rodent hosts in Beijing, and to identify environmental factors contributing to the presence of HV in rodent population, and also to predict spatial distribution of HFRS for possible preemptive public health warnings.②To evaluate the quantitative relationship between climate variation and the transmission of HFRS in northeastern China.③To characterize the temporal and spatial distribution patterns of malaria in Anhui Province, and to identify the distribution of the hot spots at the county level.④To characterize the periodicity of the malaria in the typical endemic areas in China (Anhui Province, Hainan Province, Yunnan Province) and also to identify the association between climatic factors and malaria incidences.
     Methods: The spatial distribution of HV infections in host rodents from Beijing were predicted by using Logistic regression and spatial statistical analysis in combination with field investigation and laboratory testing. The cross correlation analysis and time-series Poisson regression model were used to evaluate the quantitative relationship between climate variation and the transmission of HFRS in HTNV-type foci in northeastern China. Spatial autocorrelation analysis and spatial statistics were used to characterize the temporal and spatial distribution patterns of malaria in Anhui Province, and space-time scanning cluster analysis was used to determine the distribution of the hot spots at the county level. Cross wavelet transform (XWT) and wavelet coherence (WTC) techniques were employed to characterize the periodicity of the malaria in the typical endemic areas in China (Anhui Province, Hainan Province, Yunnan Province) and also to assess and compare the associations between climatic factors and malaria incidences.
     Results:①A total of 1,639 rodents were at 86 sites during HFRS epidemic seasons from 2005 to 2007 in Beijing. 117 rodents were positive for SEOV by RT-PCR test, with an overall infection rate of 7.14%. Multivariate logistic regression analysis indicated that orchards, rice agriculture and moderate elevation were significantly associated with the prevalence of HVs infection in rodents, while the forest was the only protective factor for the infection. The final logistic regression function for predicting the risk areas was Logit(P) = 1.059×Rice agriculture+0.115×Orchards+2.285 Moderate elevation-1.909 Forest. The constructed prediction risk map showed that the highest risk regions for HVs in rodents mainly focused on the downtown and several suburbs. Meanwhile, the locations of HFRS cases were used to test the validity of the constructed risk map.②In Elunchun and Molidawahaner county, the results of cross correlation analysis showed that monthly mean rainfall, land surface temperature, relative humidity, and MEI were significantly correlated with the monthly reported HFRS cases with lags of 3-5 months. In Elunchun county, after controlling for the autocorrelation, seasonality and long-term trend, rainfall at a lag of 3 months, LST at a lag of 4 months, RH at a lag of 3 months, and MEI at a lag of 4 months appeared to play significant roles in the transmission of HFRS. The final time-series Poisson regression model suggests that a 1°C increase in the monthly mean LST may be associated with an 11.4% increase in HFRS cases. A 1mm/day increase in monthly mean rainfall, 1% RH rise, and 1 unit MEI rise were associated with 1.1%, 2.9% and 55.3% increases in HFRS cases, respectively. The observed and expected number of cases from the final model matched reasonably well for Elunchun. The pseudo R2 value for the fitted model was 79.43%. In Molidawahaner county, after controlling for the autocorrelation, seasonality, and long-term trend, rainfall at a lag of 4 months, LST at a lag of 5 months, RH at a lag of 4 months, and MEI at a lag of 4 months were significantly associated with HFRS. The final model indicated that a 1°C increase in the monthly mean LST was associated with a 16.8% increase in HFRS cases. A 1mm/day increase in monthly mean rainfall, 1% RH rise, and 1 unit MEI rise were associated with 0.5%, 3.2% and 73.6% increases in HFRS cases, respectively. The pseudo R2 value for the fitted model was equal to 75.91%.③The incidence of malaria showed high variability at the county level. Malaria epidemic mainly occurred in the central parts of Anhui Province in the late 1990s, and then expanded to the northern region of this province since 2001. Trend analysis showed that the incidence of malaria changed obviously in the East-West and North-South directions. In general, the incidence in the north was higher than the south in this province, and the incidence in the East-West direction showed the“∩”type. The results of spatial autocorrelation showed the incidence of malaria in Anhui Province was clustered at the county level. Using the maximum spatial cluster size of < 50% of the total population and the maximum temporal cluster size of < 50% of the study period, the spatio-temporal cluster analysis identified a most likely cluster that included 13 counties, which all located in the north of Huai River. The highest endemic period occurred from June 2003 to October 2008. To investigate the possibility of smaller clusters, the same analysis was performed with a modification of the maximum spatial cluster size defined as < 25% total population and the maximum temporal cluster size of < 25% of the study period. A most likely cluster and one secondary cluster were identified. The most likely cluster was almost the same as in the 50% analysis. The secondary sub-cluster included 14 counties, which located in the central and eastern part of this province.④In Anhui province, the continuous wavelet transform (CWT) showed significant periodicity on the 1-y scale. High power was also present in the 5–6-y period and 12-y range. In Hainan province, the CWT showed significant periodicity on the 8-y scale. High power was also present on the 1-y scale, but did not reach significance compared to the null hypothesis. In Yunnan province, the CWT showed significant periodicity on the 1-y scale. We analyzed the relationship between MEI, local weather (monthly mean rainfall, monthly mean average temperature, monthly mean maximum temperature, monthly mean minimum temperature, monthly mean relative humidity), and malaria incidence in these three provinces using XWT and WTC analyses to identify time- and frequency-specific association. In Anhui province, malaria incidence showed significantly coherence with local weather on the annual scale with a 1–2-mo lag and with MEI in the 2–4-y mode with a 5-mo lag. However, the relationship between malaria incidence and climate wasn’t consistent. In Yunnan province, malaria incidence showed consistent and strong coherence with the monthly rainfall and mean temperature and transient coherence with relative humidity and MEI. In Yunnan province, malaria incidence showed significantly coherence with local weather and MEI on the 1-y scale.
     Conclusion: This study clarified the spatial distribution of HV infection in rodent hosts in Beijing, and determined the environmental factors contributing to the presence of HV in rodent population, and also constructed a risk map of HFRS in Beijing. This study also evaluated the quantitative relationship between climate variation and the transmission of HFRS in northeastern China. Meanwhile, this study characterized the temporal and spatial distribution patterns of malaria in Anhui Province, and identified the distribution of the hot spots at the county level. Also, the periodicity of the malaria in the typical endemic areas in China was characterized and the association between climatic factors and malaria incidences was identified.
引文
1.李立明.流行病学(第五版).北京:人民卫生出版社, 2003.
    2.曹务春.传染病流行病学.北京:高等教育出版社, 2008.
    3. Climate change and human health: risks and responses. Summary. World Health Organization 2003.
    4.杨坤,王显红,吕山,张玲,贾铁武,李兰花,邓瑶,周晓农.气候变暖对中国几种重要媒介传播疾病的影响,国际医学寄生虫病杂志, 2006, 33(4):182-224.
    5.张颖,毕鹏.气候变化与传染病关系述评.中国健康教育,2008, 24(10):781-783.
    6.郭云海,何宏轩.全球气候变暖与传染病.现代预防医学, 2008, 35(22): 4504-4510.
