用户名: 密码: 验证码:
燃煤电站汞排放环境影响与TAC对烟气零价汞的吸附机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞污染是全球关注的环境问题之一。我国煤炭消耗量巨大,由此引发的燃煤汞排放污染问题日益突出,人们对燃煤汞的排放规律和抑制机理的探索与认识却较少。积极开展燃煤汞排放特性、迁徙转移规律及汞污染防治技术等相关研究,对减少燃煤烟气汞排放及其周边环境影响等具有重要意义。本文针对燃煤汞排放周边影响及汞吸附机制等问题,围绕燃煤电站烟气汞采样分析、汞排放的周边环境影响、活性炭控制烟气汞吸附机理以及NOx、汞污染物协同控制等四个方面开展了深入的研究。
     首先,依据燃煤电站的烟气汞特性和干吸附测汞法基本原理,自行设计建立了一套便捷的干吸附形态汞取样测试系统(Flue gas mercury speciation system, FMSS),并与OH、CEM等常规取样测试方法一起对国内3个典型燃煤电站进行了汞排放的对比测试。结果表明,所测燃煤烟气汞浓度介于2.8-14.3μg/m3之间,三种测试方法对同一采样点的总汞测试偏差仅6.7%,在SO2浓度高达1248ppm时,FMSS测得的结果仍可满足70%-130%的锅炉汞平衡要求,这为适合国情的燃煤电站烟气形态汞的便捷取样测试方法建立打下基础。
     其次,采用基于汞排放源数据以及气象、地理条件的模型计算,结合周边环境介质的采样分析,应用地统计学的方法系统研究了一2×125MW燃煤电站烟气汞排放的迁徙转移规律及其对局域环境的影响。结果表明周边表层土壤汞含量介于0.045-0.529mg/kg之间,均值0.180mg/kg,与当地土壤背景汞含量相比增加了2.3%;在半径7km的采样区域内,电站周边地表大气中汞的浓度范围为4.3-12.4ng/m3,均值7.0ng/m3,略高于当地背景值(6.7ng/m3);在高斯扩散与干湿沉降的共同作用下,地表大气汞浓度随着与电站距离的增加总体上呈驼峰形递减的分布规律。
     再者,本文进行了基于表面汞形态分析的活性炭吸汞机理研究。采用惰性气氛下高温脱附的方法制备高温脱附活性炭(heat-treated activated carbon, TAC),以消除表面化学官能团与烟气组分的交互影响,在模拟烟气实验台上开展不同烟气组分下TAC对Hg0的吸附实验,并利用XPS、XAFS等先进测试手段对吸汞产物中汞的赋存状态和配位情况进行分析研究。结果表明,TAC对Hg0的吸附并非简单的物理吸附;酸性气体组分下Hg0在TAC上的吸附主要遵循Eley-Rideal反应机理,酸性气体组分在TAC活性反应位上的反应和吸附为氧化吸附Hg0提供了所需的酸性反应基团,TAC则起促进酸性反应基团生成以及汞氧化的催化作用;在本文实验条件下,N2气氛中单一组分HCl、NO2或NO的添加均可使TAC氧化吸附Hg0的效率高达50%以上,而S02仅约20%;酸性气体组分下,02对TAC氧化吸附Hg0具有一定的协同促进作用;与其它酸性气体组分同时存在时,802可通过竞争吸附TAC表面活性位的方式降低TAC对Hg0的吸附性能,且这种现象在H20存在时更为明显。
     最后,围绕NOx、汞两种燃煤污染物的协同控制展开了实验研究。在空速8000h-1、烟温80-100℃的实验条件下,活性炭拥有良好的NOx吸附性能,且饱和吸附后,在O2含量低至4%时,活性炭在高效脱汞同时催化氧化NO的效率仍可达55%。基于以上研究结果,本文提出了一种利用活性炭实现对燃煤烟气NOx和汞协同脱除的可行技术途径。
Mercury pollution is one of the global environmental challenges. Problems arising from the release of mercury are increasing in China because of the huge coal consumption. However, the mercury pollution is less known among the public and subsequent affordable strategies for mercury control are still needed. Therefore, there is an urgent need to carry out studies on mercury emission characteristics, mercury transportation pattern, and mercury control technology. To understand the impacts of mercury emission from coal-fired power plants and the adsorption mechanism of mercury, researches were carried out on the measurement of mercury, environmental impacts, mechanism of mercury adsorption on activated carbon and the cooperative control technology.
     At first, a set of flue gas mercury speciation system (FMSS) was designed and built to meet the shortage of measurement methods for coal-fired power plants. Field validations and comparison with CEM and OH method were carried out in three different power plants. Results showed that mercury concentrations in the flue gases from coal-fired power plants were in the range of2.8-14.3μg/m3.The deviation of total mercury concentrations measured by three methods in the same flue gas was6.7%. The mercury concentration measured by FMSS still met the70%-130%requirement in the mercury balance of boiler even in the flue gas with1248ppm SO2, and thus suitable for convenient mercury measurement in coal-fired flue gases.
