用户名: 密码: 验证码:
聚氯乙烯(PVC)/纳米SiO_2复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势,而将纳米粒子作为填料来填充改性聚合物,是获得高强高韧复合材料有效方法之一。目前,有关PVC纳米复合材料结构与性能之间的关系方面缺乏系统深入的研究。本论文分别采用原位聚合和熔融共混方法,选用不同表面修饰的可分散型和可反应型纳米SiO2,制备得到了PVC/纳米SiO2复合材料,研究了不同类型的纳米SiO2对于PVC聚合过程、颗粒特性和复合材料结构与性能的影响。具体研究内容和主要研究结果如下所示:
     1.不同纳米SiO2对与PVC聚合过程和颗粒特性的影响
     利用原位聚合的方法,首先考察了可分散型DNS系列和可反应型RNS系列纳米SiO2对于氯乙烯(VC)单体聚合过程的影响,结果发现:RNS-A、RNS-SR、DNS-2对VC聚合过程产生不利的影响,使得聚合时釜内出现结块,最后出料为不合格的颗粒料,只有RNS-D和DNS-3在3份以下对聚合没有太大影响。然后,我们着重研究了RNS-D对与VC聚合过程的影响,主要包括对于聚合时间和颗粒的常规特性的影响。结果发现,RNS-D的加入使得聚合反应的时间延长;通过对PVC内部和外部形貌的观察,可知RNS-D使PVC的颗粒的外部的形态更加均匀,内部结构的更加疏松,孔隙明显的增多;常规性能的测试结果表明:RNS-D加入时树脂的粘数、吸油值明显增加,而表观密度略有下降;颗粒大小随着RNS-D加入量的增加略有变粗,但是在3%以下基本没有什么影响。
     2. PVC/纳米SiO2复合材料的界面结构分析
     为了考察不同纳米SiO2对于PVC性能造成影响的原因,我们采用多次超声洗涤从PVC纳米复合树脂中抽提出纳米SiO2:RNS-D和DNS-3,分别对他们进行了TGA,FTIR,XPS表面结构分析,结果是洗脱出RNS-D表面仍然有PVC存在,而DNS-3表面却没有,证明了可反应的RNS-D确实参与了VC的聚合,与PVC基体之间形成了化学的结合,无法通过洗涤除掉。
     3. PVC/纳米SiO2复合材料力学性能研究
     我们考察了原位聚合和熔融共混法制备的不同PVC纳米复合材料的力学性能,主要测试了不同纳米SiO2对于PVC拉伸性能和冲击性能的影响。实验结果表明:原位聚合法制备的PVC/RNS-D纳米复合材料的拉伸强度有10%的提高,断裂伸长率提高106%,弹性模量也有明显提高,而冲击强度却有明显下降;熔融共混法制备的PVC/RNS-D和PVC/DNS-2纳米复合材料的力学性能有大幅度的提高,RNS-D含量为4%使得PVC的冲击强度提高了约70%,拉伸性能稍有提高,DNS-2含量为6%时使得PVC的冲击强度提高了141%,拉伸强度没有明显下降。4. PVC/纳米SiO2复合材料的热性能及加工流变性能研究
     通过对PVC/纳米SiO2热性能的研究,结果显示:原位聚合法PVC/RNS-D纳米复合材料的维卡软化点较纯PVC有明显上升;TG结果显示原位聚合PVC/RNS-D纳米树脂的HCl降解速率明显下降;且纳米树脂经加工过以后的热稳定性也有提高;熔融共混法PVC/纳米SiO2复合材料的热稳定性均有提高。加工流变性能的测试结果显示:原位聚合PVC/RNS-D纳米复合材料的加工流变性能变差,熔融时间(塑化时间)延长,加工扭矩没有太大变化;熔融共混法PVC/纳米SiO2复合材料的加工流变性能大幅度提高,熔融时间大大缩短,扭矩略有增加,最终的熔融因数明显提高,RNS-D改善流变性能的效果更加明显。
Research and development of general plastics with super properties and high additional values have been an important trend. But little attention has been paid on the relationships between the structure and mechanical properties of Polyvinyl chloride (PVC) nanocomposite. In this paper, with the different surface modified nano-SiO2, PVC /nano-SiO2 composites were prepared by in situ polymerization and melt-blending methods. The effects of different surface modified nano-SiO2 on the polymerization process, grains properties of PVC resins and the structure and properties of composites were investigated. The main results are summarized as follows:
     1. The effects of different surface modified nano-SiO2 on the polymerization process, grains properties of PVC resins
     The effects of the dispersible and the reactable nano-SiO2 on the polymerization process, grains properties of PVC resins were researched in the process of polymerization.The results showed that RNS-A, RNS-SR, DNS-2 were disadvantageous to the polymerization process, the agglomeration of PVC grains were found in polymerization process. But RNS-D and DNS-3 didn’t affect the polymerization when the content of nano-SiO2 was under 3%.