    7. Fang L, Yan L, Liang S, de Vlas SJ, Feng D, Han X, et al. Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infect Dis, 2006, 6: 77.
    8. Jiang JF, Zuo SQ, Zhang WY, Wu XM, Tang F, Sake De Vlas, Zhao WJ, Zhang PH, Dun Z, Wang RM, and Cao WC. Prevalence and genetic diversities of hantaviruses in rodents in Beijing, China. Am J Trop Med Hyg, 2008, 78:98-105.
    9. Yan L, Fang LQ, Huang HG, Zhang LQ, Feng D, Zhao WJ, et al. Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People’s Republic of China. Emerg Infect Dis, 2007, 13(9): 1301-1306.
    10. Bi P, Wu X, Zhang F, Parton K and Tong S. Seasonal rainfall variability, the incidence of hemorrhagic fever with renal syndrome, and prediction of the diseasein low-lying areas of China. Am J Epidemiol, 1998, 148: 276-281.
    11. Bi P, Tong S, Donald K, Parton K and Ni J. Climatic, reservoir and occupational variables and the transmission of haemorrhagic fever with renal syndrome in China. Int J Epidemiol, 2002, 31(1): 189-193.
    12. Engelthaler DM, Mosley DG, Cheek JE, Levy CE, Komatsu KK, Ettestad P, et al. Climatic and environmental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States. Emerg Infect Dis, 1999, 5(1): 87-94.
    13. Ernest SKM, Brown JH and Parmenter RR. Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos, 2000, 88(3): 470-482.
    14. Glass GE, Shields T, Cai B, Yates TL and Parmenter R. Persistently highest risk areas for hantavirus pulmonary syndrome: potential sites for refugia. Ecol Appl, 2007, 17(1): 129-139.
    15. Langlois JP, Fahrig L, Merriam G and Artsob H. Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecology, 2001, 16(3): 255-266.
    16. Madsen T and Shine R. Rainfall and rats: Climatically-driven dynamics of a tropical rodent population. Australian Journal of Ecology, 1999, 24(1): 80-89.
    17. Glass GE, Yates TL, Fine JB, Shields TM, Kendall JB, Hope AG, et al. Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc Natl Acad Sci U S A, 2002, 99(26): 16817-16822.
    18. Hjelle B and Glass GE. Outbreak of hantavirus infection in the Four Corners region of the United States in the wake of the 1997-1998 El Ni?o -southern oscillation. J Infect Dis, 2000, 181(5): 1569-1573.
    19. Tamerius JD, Wise EK, Uejio CK, McCoy AL and Comrie AC. Climate and human health: synthesizing environmental complexity and uncertainty. Stochastic Environmental Research and Risk Assessment, 2007, 21(5): 601-613.
    20. Clement J, Vercauteren J, Verstraeten WW, Ducoffre G, Barrios JM, VandammeAM, et al. Relating increasing hantavirus incidences to the changing climate: the mast connection. Int J Health Geogr, 2009, 8: 1.
    21. Tersago K, Verhagen R, Servais A, Heyman P, Ducoffre G and Leirs H. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol Infect, 2009, 137(2): 250-256.
    22.潘波.我国主要传疟媒介的形态特征、生态习性及传疟作用.热医学杂志, 2003, 4:477-780.
    23. Martens WJM, Niessen LW, Rotmans J, Jetten TH, and McMichael AJ. Potential impact of global climate change on malaria risk. Environ Health Perspect, 1995, 103(5):458-464.
    24. Zhou G, Minakawa N, Githeko AK and Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A, 2004, 101(8): 2375-2380.
    25. Pascual M, Cazelles B, Bouma MJ, Chaves LF and Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci, 2008, 275(1631): 123-132.
    26. Hashizume M, Terao T and Minakawa N. The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc Natl Acad Sci U S A, 2009, 106(6): 1857-1862.
    27. Paaijmans KP, Read AF and Thomas MB. Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A, 2009, 06(33): 13844-13849.
    28. Mabaso ML, Craig M, Vounatsou P and Smith T. Towards empirical description of malaria seasonality in southern Africa: the example of Zimbabwe. Trop Med Int Health, 2005, 10(9): 909-918.
    29. Rogers DJ and Randolph SE. The Global Spread of Malaria in a Future, Warmer World. Science, 2000, 289:1763-1766.
    30. Cazelles B, Chavez M, Magny GC, Guegan JF and Hales S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J R Soc Interface, 2007, 4(15): 625-636.
    31. Cazelles B, Chavez M, McMichael AJ and Hales S. Nonstationary influence of ElNi?o on the synchronous dengue epidemics in Thailand. PLoS Med, 2005, 2(4):e106.
    32. Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 2004, 11:561-566.
    33. Ostfeld RS, Glass GE, Keesing F. Spatial epidemiology: an emerging (or re-emerging) discipline. TRENDS ECOL EVOL, 2005, 20(6):328-336.
    34.陈述彭,卢学军,周成虎.地理信息系统导论.北京:科学出版社,1999.
    35.梅安新,彭望,秦其明,刘慧平.遥感导论.北京:高等教育出版社,2001.
    36. Torrence C and Compo GP. A practical guide to wavelet analysis. Bull Am Meteorol Soc, 1998, 79:61-78.
    1.张永振,肖东楼,王玉,王洪霞,孙黎,陶晓霞,屈永刚.中国肾综合征出血热流行趋势及其防制对策.中华流行病学杂志, 2004, 25:466–469.
    2.刘刚,李川,扈光伟,等.在我国发现普马拉(Puumala)型汉坦病毒.中华实验和临床病毒学杂志, 2003, 3:55-57.
    3. Jiang JF, Zhang WY, Yao K, Wu XM, Zuo SQ, Zhan L, Zhang PH, CaoWC. A new Hantaan-like virus in rodents (Apodemus peninsulae) from Northeastern China. Virus Res, 2007, 130:292– 295.
    4.张文义,江佳富,姚昆,吴晓明,左曙青,詹琳,褚宸一,赵秋敏,张泮河,杨红,曹务春.中国大林姬鼠携带Amur类汉坦病毒及其分子生物学特征分析.中华流行病学杂志, 2007, 28:482-486.
    5.陈化新.中国肾综合征出血热20世纪取得的成就与展望.中国媒介生物学及控制杂志, 2001, 12(5):388-396.
    6.宋干.肾综合征出血热流行病学研究与防治.中国公共卫生, 2004, 20(6): 766-768.
    7. Bai X, Huang C. Study farther on hemorrhagic fever with renal syndrome. Chin JInfect Dis, 2002, 20:197-198.
    8. Fang L, Yan L, Liang S, de Vlas SJ, Feng D, Han X, et al. Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infect Dis, 2006, 6: 77.
    9.张秀春,周绍莲,王华,等.北京地区流行性出血热SEO型汉坦病毒基因差异的研究.中华流行病学杂志, 2000,21(5):349-351.
    10.张秀春,胡经畲,周绍莲,关增智.北京地区1996至2000年肾综合征出血热流行状况研究.中国媒介生物学及控制杂志, 2001, 12:218–221.
    11.罗成旺,陈化新.肾综合征出血热流行因素的影响研究.中国媒介生物学及控制杂志, 2003, 14:451–454.