     Secondly, in combination with the emission source, local meteorological and geographical conditions, model calculations were carried out and samples of soil and air were collected and analyzed to evaluate the environmental effect of mercury emission from a typical coal-fired power plant. Spatial distribution of mercury in soil and air around a2×125MW power plant were investigated using geostatistics techniques. It was found that mercury levels in soil samples were in the range of0.045-0.529mg/kg with an average of0.180mg/kg. In comparison with the local soil background, the average mercury content of nearby soil increased by2.3%. Within the7km radius areas of sample collection, mercury concentrations in air samples varied from4.3to12.4ng/m3with an average of7.0ng/m3, slightly higher than the local background of6.7ng/m3. As the result of Gaussian diffusion together with physical deposition, mercury concentration in air samples decreased in general with the increase of the distance from the power plant, except for a peak value at certain distance downwind the chimney.
     Furthermore, absorption mechanisms of mercury on activated carbon were studied based on the morphological analysis of adsorbed mercury on activated carbon surface. Surface functional groups (SFGs) on AC sorbents were removed through heat treatment under the protection of argon (Ar). The Hg0adsorption behavior of heat-treated activated carbon (TAC) when subjected to various synthetic gases was studied. The use of TAC was to avoid the complicated interaction between SFGs and flue gas components. The adsorbed residues were then characterized by XPS and XAFS to investigate the existing state of mercury and its coordination properties. We found that the Hg0adsorption on AC was not simply a process of physical adsorption. Acid gas components enhance Hg0capture on TAC mainly through Eley-Rideal reaction mechanism. The adsorption of acid gas component and subsequent formation of acidic reactive groups on TAC provided activated sites for Hg0sorption, while TAC served as a catalyst for the formation of acidic reactive groups and the oxidization of mercury. Under the experimental conditions of our study, the addition of single acid component (HC1, NO2or NO) to the pure N2can generate higher Hg0capture efficiency larger than50%, while it was only20%when SO2was added. O2exhibits a synergistic effect on the enhancement of Hg0oxidation and capture when acid gases are present in baseline gases. When co-existed with other acid gas components, SO2can inhibit the adsorption of mercury through competition for the same active site on TAC. The addition of water vapor promoted the adsorption of SO2on TAC further.
     Finally, experimental studies were carried out on the cooperative control of NOx and Hg0, which are the two major pollutants from coal burning. Activated carbon can adsorb NOx very well under the temperature range of80-100℃with a space flow rate of8000h-1. After NOx adsorption reached saturation, the activated carbon still can remove mercury efficiently and simultaneously catalyze the oxidation of NO up to55%in the presence of only4%O2. Therefore, an economical approach that used activated carbon for the simultaneous removal of NOx and mercury in flue gas was developed in this paper.
引文
[1]International Energy Agency. World energy outlook 2010 executive summary[R].2010.
    [2]BP p.I.c. BP statistical review of world energy[R]. June 2011. http://www.bp.com/statisticalreview.
    [3]林伯强.中国碳减排的现实选择[ON/OL].财经网,[2009-6-22].http://www.caijing.com.cn/2009-06-22/110187428.html.
    [4]US EPA Mercury Study Report to Congress, Volume I:Executive Summary 1997.
    [5]蒋靖坤,郝吉明,吴烨,等.中国燃煤汞排放清单的初步建立[J].环境科学,2005,26(2):35-39.
    [6]胡长兴.燃煤电站汞排放及活性炭稳定吸附机理研究[D].杭州:浙江大学,2007.
    [7]Trasande, L., P. Landrigan, and C. Schechter. Public Health and Economic Consequences of Methyl Mercury Toxicity to the Developing Brain [J]. Environmental Health Perspectives, 2005,113(5):590-596.
    [8]U. S. Environmental Protection Agency, Clean Air Mercury Rules [R/OL].2005. http://www.epa.gov/mercuryrule/indux.htm.
    [9]中华人民共和国环境保护部.火电厂大气污染物排放标准(GB 13223-2011)2011[2011-06-06].
    [10]方凤满.城市区汞的环境行为与效应[M].合肥:安徽人民出版社,2008.
    [11]方凤满,王起超.十壤汞污染研究进展[J].土壤与环境,2000,9(4):326-329.
    [12]王定勇,李孝华,吴成.重庆大气汞初步调查[J].重庆环境科学,1996,18(4):58-61.
    [13]National Research Council, Toxicological Effects of Methyl Mercury, National Academy Press, Washington, DC,2000, August, Library of Congress Card Number 00-108382.
    [14]国家环境保护局.空气和废气监测分析方法[M].北京:中国环境科学出版社,1990.
    [15]卫生部食品卫生监督检验所.食品中汞限量卫生标准(GB 2762-1994),1994.
    [16]UNEP. Report of the global mercury assessment working group on the work of its first meeting [R]. Geneva:UNEP,2002.
    [17]张磊,王起超,李志博.中国城市汞污染及防治对策[J].生态环境,2004,13(3):410-413.
    [18]郑楚光,徐明厚,张军营,等.燃煤痕量元素的排放与控制[M].武汉:湖北科学技术出版社.2002.
    [19]张军营,任德贻,许德伟.煤中汞及其对环境的影响[J].环境科学进展,1999,7(3):100-104.
    [20]Deepak Pudasainee, Jeong-Hun Kim, Yong-Chil Seo. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea[J]. Atmospheric Environment,2009,43(39):6254-6259.
    [21]Shigeo Ito, Takahisa Yokoyama, Kazuo Asakura. Emissions of mercury and other trace elements from coal-fired power plants in Japan [J]. Science of The Total Environment,2006, 368(1):397-402.