    12. Zuo SQ, Zhang PH, Jiang JF, Zhan L, Wu XM, Zhao WJ, Wang RM, Tang F, Dun Z, and Cao WC. Seoul Virus in Patients and Rodents from Beijing, China. Am J Trop Med Hyg, 2008, 78:833-837.
    13.江佳富.北京地区汉坦病毒宿主动物生态学与流行病学调查研究. [博士学位论文].北京, 2005..
    14. Fang LQ, Zhao WJ, Sake J. de Vlas, Zhang WY, Liang S, Caspar W.N. Looman, Yan, Wang LP, Ma JQ, Feng D, Yang H,and Cao WC. Spatiotemporal Dynamics of Hemorrhagic Fever with Renal Syndrome, Beijing, People's Republic of China. Emerg Infect Dis, 2009, 15(12):2043-2045.
    15. Shuttle Radar Topography Mission (SRTM) data. Available at: http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp. Accessed August 1, 2008.
    16.宋干.流行性出血热防治手册.第2版.北京:人民卫生出版社. 1998:73-74.
    17. Wang H, Yoshimatsu K, Ebihara H, Ogino M, Araki K, Kariwa H,Wang ZX, Luo ZZ, Li DX, Hang CS, Arikawa J. Genetic diversity of hantaviruses isolated in China and characterization of novel hantaviruses isolated from Niviventer confucianus and Rattus rattus. Virology, 2000, 278:332-345.
    18. Kim EC, Kim IS, Choi Y, Kim SG, Lee J. Rapid differentiation between Hantaan and Seoul viruses by polymerase chain reaction and restriction enzyme analysis. J Med Virol, 1994, 43:245-248.
    19. Richards JA. Remote Sensing Digital Image Analysis, Springer-Verlag, Berlin, 1999:240.
    20. Bubier JL, Rock BN, Crill PM. Spectral reflectance measurements of boreal wetland and forest mosses. J Geophys Res Atmos, 1997, 102:29483-29494.
    21. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci, 1998, 3:151-156.
    22. Lillesand TM, Kiefer RW, 1994. Remote Sensing and Image Interpretation, 3rd Ed. New York: Wiley.
    23. Yan L, Fang LQ, Huang HG, Zhang LQ, Feng, D Zhao WJ, Zhang WY, Li XW, Cao WC. Landscape Elements and Hantaan Virus-related Hemorrhagic Fever with Renal Syndrome, People’s Republic of China. Emerg Infect Dis, 2007, 3:1301-1306.
    24. King RJ, Campbell-Lendrum DH, Davies CR. Predicting geographic variation in cutaneous leishmaniasis, Colombia. Emerg Infect Dis, 2004, 4:598-607.
    25. Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, Beck L, Bobo M, Kitron U. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis, 2002, 8: 289-297.
    26. Beck LR, Lobitz BM, Wood BL. Remote sensing and human health: New Sensors and New Opportunities. Emerg Infect Dis, 2000, 6(3):217-227.
    27. Krieger N. Place, space and health: GIS and epidemiology. Epidemiology, 2003, 14 (4):384-385.
    28. WHO. Geographic information system mapping for epidemiological surveillance. Weekly epidemiological record, 1999, 74:281-285.
    29.韩光红,张习坦,方立群,范国英.我国重要自然疫源地地理信息系统的建立.军事医学科学院院刊, 2004, 28(2):123-125.
    30.方立群.肾综合征出血热时空分布及其环境危险因素研究. [博士学位论文].北京, 2009.
    31.宫鹏,徐冰,梁松.用遥感和地理信息系统研究传染病时空传播规律.中国科学C辑, 2006, 36(2):184-192.
    32. Ostfeld RS, Glass GE, Keesing F. Spatial epidemiology: an emerging (or re- emerging) discipline. Trends Ecol Evol, 2005, 20(6):328-336.
    33. Elliott P, Wartenberg D. Spatial Epidemiology: Current Approaches and Future Challenges. Environ Health Perspect, 2004, 112:998-1006.
    34. Glass GE, Yates TL, Fine JB, Shields TM, Kendall JB, Hope AG, Parmenter CA, Peters CJ, Ksiazek TG, Li CS, Patz JA, Mills JN. Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. PNAS, 2002, 26:16817-16822.
    35. Glass GE, Cheek JE, Patz JA, ShieldsTM, Doyle TJ, Thoroughman DA, Hunt DK, Ensore RE, Gage KL, Irland C, Peters CJ, Bryan R. Using remotely sensed data to identify areas at risk for Hantavirus pulmonary syndrome. Emerg Infect Dis, 2000, 6:238-247.
    36. Boone JD, McGwire KC, Otteson EW, DeBaca RS, Kuhn EA, Villard P, Brussard PF, Jeor SC. Remote Sensing and Geographic Information Systems: Charting Sin Nombre Virus Infections in Deer Mice. Emerg Infect Dis, 2000, 6: 248-258.
    37. Dobson AP, Hudson PJ. Microparasites: observed patterns in wild animal population. Grenfell BT, Dobson AP, eds. Ecology of Infectious Diseases in Natural Populations. Cambridge, United Kingdom: Cambridge University Press, 1995, 52-89.
    38.赵文娟.基于空间信息技术的北京市肾综合征出血热流行特征研究[硕士学位论文].北京, 2007.
    39.陈化新,罗成旺,陈富,王锡怀,杨建华,马立军,胡经畲,孙怀玉,姚兆华,邱季春.中国肾综合征出血热监测研究.中国公共卫生,1999, 15:616-623.
    40. Catherine Linard, Katrien Tersago, Herwig Leirs, Eric F Lambin. Environmental conditions and Puumala virus transmission in Belgium. Int J Health Geogr, 2007 6:55.
    41. Bi P, Tong SL, Donald K, Ni JF. Climatic, reservoir and occupational variables and the transmission of hemorrhagic fever with renal syndrome in China. Int J Epidemiol, 2002, 31:189-193.
    1. Peters CJ, Simpson GL and H L. Spectrum of hantavirus infection: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Annu Rev Med, 1999, 50:531-545.
    2. Schwarz AC, Ranft U, Piechotowski I, Childs JE and Brockmann SO. Risk factors for human infection with Puumala virus, southwestern Germany. Emerg Infect Dis, 2009, 15(7): 1032-1039.
    3. Schmaljohn C and Hjelle B. Hantaviruses: a global disease problem. Emerg Infect Dis, 1997, 3(2): 95-104.
    4. Yan L, Fang LQ, Huang HG, Zhang LQ, Feng D, Zhao WJ, et al. Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People’s Republic of China. Emerg Infect Dis, 2007, 13(9): 1301-1306.
    5. Clement JP. Hantavirus. Antiviral Res, 2003, 57(1-2): 121-127.
    6. Shi LY. Epidemiology. Beijing: China People’s Health Publishing House 2003: 504-518.
    7. Song G. Epidemiological progresses of hemorrhagic fever with renal syndrome in China. Chin Med J, 1999, 112(5): 472-477.
    8. Ministry of Health. Handbook of Epidemic hemorrhagic fever prevention and control. Beijing: China People’s Health Publishing House, 1998.
    9. Fang L, Yan L, Liang S, de Vlas SJ, Feng D, Han X, et al. Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infect Dis, 2006, 6: 77.
    10. Jiang JF, Wu XM, Zuo SQ, Wang RM, Chen LQ, Wang BC, et al. Study on the association between hantavirus infection and Rattus norvegicus. Zhonghua Liu Xing Bing Xue Za Zhi, 2006, 27(3): 196-199.
    11. Zhang WY, Fang LQ, Jiang JF, Hui FM, Glass GE, Yan L, et al. Predicting the risk of hantavirus infection in Beijing, People’s Republic of China. Am J TropMed Hyg, 2009, 80(4): 678-683.
    12. Bi P, Wu X, Zhang F, Parton K and Tong S. Seasonal rainfall variability, the incidence of hemorrhagic fever with renal syndrome, and prediction of the disease in low-lying areas of China. Am J Epidemiol, 1998, 148: 276-281.
    13. Bi P, Tong S, Donald K, Parton K and Ni J. Climatic, reservoir and occupational variables and the transmission of haemorrhagic fever with renal syndrome in China. Int J Epidemiol, 2002, 31(1): 189-193.
    14. Engelthaler DM, Mosley DG, Cheek JE, Levy CE, Komatsu KK, Ettestad P, et al. Climatic and environmental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States. Emerg Infect Dis, 1999, 5(1): 87-94.
    15. Ernest SKM, Brown JH and Parmenter RR. Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos, 2000, 88(3): 470-482.
    16. Glass GE, Shields T, Cai B, Yates TL and Parmenter R. Persistently highest risk areas for hantavirus pulmonary syndrome: potential sites for refugia. Ecol Appl, 2007, 17(1): 129-139.
    17. Langlois JP, Fahrig L, Merriam G and Artsob H. Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecology, 2001, 16(3): 255-266.
    18. Madsen T and Shine R. Rainfall and rats: Climatically-driven dynamics of a tropical rodent population. Australian Journal of Ecology, 1999, 24(1): 80-89.
    19. Glass GE, Yates TL, Fine JB, Shields TM, Kendall JB, Hope AG, et al. Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc Natl Acad Sci U S A, 2002, 99(26): 16817-16822.
    20. Hjelle B and Glass GE. Outbreak of hantavirus infection in the Four Corners region of the United States in the wake of the 1997-1998 El Ni?o -southern oscillation. J Infect Dis, 2000, 181(5): 1569-1573.
    21. Tamerius JD, Wise EK, Uejio CK, McCoy AL and Comrie AC. Climate andhuman health: synthesizing environmental complexity and uncertainty. Stochastic Environmental Research and Risk Assessment, 2007, 21(5): 601-613.
    22. Clement J, Vercauteren J, Verstraeten WW, Ducoffre G, Barrios JM, Vandamme AM, et al. Relating increasing hantavirus incidences to the changing climate: the mast connection. Int J Health Geogr, 2009, 8: 1.
    23. Tersago K, Verhagen R, Servais A, Heyman P, Ducoffre G and Leirs H. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol Infect, 2009, 137(2): 250-256.
    24. Pettersson L, Boman J, Juto P, Evander M and Ahlm C. Outbreak of Puumala virus infection, Sweden. Emerg Infect Dis, 2008, 14(5): 808-810.
    25. China Meteorological Data Sharing Service System. Available at: http://cdc.cma.gov.cn. Accessed August 1, 2009.
    26. Huang RH and Wu YF. The influence of ENSO on the summer climate change in China and its mechanism. Advances in Atmospheric Sciences, 1989,6(1):21-32.
    27. Multivariate ENSO Index was obtained from: http://www.cdc.noaa.gov/people/klaus.wolter/MEI Accessed August 1, 2009.
    28. Brockwell PJ and Davis RA. Introduction to time series and forecasting, 2nd edition. New York: Springer, 2002.
    29. Bi P, Cameron AS, Zhang Y and Parton KA. Weather and notified Campylobacter infections in temperate and sub-tropical regions of Australia: an ecological study. J Infect, 2008, 57(4): 317-323.
    30. Constantin de Magny G, Murtugudde R, Sapiano MR, Nizam A, Brown CW, Busalacchi AJ, et al. Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci U S A, 2008, 105(46): 17676-17681.
    31. Hashizume M, Terao T and Minakawa N. The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc Natl Acad Sci U S A, 2009, 106(6): 1857-1862.
    32. Naish S, Hu W, Nicholls N, Mackenzie JS, McMichael AJ, Dale P, et al. Weather variability, tides, and Barmah Forest virus disease in the Gladstone region, Australia. Environ Health Perspect, 2006, 114(5): 678-683.
    33. Tong S and Hu W. Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis. Environ Health Perspect, 2001, 109(12): 1271-1273.
    34. Zhang Y, Bi P, Hiller JE, Sun Y and Ryan P. Climate variations and bacillary dysentery in northern and southern cities of China. J Infect, 2007, 55(2): 194-200.
    35. Zhou G, Minakawa N, Githeko AK and Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A, 2004, 101(8): 2375-2380.
    36. Charles W Ostrom J. Time series analysis: regression techniques. Sage University Paper series on Quantitative Applications in the Social Sciences, 07-009. Beverly Hills and London: Sage, 1976.
    37. Dupont W. Statistical modeling for biomedical researchers. Cambridge, UK: Cambridge University Press, 2002.
    38. Tabachnick BG and Fidell LS. Time Series Analysis: Using Multivariate Statistics. Boston: Allyn & Bacon, 2001.
    39. Brownstein JS, Holford TR and Fish D. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect, 2003, 111(9): 1152-1157.
    40. Patz JA. A human disease indicator for the effects of recent global climate change. Proc Natl Acad Sci U S A, 2002, 99(20): 12506-12508.
    41. Patz JA, Hulme M, Rosenzweig C, Mitchell TD, Goldberg RA, Githeko AK, et al. Climate change: Regional warming and malaria resurgence. Nature, 2002, 420(6916): 627-628.
    42. Thomson MC, Mason SJ, Phindela T and Connor SJ. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg, 2005, 73(1): 214-221.
    43. Cazelles B, Chavez M, McMichael AJ and Hales S. Nonstationary influence of El Ni?oon the synchronous dengue epidemics in Thailand. PLoS Med, 2005, 2(4): e106.
    44. Hales S, de Wet N, Maindonald J and Woodward A. Potential effect of populationand climate changes on global distribution of dengue fever: an empirical model. Lancet, 2002, 360(9336): 830-834.
    45. Tong S and Hu W. Different responses of Ross River virus to climate variability between coastline and inland cities in Queensland, Australia. Occup Environ Med, 2002, 59(11): 739-744.
    46. Chaves LF and Pascual M. Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med, 2006, 3(8): e295.
    47. Franke CR, Ziller M, Staubach C and Latif M. Impact of the El Nino/Southern Oscillation on visceral leishmaniasis, Brazil. Emerg Infect Dis, 2002, 8(9): 914-917.
    48. Nakazawa Y, Williams R, Peterson AT, Mead P, Staples E and Gage KL. Climate change effects on plague and tularemia in the United States. Vector Borne Zoonotic Dis, 2007, 7(4): 529-540.