    [22]Anna Glodek, Jozef M. Pacyna. Mercury emission from coal-fired power plants in Poland [J]. Atmospheric Environment,2009,43(35):5668-5673.
    [23]Dabrowski J, Ashton P, Murray K, et al. Anthropogenic mercury emissions in South Africa: Coal combustion in power plants. Atmospheric Environment [J],2008,42(27):6620-6626.
    [24]UNEP. The global atmospheric mercury assement:Sources, emissions and transport. UNEP, 2008.
    [25]Zhang L, Wang S X, Wu Q R, et al. Were mercury emission factors for Chinese nonferrous metal smelters overestimated? Evidence from onsite measurements in six smelters [J]. Environmental Pollution,2012,171:109-117.
    [26]冯新斌,洪业汤,倪建宇,等.贵州煤中汞的分布、赋存形态及对环境的影响[J].煤田地质与勘探,1998,2:14-17.
    [27]王起超,沈文国,麻壮伟,中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.
    [28]Streets D G, Hao J M, Wu Y, et al. Anthropogenic mercury emissions in China [J]. Atmospheric Environment,2005,39:7789-7806.
    [29]任建莉,周劲松,骆仲泱,等.燃煤电站汞排放量的预测模型[J].动力工程,2005,25(4):587-592.
    [30]王书肖,刘敏,蒋靖坤,等.中国非燃煤大气汞排放量估算[J].环境科学,2006,27(12):2401-2406.
    [31]Kilgroe J. EPA mercury emission control study:preliminary results [C]. Presented of the Air Quality Ⅱ:Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA, 2000,19-21(A4-1).
    [32]Chu P, Goodman N, Behrens G, et al. Total and speciated mercury emissions from U.S. coal fired power plants [C]. Proceedings of the Air Quality Ⅱ:Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA,2000,19-21(A3-4).
    [33]周劲松,张乐,骆仲泱,等.300MW机组锅炉汞排放及控制研究[J].热力发电,2008,37(4):22-27.
    [34]陈进生,袁东星,李权龙,等.燃煤烟气净化设施对汞排放特性的影响[J].中国电机工程学报,2008,28(02):72-76.
    [35]王运军,段钰锋,杨立国,等.燃煤电站布袋除尘器和静电除尘器脱汞性能比较[J].燃料化学学报,2008,36(1):23-29.
    [36]Prestbo E. M., Bloom N. S. Mercury speciation adsorption (MESA) method for combustion flue gas:methodology, artifacts, intercomparison, and atmospheric implications [J]. Water, Air, and Soil Pollution,1995,80:145-158.
    [37]Babur. Nott. Intercomparison of stack gas mercury measurement methods [J]. Water, Air, and Soil Pollution,1995,80:1311-1314.
    [38]Laudal D, Brown T, Nott B. Effects of flue gas constituents on mercury speciation [J]. Fuel processing technology,2000(65-66):157-165.
    [39]U. S. EPA. Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method) [S]. July 7,1999.
    [40]Meij R. A sampling method based on activated carbon for gaseous mercury in ambient air and flue gases [J]. Water, Air, and Soil Pollution,1991,56:117-129.
    [41]Olmez, I., Aras, N.K. Mercury Determination in Environmental Materials by Instrumental Neutron Activation Analysis [C]. Annual Meeting of the American Nuclear Society, June 20-24. San Diego, CA.
    [42]王起超,邵庆春,康淑莲等.燃煤灰渣中微量元素分布规律的研究[J].环境化学,1996,15(1):20-26.
    [43]陈义珍,柴发合,薛志钢等.燃煤火电厂汞排放因子测试设计及案例分析[J].环境科学研究,2006,19(02):49-52.
    [44]Constance L S, Joseph J H, Adel F S. Emission of mercury, trace elements, and fine particles from stationary combustion sources [J]. Fuel Processing Technology,2000, 65-66:263-288.
    [45]Travnikov O, Ryaboshapko A. Modelling of mercury hemispheric transport and depositions [R]. Meteorological Synthesizing Centre-East, Moscow, Russia,2002.
    [46]Lipfert, F. W., Moskowitz, P. D., Ftherakis, V., Dephillips, M.,Viren, J. and Saroff, L. Assessment of adult risks of paresthesia dueto mercury from coal combustion [J]. Water, Air and Soil Pollution,1995,80:1139-1148.
    [47]汤庆合,丁振华,江家骅,等.大型垃圾焚烧厂周边环境汞影响的初步调查[J].环境科学,2005,26(1):196-199.
    [48]王凌青,卢新卫,戴丽君,等.燃煤电厂周围土壤中Hg的空间分析和风险评价[J].农业环境科学学报,2007,26(2):629-633.
    [49]Pinkney A E, Logan D T, Wilson H T. Mercury Concentrations in Pond Fish in Relation to a Coal-Fired Power Plant[J]. Archives of Environmental Contamination and Toxicology,1997,33(2):222-229.
    [50]EPRI, http://mydocs.epri.com/docs/public/EPRI_MC.html.
    [51]Wang M, Keener T C, Khang S J. The effects of coal volatility on mercury removal from bituminous coal during mild pyrolysis [J]. Fuel Processing Technology,2000,67: 147-161.
    [52]Engineers I K. Topical Report No.5 Trace Elemental Removal Study. Prepared for U.S. Department of Energy's Pittsburgh Technology Center [R]. Fairfax,VA, March 1995.
    [53]Miller S J, Dunham G E, Olson E S, et al. Flue gas effects on a carbon-based mercury sorbent [J]. Fuel Processing Technology,2000,65-66:343-363.
    [54]Zhou H S, Wu X J, Gao H L, et al. Experimental study of mercury emission and control for CFB boilers [J]. Thermal Power Generation,2004,33(1):72-75.
    [55]Liu K L, Gao Y, RileyJ T, et al. An investigation of mercury emission from FBC systems fired with high-chlorine coals [J]. Energy & Fuels,2001,15(5):1173-1180.
    [56]EPRI. An Assessment of Mercury Emissions from U.S Coal-Fired Power Plants [R]. Palo Alto, CA, EPRI,2000,1000608.
    [57]Lissianski V, et al. Control of NOx and mercury emissions using coal reburning [C]. Proceedings of the Air & Waste Management Association's Annual Conference & Exhibition.2002.
    [58]Staudt J E, Jozewicz W. Performance and Cost of Mercury and Multipollutant Emission Control Technology Applications on Electric Utility Boilers [R]. U.S.EPA,2003 EPA-600/R-03/110,108.
    [59]Meit R. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization [J]. Water, Air, & Soil Pollution,1991,56:21-23.
    [60]Chang R, Hargrove B, Crey T. et al. Power plant mercury control options and issues [C]. Proceedding of Power-Gen'96 International Conference. Orlando, Fla:1996.
    [61]Senior C L, Helble J J, Sarofim A F. Predicting the speciation of mercury emissions from coal-fired power plants [C]. Proceedings of the Air Quality II:Mercury, Trace Elements, and Particulate Matter Conference, McLean, VA,2000,19-21 (A5-2).
    [62]Pavlish J H, Sondreal E A, Mann M D, et al. Status review of mercury control option for coal-fired power plants [J]. Fuel Processing Technology,2003,82(2):89-165.
    [63]Nolan, et al. Method for controlling elemental mercury emissions. Compiler:US, 6855859 [P/OL].2005-02-15.
    [64]Chang J C S, Ghorishi S B. Simulation and evaluation of elementalmercury concentration increase in flue gas across a wet scrubber [J]. Environmental Science & Technology, 2003,37(24):5763-5766.
    [65]Galbreath K C, Zygarlicke C J, Olson E S, Pavlish J H, Toman D L. Evaluating mercury transformation mechanisms in a laboratory-scale combustion system [J]. The Science of the Total Environment,2000,261 (1-3):149-155.
    [66]Gutberlet H, Spiesberger A, Kastner F, Tembrink J. Behaviour of trace mercury in bituminous coal furnaces with flue gas cleaning plants[J].VGB Kraftwerkstechnik 1992,72:636-640.
    [67]厦门嵩屿电厂尾部烟气汞浓度测试报告[R].浙江大学热能工程研究所.2007.
    [68]Lee C W, Srivastava R, Ghorishi S, Hastings T, Stevens F. Study of speciation of mercury under simulated SCR NOx emission control conditions[C]. In Proceedings of the DOE-EPRI-USEPA-AWMA Combined Power Plant Air Pollutant Control Symposium-The Mega Symposium,2003.
    [69]Laudal D, Pavlish J, Galbreath K, Thompson J, Weber G, Sondreal E. Pilot-Scale valuation of the Impact of Selective Catalytic Reduction for NOx on Mercury Speciation [R]. Report to U.S. DOE/NETL; U. S. Department of Energy Agreement No. DEFC26-98FT40321,2000.
    [70]Machalek T, Ramavajjala M, Richardson M, Richardson C. Pilot evaluation of flue gas mercury reactions across an SCR unit [C]. In Proceedings of the DOE-EPRI-USEPA-AWMA Combined Power Plant Air Pollutant Control Symposiums. The MEGA Symposium,2003.
    [71]Staudt J E, Jozewicz W. Performance and cost of mercury and multipollutant emission control technology applications on electric utility boilers [R]. U. S. EPA,2003 EPA-600/R-03/110,108.
    [72]Lutter R., Mader E., Knuffman N. Regulating mercury emissions:What do we know about cost and benefits? [M]. Aei-Brookings Joint center for Regulatory Studies,2001.
    [73]Ir. Diamantopoulou, G. Skodras, G.P. Sakellaropoulos. Sorption of mercury by activated carbon in the presence of flue gas components [J]. Fuel Process. Technol,2010, 91:158-163.
    [74]Rong Yan, Yuen Ling Ng, David Tee Liang, et al. Bench-Scale Experimental Study on the Effect of Flue Gas Composition on Mercury Removal by Activated Carbon Adsorption [J]. Energy & Fuels,2003,17:1528-1535.
    [75]E.S. Olson, J.D. Laumb, S.A. Benson, et al. Chemical mechanisms in mercury emissions control technologies [J]. J. Phys. IV France,2003,107:979-982.
    [76]D.S. Serre, D.G. Silcox. Adsorption of Elemental Mercury on the Residual Carbon in Coal Fly Ash [J]. Ind. Eng. Chem. Res.,2000,39 (6):1723-1730.
    [77]S. Kellie, Y. Cao, Y. Duan, et al. Factors affecting mercury speciation in a 100-MW coal-fired boiler with low-NOx burner [J]. Energy Fuels,2005,19 (3):800-806.