    49. Stenseth NC, Samia NI, Viljugrein H, Kausrud KL, Begon M, Davis S, et al. Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A, 2006, 103(35): 13110-13115.
    50. Aars J and Ims RA. Intrinsic and climatic determinants of population demography: The winter dynamics of tundra voles. Ecology, 2002, 83(12): 3449-3456.
    51. Hardestam J, Simon M, Hedlund KO, Vaheri A, Klingstrom J and Lundkvist A. Ex vivo stability of the rodent-borne Hantaan virus in comparison to that of arthropod-borne members of the Bunyaviridae family. Appl Environ Microbiol, 2007, 73(8): 2547-2551.
    52. Jensen TS. Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia 54(2): 184-192, 1982.
    53. Pucek Z, Jedrzejewski W and Jedrzejewska B. Rodent population dynamics in a primeval deciduous forest (Bialowieza National Park) in relation to weather, seed crop and predation. Acta Theriologica, 1993, 38(2): 199-232.
    54. Zheng ZM, Jiang ZK and Chen AG. Rodents Zoology. Shanghai: Shanghai Jiaotong University Press, 2008.
    55. Rezende EL, Cortes A, Bacigalupe LD, Nespolo RF and Bozinovic F. Ambienttemperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. Journal of Arid Environments, 2003, 55(1): 63-74.
    56. Glass GE, Cheek JE, Patz JA, Shields TM, Doyle TJ, Thoroughman DA, et al. Using remotely sensed data to identify areas at risk for hantavirus pulmonary syndrome. Emerg Infect Dis, 2000, 6(3): 238-247.
    57. Yates TL. The ecology and evolutionary history of an emergent disease: Hantavirus Pulmonary Syndrome. BioScience. 52: 989-998., 2002.
    58. Vickery WL and Bider JR. The Influence of Weather on Rodent Activity. J Mamm. 62(1):140-145, 1981.
    59. Bi P and Parton K. El Ni?o and Incidence of Hemorrhagic Fever With Renal Syndrome in China. JAMA, 2003, 289:176-177.
    60. Hallett TB, Coulson T, Pilkington JG, Clutton-Brock TH, Pemberton JM and Grenfell BT. Why large-scale climate indices seem to predict ecological processes better than local weather. Nature, 2004, 430(6995): 71-75.
    61. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, et al. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Ni?oSouthern Oscillation and beyond. Proc Biol Sci, 2003, 270(1529): 2087-2096.
    62. Wolter K and Timlin MS. Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop (Norman, Oklahoma), 52-57, 1993.
    63. Wolter K and Timlin MS. Measuring the strength of ENSO - how does 1997/98 rank? Weather 53: 315–324., 1998
    1.李立明.流行病学(第五版).北京:人民卫生出版社, 2003:491-501.
    2. http://baike.baidu.com/view/993.htm.
    3. http://zh.wikipedia.org/zh-cn/%E7%96%9F%E7%96%BE.
    4. http://www.who.int/malaria/world_malaria_report_2009/en/index.html.
    5. Rogers DJ and Randolph SE. The Global Spread of Malaria in a Future, Warmer World. Science, 2000, 289:1763-1766.
    6.中华医学会.新中国疟疾调查研究的综述.上海:科技卫生出版社, 1958. 1
    7.何琦.近年来我国的疟疾研究.科学通报, 1965, 5:402.
    8.柳朝藩,钱会霖,汤林华,郑香,顾政诚,祝卫东.当前中国疟区分层.中国寄生虫学和寄生虫病杂志, 1995, 13(1):8.
    9.徐伏牛,贾尚春,沈毓祖. 2001年安徽省疟疾形势.安徽预防医学杂志, 2002, 8(6):321-322.
    10.盛慧锋,周水森,顾政诚,郑香. 2002年全国疟疾形势.中国寄生虫学与寄生虫病杂志, 2003, 4:193-196.
    11. http://geodacenter.asu.edu/software/downloads.
    12. Anselin L. Exploring Spatial Data with GeoDaTM A Workbook, 2005.
    13. Anselin L. Spatial Data Analysis with GIS: an introduction to Application in the Social Sciences. Santa Barbara, CA: National Center for Geographic Information and Analysis, 1992:3-15.
    14. Anselin L. Local Indicators of Spatial Association-LISA. Geographical Analysis, 1995, 27:93-115.
    15. Kulldorff M. A spatial scan statistic. Communications in Statistics: Theory and Methods, 1997, 26:1481-1496.
    16. Kulldorff M, Athas W, Feuer E, Miller B, Key C. Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos. American Journal of Public Health, 1998, 88:1377-1380.
    17. http://www.satscan.org/.
    18. Frank C, Fix AD, Pe?a CA, Strickland GT. Mapping Lyme disease for diagnostic and preventive decisions, Maryland. Emerg Infect Dis, 2002, 8:427-429.
    19. Odoi A, Martin SW, Michel P, Middleton D, Holt J, Wilson J. Investigation of clusters of giardiasis using GIS and a spatial scan statistic. Int J of Health Geog, 2004, 3:11-21.
    20. Nkhoma ET, Ed Hsu C, Hunt VI, Harris AM. Detecting spatiotemporal clusters of accidental poisoning mortality among Texas counties, U.S., 1980–2001. Int J Health Geog, 2004, 3:25-37.
    21. Wu J, Wang J, Meng B, Chen G, Pang L, Song X, Zhang K, Zhang T, Zheng X. Exploratory spatial data analysis for the identification of risk factors to birth defects. BMC Public Health, 2004, 4:23.
    22. Morrison AC, Getis A, Santiago M, Rigau Perez JG, Reiter P. Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico 1991–1992. Am J Trop Med Hyg, 1998, 58:287-298.
    23. Fevre EM, Coleman PG, Odiit M, Magona JW, Welburn SC, Woolhouse MEJ. The origins of a new Trypanosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda. The Lancet, 2001, 358:625-628.
    24. Chaput EK, Meek JI, Heimer R. Spatial Analysis of Human Granulocytic Ehrlichiosis near Lyme, Connecticut. Emerg Infect Dis, 2002, 8:943-948.
    25. Fang L, Yan L, Liang S, de Vlas SJ, Feng D, Han X, Zhao W, Xu B, Bian L, Yang H, Gong P, Richardus JH, Cao W. Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infect Dis, 2006, 6:77.
    26. Chadee DD, Kitron U. Spatial and temporal patterns of imported malaria cases and local transmission in Trinidad. Am J Trop Med Hyg, 1999, 61:513-517.
    27. Schellenberg J, Newell JN, Snow RW, Mungala V, Marsh K, Smith PG, Hayes RJ. An analysis of the geographical distribution of severe malaria in children in Kilifi District, Kenya. Int J of Epidemiol, 1998, 27:323-329.
    28. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. Stat Med, 1995, 4:799-810.
    29.周水森,王漪,汤林华. 2005年全国疟疾形势.中国寄生虫学与寄生虫病学杂志, 2006, 24(6):401-403.
    1.李立明.流行病学(第五版).北京:人民卫生出版社, 2003:491-501.