    [78]G.A. Norton, H. Yang, R.C. Brown, D.L. Laudal, G.E. Dunham, J. Erjavec. Heterogeneous oxidation of mercury in simulated post combustion conditions [J]. Fuel, 2003,82(2):107-116.
    [79]Y.H. Li, C.W. Lee, B.K. Gullett. The effect of activated carbon surface moisture on low temperature mercury adsorption [J]. Carbon,2002,40:65-72.
    [80]Y.H. Li, C.W. Lee, B.K. Gullett. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption [J]. Fuel,2003(82):451-457.
    [81]Krishnan S.V., Gullett B.K., Jozewicz W. Mercury control in municipal waste combustors and coal-fired utilities [J]. Environmental progress,1997,16:47-53.
    [82]Padak B., Jennifer W. Understanding mercury binding on activated carbon [J]. Carbon, 2009,47:2855-2864.
    [83]Alistair R. L., John M. Charnock, Richard A.D. Pattrick. Structure of mercury(Ⅱ)-sulfur complexes by EXAFS spectroscopic measurements [J]. Chemical Geology,2003, 199:199-207.
    [84]Sung J. L., Yong C. S., Jongsoo J., Tai G. L. Removal of gas-phase elemental mercurybyiodine- and chlorine-impregnated activated carbons [J]. Atmospheric Environment,2004,38:4887-4893.
    [85]E.S. Olson, S.J. Miller, R.K. Sharma, G.E. Dunham, S.A. Benson. Catalytic effects of carbon sorbents for mercury Capture [J]. Journal of Hazardous Materials,2000,74: 61-79.
    [86]C. Senior, C.J. Bustard, B. Durham, K. Baldrey, D. Michaud. Characterization of fly ash from full-scale demonstration of sorbent injection for mercury control on coal-fired power plants [J]. Fuel Process. Technol.,2004,85:601-612.
    [87]郭欣,郑楚光,吕乃霞.簇模型CaO(001)面上付汞与氯化汞的密度泛函理论研究[J].中国电机工程学报,2005,25(13):101-104.
    [88]Yan L., David J.A., Kelly, Hongqun Y., et al. Novel Regenerable Sorbent for Mercury Capture from Flue Gases of Coal-Fired Power Plant [J]. Environ. Sci. Technol.,2008, 42:6205-6210.
    [89]Frank E. Hugginsa, Nora Yapa, Gerald P. Huffman, Constance L. Seniorb. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures [J].Fuel Processing Technology,2003,82:167-196.
    [90]Mark S. Germani, William H. Zoller. Vapor-phase concentrations of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power plant [J]. Environ. Sci. Technol.,1988,22 (9):1079-1085.
    [91]Pavlish J H, Sondreal E A, Mann M D, et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Process Technology,2003,82 (2-3):89-165.
    [92]Babur. Nott. Intercomparison of stack gas mercury measurement methods [J]. Water, Air, and Soil Pollution,1995,80:1311-1314.
    [93]Takahisa Yokoyama, Kazuo Asakura. Mercury emission from a coal-fired power plant in Japan [J]. The Science of the Total Environment,2000,259:97-103.
    [94]杨宏旻,LIU Kun-lei, CAO Yan,等.电站烟气脱硫装置的脱汞特性实验[J].动力工程,2006,26(4):554-567.
    [95]Benson S. A., Laumb J. D., Crocker C. R., Pavlish J. H. SCR catalyst performance in flue gases derived from subbituminous and lignite coals [J]. Fuel Processing Technology, 2005,86(5):577-613.
    [96]Eswaran S., Stenger H. G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts [J]. Energy and Fuels,2005,19(6):2328-2334.
    [97]Constance L. S., Stephen A. J. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants [J]. Energy & Fuels,2005, 19(3):859-863.
    [98]杨秀虹,李适宇.地统计学方法在环境污染研究中的应用[J].中山大学学报(自然 科学版),2005,44(3):97-101.
    [99]Jeremy E. D., Andrew C. C. Predictive mapping of air pollution involving sparse spatial observations [J]. Environmental Pollution,2002,119(1):99-117.
    [100]Landis M. S., Keeler G. J., Al-Wali K. I., Stevens R. K. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition [J]. Atmospheric Environment,2003,38 613-622.
    [101]John Munthe, Ingvar Wangberg, Ake Iverfeldt, Oliver Lindqvist, Dan Stromberg, Jonas Sommar, Katarina Gardfeldt, Gerhard Petersen, Ralf Ebinghaus, Eric Prestbo, Kari Larjava, Volker Siemens. Distribution of atmospheric mercury species in Northern Europe:final results from the MOE project [J]. Atmospheric Enviroment,2003,37: S9-S20
    [102]T.V.B.P.S. Rama Krishna, M.K. Reddy, R.C. Reddy, R.N. Singh. Impact of an industrial complex on the ambient air quality:Case study using a dispersion model [J]. Atmospheric Environment,2005,39(29):5395-5407.
    [103]Fahlke J., Bursik A. Impact of the State of the Art of Flue Gas Cleaning on Mercury Species Emissions from Coal-Fired Steam Generations [J]. Water Air soil Pollution, 1995,80:209-215.
    [104]Monique S. D., Song Xinjie, Lu J. Y. Atmosphere gaseous elemental mercury in downtown Toronto [J]. Atmospheric Enviroment,2006,40:4016-4024.