    2.潘波.我国主要传疟媒介的形态特征、生态习性及传疟作用.热医学杂志, 2003, 4:477-780.
    3. http://baike.baidu.com/view/993.htm.
    4. http://zh.wikipedia.org/zh-cn/%E7%96%9F%E7%96%BE.
    5. http://www.who.int/malaria/world_malaria_report_2009/en/index.html.
    6.张颖,毕鹏.气候变化与传染病关系述评,中国健康教育, 2008, 24(10):781-783.
    7. Climate change and human health: risks and responses. Summary. World Health Organization 2003.
    8. Martens WJM, Niessen LW, Rotmans J, Jetten TH, and McMichael AJ. Potential impact of global climate change on malaria risk. Environ Health Perspect, 1995, 103(5):458-464.
    9. Zhou G, Minakawa N, Githeko AK and Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A, 2004, 101(8):2375-2380.
    10. Pascual M, Cazelles B, Bouma MJ, Chaves LF and Koelle K. Shifting patterns:malaria dynamics and rainfall variability in an African highland. Proc Biol Sci, 2008, 275(1631):123-132.
    11. Hashizume M, Terao T and Minakawa N. The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc Natl Acad Sci U S A, 2009, 106(6): 1857-1862.
    12. Paaijmans KP, Read AF and Thomas MB. Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A, 2009, 06(33):13844-13849.
    13. Mabaso ML, Craig M, Vounatsou P and Smith T. Towards empirical description of malaria seasonality in southern Africa: the example of Zimbabwe. Trop Med Int Health, 2005, 10(9):909-918.
    14. Rogers DJ and Randolph SE. The Global Spread of Malaria in a Future, Warmer World. Science, 2000, 289:1763-1766.
    15.温亮.海南省疟疾流行预测方法及基于GIS的疟疾监测预警系统的初步构建, 2004.第四军医大学博士论文.
    16. Hui FM, Xu B, Chen ZW, Cheng X, Liang L, Huang HB, et al. Spatio-temporal distribution of malaria in Yunnan Province, China. Am J Trop Med Hyg, 2009, 81(3): 503-509.
    17. Cazelles B and Hales S. Infectious diseases, climate influences and nonstationary. PLoS Med, 2006, 3(8):e328.
    18. Cazelles B, Chavez M, Magny GC, Guegan JF and Hales S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J R Soc Interface, 2007, 4(15): 625-636.
    19. Cazelles B, Chavez M, McMichael AJ and Hales S. Nonstationary influence of El Ni?o on the synchronous dengue epidemics in Thailand. PLoS Med, 2005, 2(4):e106.
    20. Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 2004, 11:561-566.
    21. Torrence C and Compo GP. A practical guide to wavelet analysis. Bull Am Meteorol Soc, 1998, 79:61-78.
    22.余丹丹,张韧,洪梅,刘科峰,王辉赞,桂祁军.赤道中太平洋对流活动与西太平洋副高西伸的时延相关分析.海洋科学进展, 2008, 26(3):292-304.
    23.余丹丹,张韧,洪梅,刘科峰,王辉赞.基于交叉小波与小波相干的西太平洋副高与东亚夏季风系统的关联性分析.南京气象学院学报, 2007, 30 (6):755-769.
    24. China Meteorological Data Sharing Service System. Available at: http://cdc.cma.gov.cn. Accessed August 1, 2009.
    25. Huang RH and Wu YF. The influence of ENSO on the summer climate change in China and its mechanism. Advances in Atmospheric Sciences, 1989, 6(1):21-32.
    26. Multivariate ENSO Index was obtained from: http://www.cdc.noaa.gov/people/klaus.wolter/MEI Accessed August 1, 2009.
    27. Johansson MA, Cummings DA and Glass GE. Multiyear climate variability and dengue-- El Ni?o southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med, 2009, 6(11): e1000168.
    1. Panel on Climate Change. Climate Change 2007: The Physical Science Basis-Working Group I Contribution to IPCC Fourth Assessment Report. London: Cambridge University Press, 2007.
    2.秦大河.气候变化:科学、影响和对策.中国政协,2005,2:44-47.
    3.马玉霞,王式功.全球气候变暖对人类健康的影响.环境研究与监测,2005,18 (1):729.
    4. Khasnis AA, Nettleman MD. Global warming and infectious disease. Arch Med Res, 2005, 36(6):689-696.
    5. Climate change and human health: risks and responses. Summary. World HealthOrganization 2003.
    6.杨坤,王显红,吕山,张玲,贾铁武,李兰花,邓瑶,周晓农.气候变暖对中国几种重要媒介传播疾病的影响,国际医学寄生虫病杂志, 2006,33(4):182-224.
    7.张颖,毕鹏.气候变化与传染病关系述评,中国健康教育,2008,24(10):781-783.
    8. Jo?o Bosco Siqueira Jr, Celina Maria Turchi Martelli, Giovanini Evelim Coelho, Ana Cristina da Rocha Simplício, and Douglas L. Hatch. Dengue and Dengue Hemorrhagic Fever, Brazil, 1981–2002. Emerg Infect Dis, 2005, 11(1):48-53.
    9. Avilés G, Rangeón G, Vorndam V, Briones A, Baroni P, Enria D, and Sabattini MS. Dengue Reemergence in Argentina. Emerg Infect Dis, 1999, 5(4): 575-578.
    10.于长水,张之伦,从波泉.全球变暖与传染病动向,中华流行病学志, 1998,9 (2):114-116.
    11.郭云海,何宏轩.全球气候变暖与传染病,现代预防医学, 2008, 35(22): 4504-4510.
    12. Wilson, ML. Ecology and infectious disease. In: Ecosystem change and public health:a global perspective, Aron JL and Patz JA eds. Baltimore, USA, John Hopkins University Press, 2001:283–324.
    13. Duane J Gubler, Paul Reiter, Kristie L Ebi, Wendy Yap, Roger Nasci, and Jonathan A Patz. Climate Variability and Change in the United States: Potential Impacts on Vector and Rodent-Borne Diseases. Environ Health Perspect 2001, 109(suppl 2):223-233.
    14. Peterson AT. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect Dis, 2009, 9:59.
    15. Jennifer Small, Scott J Goetz, and Simon I Hay. Climatic suitability for malaria transmission in Africa, 1911–1995. PNAS, 2003, 100(26):15341-15345.
    16. Kelly-Hope LA, Hemingway J and McKenzie FE. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J, 2009. 8: 268.
    17. Mantilla G, Oliveros H and Barnston AG. The role of ENSO in understanding changes in Colombia’s annual malaria burden by region, 1960-2006. Malar J, 2009, 8: 6.
    18. Becker N. Influence of climate change on mosquito development and mosquito-borne diseases in Europe. Parasitol Res, 2008, 103:S19-28.
    19.刘凤,梅甄天,胡玉祥,孙传红.温度对蚊虫发育历期的影响及与疾病的关系.中国媒介生物学控制杂志, 1998, 9(3):185-187.
    20.邓绪礼,任正轩,孙传红,贾洪忠,刘凤梅,张志华,李继民,赵长磊.山东中华按蚊传播间日疟的研究.中国寄生虫病防治杂志,1997, 10(4):250-254.
    21. Martens WJM, Niessen LW, Rotmans J, Jetten TH, and McMichael AJ. Potential impact of global climate change on malaria risk. Environ Health Perspect, 1995, 103(5):458-464.
    22. Zhou G, Minakawa N, Githeko AK and Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A, 2004, 101(8): 2375-2380.
    23. Pascual M, Cazelles B, Bouma MJ, Chaves LF and Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci, 2008, 275(1631): 123-132.
    24. Hashizume M, Terao T and Minakawa N. The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc Natl Acad Sci U S A, 2009, 106(6): 1857-1862.
    25. Paaijmans KP, Read AF and Thomas MB. Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A, 2009, 06(33): 13844-13849.
    26. Mabaso ML, Craig M, Vounatsou P and Smith T. Towards empirical description of malaria seasonality in southern Africa: the example of Zimbabwe. Trop Med Int Health, 2005, 10(9): 909-918.
    27. Munga S, Yakob L, Mushinzimana E, Zhou G, Ouna T, Minakawa N, et al. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa. Am J Trop Med Hyg, 2009, 81(6): 1079-1084.
    28. Wen L, Xu DZ, Wang SQ, Li CX, Zhang ZY and Su YQ. Analysis on the relationship between malaria epidemics and NOAA-AVHRR NDVI in Hainan province. Zhonghua Liu Xing Bing Xue Za Zhi, 2005, 26(4): 263-267.
    29. Hui FM, Xu B, Chen ZW, Cheng X, Liang L, Huang HB, et al. Spatio-temporal distribution of malaria in Yunnan Province, China. Am J Trop Med Hyg, 2009, 81(3): 503-509.
    30. Johansson MA, Dominici F and Glass GE. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis, 2009, 3(2): e382.
    31. Johansson MA, Cummings DA and Glass GE. Multiyear climate variability and dengue-- El Ni?o southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med, 2009, 6(11): e1000168.
    32. Hu W, Clements A, Williams G and Tong S. Dengue fever and El Ni?o-Southern Oscillation in Queensland, Australia: a time series predictive model. Occup Environ Med, 2009. doi:10.1136/oem.2008.044966
    33. Russell RC, Currie BJ, Lindsay MD, Mackenzie JS, Ritchie SA and Whelan PI. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. Med J Aust, 2009, 190(5): 265-268.
    34.毛祥华,张再兴.中国登革热的流行现状.中国病原生物学杂志, 2007, 2(5): 385-388.
    35.易彬樘,张治英,徐德忠,席云珍,付建国,罗军,袁明辉,刘少群,邝铿.气候因素对登革热媒介伊蚊密度影响的研究.中国公共卫生, 2003, 19:129-131.
    36.陈文江,李才旭,林明和,吴开琛,吴开录,赵志国.海南省全年适于登革热传播的时间以及气候变暖对其流行潜势影响的研究.中国热带医学,2002, 2: 31-34.
    37.俞善贤,李兆芹,滕卫平,蔡剑.冬季气候变暖对海南省登革热流行潜势的影响.中华流行病学杂志, 2005, 26 (1):25-28.
    38. Tong S, Dale P, Nicholls N, Mackenzie JS, Wolff R and McMichael AJ. Climate variability, social and environmental factors, and ross river virus transmission: research development and future research needs. Environ Health Perspect, 2008, 116(12): 1591-1597.
    39. Jacups SP, Whelan PI and Currie BJ. Ross River virus and Barmah Forest virus infections: a review of history, ecology, and predictive models, with implicationsfor tropical northern Australia. Vector Borne Zoonotic Dis, 2008, 8(2): 283-297.
    40. Bi P, Hiller JE, Cameron AS, Zhang Y and Givney R. Climate variability and Ross River virus infections in Riverland, South Australia, 1992-2004. Epidemiol Infect, 2009, 137(10): 1486-1493.
    41. Tong S, Hu W, Nicholls N, Dale P, MacKenzie JS, Patz J, et al. Climatic, high tide and vector variables and the transmission of Ross River virus. Intern Med J, 2005, 35(11): 677-680.
    42. Hu W, Tong S, Mengersen K and Oldenburg B. Exploratory spatial analysis of social and environmental factors associated with the incidence of Ross River virus in Brisbane, Australia. Am J Trop Med Hyg, 2007, 76(5): 814-819.
    43. Bi P, Hiller JE, Cameron AS, Zhang Y and Givney R. Climate variability and Ross River virus infections in Riverland, South Australia, 1992-2004. Epidemiol Infect, 2009, 137(10): 1486-1493.
    44. Jacups SP, Whelan PI, Markey PG, Cleland SJ, Williamson GJ and Currie BJ. Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data. Trop Med Int Health, 2008, 13(7): 943-952.
    45. Kelly-Hope LA, Purdie DM and Kay BH. El Ni?o Southern Oscillation and Ross River virus outbreaks in Australia. Vector Borne Zoonotic Dis, 2004, 4(3): 210-213.
    46. Woodruff RE, Guest CS, Garner MG, Becker N and Lindsay M. Early warning of Ross River virus epidemics: combining surveillance data on climate and mosquitoes. Epidemiology, 2006, 17(5): 569-575.
    47. Brownstein JS, Holford TR and Fish D. Effect of Climate Change on Lyme Disease Risk in North America. Ecohealth, 2005, 2(1): 38-46.
    48. Gatewood AG, Liebman KA, Vourc'h G, Bunikis J, Hamer SA, Cortinas R, et al. Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution. Appl Environ Microbiol, 2009, 75(8): 2476-2483.
    49. Ogden NH, St-Onge L, Barker IK, Brazeau S, Bigras-Poulin M, Charron DF, et al. Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, inCanada now and with climate change. Int J Health Geogr, 2008, 7: 24.
    50. Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, et al. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis, 2002, 8(3): 289-297.
    51. Brownstein JS, Holford TR and Fish D. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect, 2003, 111(9): 1152-1157.
    52. Kitron U and Kazmierczak JJ. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol, 1997, 145(6): 558-566.
    53. Glass GE, Schwartz BS, Morgan JM, 3rd, Johnson DT, Noy PM and Israel E. Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health, 1995, 85(7): 944-948.
    54. Glass GE, Shields T, Cai B, Yates TL and Parmenter R. Persistently highest risk areas for hantavirus pulmonary syndrome: potential sites for refugia. Ecol Appl, 2007, 17(1): 129-139.
    55. STAPP P. Trophic Cascades and Disease Ecology. 2007,4:121-124.
    56. Tersago K, Verhagen R, Servais A, Heyman P, Ducoffre G and Leirs H. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol Infect, 2009, 137(2): 250-256.
    57. Clement J, Vercauteren J, Verstraeten WW, Ducoffre G, Barrios JM, Vandamme AM, et al. Relating increasing hantavirus incidences to the changing climate: the mast connection. Int J Health Geogr, 2009,8: 1.
    58. Schwarz AC, Ranft U, Piechotowski I, Childs JE and Brockmann SO. Risk factors for human infection with Puumala virus, southwestern Germany. Emerg Infect Dis, 2009, 15(7): 1032-1039.