    [105]Schroeder W. H., Munthe J. Atmospheric mercury-An overview [J]. Atmospheric Environment,1998,32(5):809-822.
    [106]Heyer M., Buke J., Keeler G. Atmospheric sources transport and deposition of mercury in Michigan:two years of event precipitation [J]. Water Air Soil pollute,1995, 80:199-208.
    [107]邵志国,王起起,刘汝海,等.汞在泥炭上的吸附特征研究[J].土壤通报,2005,1:108-112.
    [108]方凤满,王起超.大气-水-土壤界面汞交换研究方法现状与展望[J].农业环境保护,2002,21(4):381-383.
    [109]杨金燕,杨肖娥,何振立,等.土壤中铅的吸附-解吸行为研究进展[J].生态环境,2005,14(1):102-107.
    [110]Gustin M. S., Biester H., Kim C. S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates [J]. Atmospheric Environment,2002, 36:3241-3254.
    [111]国家环境保护局,环境背景值和环境容量研究[M].北京:科学出版社,1993.
    [112]李开喜,凌立成,刘朗,张碧江,刘振宇.热处理改性的活性炭纤维的脱硫活性[J].催化学报,2000,21(3):264-268.
    [113]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003,3: 23-28.
    [114]曹雅秀,刘振宇.活性炭纤维及其吸附特性[J].炭素,1999,2:20-23.
    [115]刘振宇,郑经堂.活性炭纤维孔结构控制和表面改性[J].离子交换与吸附,1997,4:353-358.
    [116]Gregg S. J., Sing K. S. Adsorption, Surface Area and Porosity [M]. London:Academic Press.4.1982.
    [117]Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., and Orfao, J. J. M. Modification of the Surface Chemistry of Activated Carbons [J]. Carbon,1999,37(9):1379-1389.
    [118]Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., and Yasutake, A. Removal of SOx and NOx over Activated Carbon Fibers [J]. Carbon, 2000,38(2):227-239.
    [119]Bradley R. H., Rand B. The adsorption of vapours by activated and heat-treated microporous carbons. Part 2. Assessment of surface polarity using water adsorption [J]. Carbon,1993,31(2):269-272.
    [120]Suuberg E. M., Wojtowicz M., Calo J. M. Some Aspects of the Thermal Annealing Process in a Phenol-Formaldehyde Resin Char [J]. Carbon,1989,27(3):431.
    [121]C.O. Ania, J.B. Parra, J.J. Pis. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds [J]. Fuel Process Technol., 2002,79:265-271.
    [122]Radovic, L. R., and Bockrath, B. What Exactly is on the Edges of Grapheme Layers in Carbon:The Unfolding Story [J]. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem.,2002, 47(2):428-431.
    [123]Olson, E. S., Miller, S. J., Sharma, R. K., Dunham, G. E., Benson, S. A. Catalytic Effects of Carbon Sorbents for Mercury Capture [J]. J. Hazard. Mater.,2000, 74(1-2):61-69.
    [124]M. Mercedes Maroto-Valer, Yinzhi Zhang, Evan J. Granite, Zhong Tang, Henry W. Pennline. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample [J]. Fuel,2005,84(1):105-108.
    [125]M. Rostam-Abadi, S.G. Chen, H.-C. Hsi, M. Rood, R. Chang, T. Carey, B. Hargrove, C. Richardson, W. Rosenhoover, F. Meserole. Novel Vapor Phase Mercury Sorbents[C]. Proceedings of the EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, Washington, DC, Aug.1997.
    [126]Kwon S., Borguet E., Vidic R.D. Impact of surface heterogeneity on mercury uptake by carbonaceous sorbents under UHV and atmospheric pressure [J]. Environ. Sci. Technol., 2002,36:4162-4169.
    [127]G. Skodras, I. Diamantopoulou, A. Zabaniotou, G. Stavropoulos, G. P. Sakellaropoulos. Enhanced mercury adsorption in activated carbons from biomass materials and waste tires [J]. Fuel Processing Technology,2007,88(8):749-758.
    [128]Lee, S., Park, Y. Gas phase mercury removal by carbon-based sorbents [J]. Fuel Processing Technology,2003,84:197-206.
    [129]Galbreath K. C., Zygarlicke C. J. Mercury speciation in coal combustion and gasification flue gases [J]. Environmental Science and Technology,1996,12:818-822.
    [130]Cao, Y., Duan, Y.-F., Kellie, S., Li, L., Xu, W., Riley, J. T., and Pan, W.P. Impact of Coal Chlorine on Mercury Speciation and Emission from a 100-MW Utility Boiler with Cold-Side Electrostatic Precipitators and Low-NOx Burners [J]. Energy Fuels,2005, 19(3):842-854.
    [131]B. Krishnakumar, J. J. Helble. Determination of transition state theory rate constants to describe mercury oxidation in combustion systems mediated by Cl, Cl2, HCl and HOC1 [J]. Fuel Processing Technology,2012,94(1):1-9.
    [132]P. Abad-Valle, M.A. Lopez-Anton, M. Diaz-Somoano, M.R. Martinez-Tarazona. The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury [J]. Chemical Engineering Journal,2011,174:86-92.
    [133]J.D. Laumb, S.A. Benson, E.A. Olson. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry [J]. Fuel Process. Technol.,2004,85:577-585.
    [134]E.S. Olson, C.R. Crocker, S.A. Benson, J.H. Pavlish, M.J. Holmes. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases [J]. J. Air Waste Manage. Assoc.,2005,55:747-754.