    59. Guan P, Huang D, He M, Shen T, Guo J and Zhou B. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: a 17-year data analysis based on structure equation model. BMC Infect Dis, 2009, 9: 109.
    60. Evander M and Ahlm C. Milder winters in northern Scandinavia may contribute tolarger outbreaks of haemorrhagic fever virus. Glob Health Action, 2009, 2.
    61. Glass GE, Cheek JE, Patz JA, Shields TM, Doyle TJ, Thoroughman DA, Hunt DK, Enscore RE, Gage KL, Irland C, Peters CJ, Bryan R. Using remotely sensed data to identify areas at risk for hantavirus pulmonary syndrome. Emerg Infect Dis, 2000, 6(3):238-247.
    62. Boone JD, Otteson EW, McGwire KC, Villard P, Rowe JE and St Jeor SC. Ecology and demographics of hantavirus infections in rodent populations in the Walker River Basin of Nevada and California. Am J Trop Med Hyg, 1998, 59(3): 445-451.
    63. Fang L, Yan L, Liang S, de Vlas SJ, Feng D, Han X, et al. Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infect Dis, 2006, 6: 77.
    64. Yan L, Fang LQ, Huang HG, Zhang LQ, Feng D, Zhao WJ, et al. Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People’s Republic of China. Emerg Infect Dis, 2007, 13(9): 1301-1306.
    65. Zhang WY, Fang LQ, Jiang JF, Hui FM, Glass GE, Yan L, et al. Predicting the risk of hantavirus infection in Beijing, People’s Republic of China. Am J Trop Med Hyg, 2009, 80(4): 678-683.
    66. http://zh.wikipedia.org/zh-cn/%E8%A1%80%E5%90%B8%E8%9F%B2
    67.俞善贤,滕卫平,沈锦花,蔡剑.冬季气候变暖对血吸虫病影响的气候评估.中华流行病学杂志,2004,25:575-577.
    68. Zhou XN, Yang GJ, Yang K, Wang XH, Hong QB, Sun LP, et al. Potential impact of climate change on schistosomiasis transmission in China. Am J Trop Med Hyg, 2008, 78(2): 188-194.
    69. Zhou XN, Yang K, Hong QB, Sun LP, Yang GJ, Liang YS, et al. [Prediction of the impact of climate warming on transmission of schistosomiasis in China]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 2004, 22(5): 262-265.
    70. Yang K, Zhou XN, Wu XH, Steinmann P, Wang XH, Yang GJ, et al. Landscape pattern analysis and Bayesian modeling for predicting Oncomelania hupensis distribution in Eryuan County, People’s Republic of China. Am J Trop Med Hyg,2009, 81(3): 416-423.
    71. Zhang Z, Ong S, Peng W, Zhou Y, Zhuang J, Zhao G, et al. A model for the prediction of Oncomelania hupensis in the lake and marshland regions, China. Parasitol Int, 2008, 57(2): 121-131.
    72. Liang S, Seto EY, Remais JV, Zhong B, Yang C, Hubbard A, et al. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Natl Acad Sci U S A, 2007, 104(17): 7110-7115.
    73. Liang S and Spear RC. Model-based insights into multi-host transmission and control of schistosomiasis. PLoS Med, 2008, 5(1): e23.
    74. Colwell RR, Kaper J, Joseph SW. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: Occurrence and distribution in Chesapeake Bay. Science, 1977, 198:394-396.
    75. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol, 1983, 45:275-283.
    76. Islam MS, Drasar BS, Sack RB. The aquatic flora and fauna as reservoirs of Vibrio cholerae: A review. J Diarr Dis Res, 1994, 12:87-96.
    77. Kaper JB, Morris JG, Jr, Levine MM. Cholera. Clin Microbiol Rev, 1985, 8:48-86.
    78. Colwell RR.Global climate and infectious disease: The cholera paradigm. Science, 1996, 274:2025-2031.
    79. Nalin DR, Daya V, Reid A, Levine MM, Cisneros L. Adsorption and growth of Vibrio cholerae on chitin. Infect Immun, 1979, 25:768-770.
    80. Rawlings TK, Ruiz GM, Colwell RR. Association of Vibrio cholerae O1 El Tor and O139 Bengal with the copepods Acartia tonsa and Eurytemora affinis. Appl Environ Microbiol, 2007, 73:7926-7933.
    81. Colwell RR, Huq A, Islam MS, Aziz KMA, Yunus M, Khan NH, Mahmud A, et al. Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci U S A, 2003, 100:1051-1055.
    82. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque ASG, et al. Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae byindirect measurement. Proc Natl Acad Sci U S A, 2000, 97:1438-1443.
    83. Lipp EK, Huq A, Colwell RR. Effects of global climate on infectious disease: The a) cholera model. Clin Microbiol Rev, 2002, 15:757-770.
    84. Pascual M, Bouma MJ, Dobson AP.Cholera and climate: Revisiting the quantitative evidence. Microbes Infect, 2002, 4:237-245.
    85. Ruiz-Moreno D, Pascual M, Bouma M, Dobson A, Cash B. Cholera seasonality in Madras (1901–1940): Dual role for rainfall in endemic and epidemic regions. Ecohealth, 2007, 4:52-62.
    86. Bouma MJ, Pascual M. Seasonal and interannual cycles of endemic cholera in Bengal 1891–1940 in relation to climate and geography. Hydrobiologia, 2001, 460:147-156.
    87. Pascual M, Rodo X, Ellner SP, Colwell R, Bouma MJ. Cholera dynamics and El Ni?o-Southern Oscillation. Science, 2000, 289:1766-1769.
    88. Koelle K, Rodo X, Pascual M, Yunus M, MostafaG. Refractory periods and climate forcing in cholera dynamics. Nature, 2005, 436:696-700.
    89. Constantin de Magny G, Murtugudde R, Sapiano MR, Nizam A, Brown CW, Busalacchi AJ, et al. Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci U S A, 2008, 105(46): 17676-17681.
    90. Fang LQ, de Vlas SJ, Liang S, Looman CW, Gong P, Xu B, et al. Environmental factors contributing to the spread of H5N1 avian influenza in mainland China. PLoS One, 2008, 3(5): e2268.
    91. Kleinschmidt I, Bagayoko M, Clarke GP, Craig M and Le Sueur D. A spatial statistical approach to malaria mapping. Int J Epidemiol, 2000, 29(2): 355-361.
    92. Gemperli A, Sogoba N, Fondjo E, Mabaso M, Bagayoko M, Briet OJ, et al. Mapping malaria transmission in West and Central Africa. Trop Med Int Health, 2006, 11(7):1032-1046.
    93. Minakawa N, Omukunda E, Zhou G, Githeko A and Yan G. Malaria vector productivity in relation to the highland environment in Kenya. Am J Trop Med Hyg, 2006, 75(3): 448-453.
    94. Cazelles B, Chavez M, Magny GC, Guegan JF and Hales S. Time-dependentspectral analysis of epidemiological time-series with wavelets. J R Soc Interface, 2007, 4(15): 625-636.
    95. Cazelles B, Chavez M, McMichael AJ and Hales S. Nonstationary influence of El Ni?o on the synchronous dengue epidemics in Thailand. PLoS Med, 2005, 2(4): e106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700