    [135]T.K. Gale, B.W. Lani, G.R. Offen. Mechanisms governing the fate of mercury in coal-fired power systems [J]. Fuel Process. Technol.,2008,89:139-151.
    [136]S. Niksa, N. Fujiwara. Predicting mercury speciation in coal-derived flue gases [C]. In EPRI-DOE-EPA-A & WMA Combined Utility Air Pollution Control Symposium, The MEGA Symposium, May,2003.
    [137]Lee, S. J., Seo, Y. C., Jumg, J. S., Lee, T. G. Removal of Gas-Phase Elemental Mercury by Iodine and Chlorine-Impregnated Activated Carbons [J]. Atmos. Environ.,2004, 38(29):4887-4893.
    [138]Granite, E.J., Pennline, H.W., Hargis, R.A. Novel sorbents for mercury removal from flue gas [J]. Industrial & Engineering Chemistry Research,2000,39:1020-1029.
    [139]Ghorishi, S. B., Keeney, R. M., and Serre, S. D. Development of a Cl-Impregnated Activated Carbon for Entrained-Flow Capture of Elemental Mercury [J]. Environ. Sci. Technol.,2002,36(20):4454-4459.
    [140]R. Ochiai, Md.A. Uddin, E. Sasaoka, S. Wu. Effects of HCl and SO2 concentration on mercury removal by activated carbon sorbents in coal-derived flue gas [J], Energy Fuels, 2009,23:4734-4739.
    [141]Moreno-Castilla, C., Carrasco-Marin, F., Maldonado-Hodar, F.J., Rivera-Utrilla, J. Effects of non-oxidant and oxidation acid treatments of the surface properties of an activated carbon with very low ash content [J]. Carbon,1998,36 (1-2):145-151.
    [142]H. Pan, R. Minet, S. Benson, T. Tsotsis. Process for converting hydrogen chloride to chlorine [J]. Industrial & Engineering Chemistry Research,1994,33(12):2996-3003.
    [143]Niksa S., Fujiwara N., Fujita Y., Tomura K., Moritomi H., Tuji T,. Takasu S. A mechanism for mercury oxidation in coal-derived exhausts [J]. Air & Waste Manageement Association,2002,52:894-901.
    [144]R. Akesson, I. Persson, M. Sandstrom, U. Wahlgren. Structure and bonding of solvated mercury (Ⅱ) and thallium (Ⅲ) dihalide and dicyanide complexes by XAFS spectroscopic measurements and theoretical calculations [J]. Inorg. Chem.,1994, 33:3715-3723.
    [145]Huggins, F.E., Yap, N., Huffman, G.P. XAFS Investigation of mercury sorption on carbon-based and other sorbent materials [J]. Jpn. J. Appl. Phys. (Proc. Internat. Conf. SRMS-2, Kobe, Japan),1999,38:588-591.
    [146]Huggins, F.E., Yap, N., Huffman, G.P. Senior, C.L. XAFS examination of mercury sorption on three activated carbons [J]. Energy fuels,1999,13(1):114-121.
    [147]Tossell, J. A. Calculation of the energetics for oxidation of gasphase elemental Hg by Br and BrO [J]. J. Phys. Chem.,2003,107:7804-7808.
    [148]Uddin, M. A., Yamada, T., Ochiai, R., Sasaoka, E., Wu, S. Role of SO2 for elemental mercury removal from coal combustion [J]. Energy Fuels,2008,22:2284-2289.
    [149]Thermo Fisher Scientific,2000. Database for surface spectroscopes as XPS, AES and UPS [OL].2009-10-20, http://www.lasurface.com/database/elementxps.php
    [150]B. Padak, M. Brunetti, A. Lewis, J. Wilcox. Mercury Binding on Activated Carbon [J]. Environmental Progress,2006,25(4):319-326.
    [151]Hall, B., Schager, P., and Ljungstrom, E. An Experimental Study on the Rate of Reaction Between Mercury Vapour and Gaseous Nitrogen Dioxide[J]. Water Air Soil Poll.,1995,81(1-2):121-134.
    [152]Galbreath, K. C., Zygarlicke, C. J., Tibbetts, J. E., Schulz, R. L., and Dunham, G. E. Effects of NOx, a-Fe2O3, γ-Fe2O3, and HCl on Mercury Transformations in a 7-kW Coal Combustion System [J]. Fuel Process. Technol.,2004,86(4):429-448.
    [153]Garcia P., Coloma F., Salinas C., Mondragon F. Nitrogen Complexes Formation during NO-C Reaction at Low Temperature in the Presence of O2 and H2O [J]. Fuel Process. Technol.,2002,77-78:255-259.
    [154]Long R. Q., Yang R. T. Carbon nanotubes as a superior sorbent for nitrogen oxides [J]. Ind. Eng. Chem. Res.2001,40:4288-4291.
    [155]Olson, E. S., Sharma, R. K., and Pavlish, J. H. On the Analysis of Mercuric Nitrate in Flue Gas by GC-MS [J]. Anal. Bioanal. Chem.,2002,374(6):1045-1049.
    [156]Norton, G. A., Yang, H., Brown, R. C., Laudal, D. L., Dunham, G. E., Erjavec, J. J., Heterogeneous Oxidation of Mercury in Simulated Post Combustion Conditions [J]. Fuel,2003.82(2):107-116.
    [157]Klose, W., Rincon, S. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour [J]. Fuel,2007,86:203-209.
    [158]Ghorishi, S.B., Lee, C.W., Kilgroe, J.D. Mercury Speciation in Combustion Systems: Studies with Simulated Flue Gases and Model Fly Ashes [C].92nd Air & Waste Management Association Annual Meeting, St. Louis, MO.,1999.
    [159]Teng H., Suuberg E.M. Chemisorption of nitric oxide on char.1. Reversible nitric oxide sorption [J]. J. Phys. Chem.,1993,97(2):478-483.
    [160]Zhu, Z., Liu, Z., Liu, S., Niu, H. Adsorption and Reduction of NO over Activated Coke at Low Temperature [J]. Fuel,2000,79:651-658.
    [161]Presto, A. A., Granite, E.J., Karash, A. Further Investigation of the Impact of Sulfur Oxides on Mercury Capture by Activated Carbon [J]. Ind. Eng. Chem. Res.,2007, 46(24):8273-8276.
    [162]Raymundo-Pinero, E., Cazorla-Amoros, D., Salinas-Martinez de Lecea, C., Linares-Solano, A. Factors controlling the SO2 removal by porous carbons:Relevance of the SO2 oxidation step [J]. Carbon,2000,38(3):335-344.
    [163]Liu, J., Qu, W., Joo, S. W., Zheng, C. Effect of SO2 on mercury binding on carbonaceous surface [J]. Chemical Engineering Journal,2012,184:163-167.
    [164]Pliego, J.R., Resende, S.M., Humeres, E. Chemisorption of SO2 on graphite surface:A theoretical ab initio and ideal lattice gas model study [J]. Chemical physics,2005, 314(1-3):127-133.
    [165]Feng, W., Borguet, E., and Vidic, R. D. Sulfurization of a Carbon Surface for Vapor Phase Mercury Removal-Ⅱ:Sulfur Forms and Mercury Uptake [J]. Carbon,2006, 44(14):2998-3004.
    [166]Izquierdo MT, Rubio B, Mayoral C, Andre's JM. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas [J]. Fuel,2003,82:147-151.
    [167]Ozaki, M., Nagano, S., Ochiai, R., Uddin, M. A., Sasaoka, E., Wu, S. A study on decomposition characteristic of mercury compounds and mercury species on the sorbents by TPD-mass method [C]. Proceedings of the Conference on Coal Science, Akita, Japan, Oct.,2007.)
    [168]Dunham, G.E., Olson, E.S. and Miller, S.J. Impact of flue gas constituents on carbon sorbents [C]. In Proceedings of the Conference on Air Quality II:Mercury, Trace Elements and Particulated Matter, McLean, VA, September,2000.
    [169]Miller, S.J., Dunham, G.E., Olson, E.S., Brown,T.D. Flue gas effects on a carbonbased mercury sorbent [J]. Fuel Process. Technol.,2000,65:343-363.
    [170]Olson, E.S., Azenkeng, A., Laumb, J.D., Jensen, R.R., Benson, S.A., Hoffmann, M.R. New developments in the theory and modeling of mercury oxidation and binding on activated carbons in flue gas [J]. Fuel Process. Technol.,2009,90:1360-1363.
    [171]Cicha, W., Manzer, L. Process for producing oxochlorides of sulfur. U.S. Patent No. 5,879,652[P/OL],1999.
    [172]Richter, E., Wunnenberg, W., Schneiders, K., Baβler, J., Steckel, H., Erfahrungen mit Aktivkoks-Anlagen zur SO2/NOx-Entfernung aus Rauchgasen. VGB. Konferenz Kraftwerk und Umwelt 1989, Vortragsveroffentlichung, Essen 1989, pp.205-212.
    [173]Liu, W., Vidic, R.D., Brown, T.D. Impact of Flue Gas Conditions on Mercury Uptake by Sulfur-Impregnated Activated Carbon [J]. Environ. Sci. & technol.,2000, 34(1):154-159.
    [174]Buri,B.R., Walker, P. L., Jr. (Ed.) Chemistry and Physics of Carbon, Vol.6. Marcel Dekker, New York,1970, pp.264.
    [175]Liu, Y., Bisson, T. M., Yang, H., Xu, Z. Recent developments in novel sorbents for flue gas clean up [J]. Fuel Processing Technology,2010,91:1175-1197.
    [176]Bai, H., Chwu, J. Theoretical analysis of selective catalytic reduction catalysts [J]. J. Environ. Engng.,1997,123:431-436.
    [177]孙德魁,刘振宇,贵国庆,等.NO和NO2在V2O5/AC催化剂表面的反应行为[J].催化学报,2010,31(1):56-60.
    [178]Guo, Z., Xie, Y., Hong, I., Kim, J. Catalytic oxidation of NO to NO2 on activated carbon [J]. Energy Conversion and Management,2001,42:2005-2018.
    [179]Aarna I, Suuberg EM. A review of the kinetics of the nitric oxide carbon reaction [J]. Fuel,1997,76:475-491.
    [180]Mochida I., Kawabuchi Y., Kawano S., Matsumura Y., Yoshikawa M. High Catalytic Activity of Pitch-Based Activated Carbon Fibres of Moderate Surface Area for Oxidation of NO to NO2 at Room Temperature [J]. Fuel,1997,76:543-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700