     Afterwards, the effects of RNS-D on the polymerization time and PVC grains properties were established mainly. It was found that external morphology of PVC nano-resin grains was more symmetrical, inner structure was looser than the pure PVC. Viscidity number of PVC and absorption amount of DOP is increased obviously, apparent density was decreased in a way because of the introduction of RNS-D. The effect of RNS-D on the PVC grain size was unconspicuous.
     2. The analysis of interface structure of PVC/nano-SiO2 composites
     In order to investigate the reason of effect of nano-SiO2 on the properties of PVC, RNS-D and DNS-3 extracted from PVC nano-resins were analyzed by TGA, FT-IR and XPS technology. The results indicated that there were some PVC chains on the surface of the extracted RNS-D, but there was nothing on the surface of the extracted DNS-3, it was proved that nanosilica reacted with VC and was linked with PVC by covalent bond.
     3. The mechanical performance of PVC/nano-SiO2 composites
     The mechanical performance of different PVC/nano-SiO2 composites, which prepared by in situ polymerization and melt-blending methods, were established, especially the tensile and impact properties. It was found that tensile strength, elongation at break, Young’s modulus of PVC/RNS-D nanocomposites prepared by in situ polymerization method were improved obviously, but the notched impact strength was decreased heavy. The impact strength of PVC/DNS-2 nanocomposites prepared by melt-blending method increased by 141% when the content of DNS-2 was 6%, and the tensile strength dropped a little only. The impact strength of PVC/RNS-D nanocomposites prepared by melt-blending method increased by 70% when the content of RNS-D was 6%, and the tensile strength increased a little.
     4. The thermal stabilization and rheology properties of PVC/nano-SiO2 composites
     The heat-properties of PVC/nano-SiO2 composites were also investigated. It was indicated that the Vicat soften point of PVC/RNS-D nanocomposites prepared by in situ polymerization method was increased obviously, and the degradation speed of PVC nano-resin was slower than the pure PVC. The heat-stabilization of PVC nanocomposites prepared by the melt-blending method also was improved compared with the pure PVC.
     The effect on PVC fusion properties of different surface-modified nano-SiO2 was investigated by HAKKE RHEOLOGY INSTRUMENT. It was found that the rheology properties of PVC/RNS-D nanocomposites prepared by the in situ polymerization method dropped a little and the fusion time was prolonged. But the rheology properties of PVC/nano-SiO2 composites prepared by the melt-blending method improved evidently. The fusion time of PVC/nano-SiO2 composites is decreased as the amount of nano-SiO2 increased, on the contrary, the torque (Tmax, Tmin, Teq) was dropped.
引文
[1] 罗忠富,黄锐.功能高分子学报,1998, 11(4): 555
    [2] Roy R, Kormarneni S, et al. Mater Res Symp Proc, 1994, 32: 347.
    [3] 张立德,牟季美著. 《纳米材料和纳米结构》. 北京:科学技术出版社,2001. 5.
    [4] Kenneth J, Klabunde. Nanoscale Materials in chemistry,John Wiley& Sons Inc, 2001.
    [5] Woggon U, Bogdanov SV, Wind O et al. Phys Rev B 1993,48 (16): 11979–11986.
    [6] Rajeshwar K, Tacconi NR, Chenthamarakshan CR. Chem Mater 2001, 13: 2765–2782.
    [7] Esteves ACC, Monteiro OC, Barros-Timmons AMV, et al. J Nanosci Nanotechnol 2002, 2: 177–181.
    [8] Burke NAD, Stover HDH, Dawson FP. Chem Mater 2002,14: 4752–4761.
    [9] Ramos J, Palacio F. Polymer 2000,41: 8461–8464.
    [10] Joly C, Smaihi M, Porcar L, Noble RD. Chem Matter 1999,11: 2331–2338.
    [11] Bharadwaj RK. Macromolecules 2001, 43(26):9189–9192.
    [12]. 高其标,申屠宝卿,翁志学. 纳米改性聚合物研究进展,化工生产与技术,2001,8(6):22-26.
    [13] S. W. Shang, J. W. Williams, K. J. M. S?derholm. Journal of Materials Science,1994,29: 2406-2416.
    [14] 王旭,黄锐,淮阳楠. 聚合物基纳米复合材料的研究进展,塑料,2000 29(4): 25-30.
    [15] Ging-Ho Hsiue, Wen-Jang Kuo,Yuan-Pin Huang,Ru-Jong Jeng. Polymer, 2000,41: 2813-2825.
    [16] Darilyn H. Roberts. Journal of Vinyl&Additive Technology, 1999,5 (4): 231-234.
    [17] Luna-Xavier JL, Guyot A, Bourgeat-Lami E. J Colloid Interface Sci, 2002, 250: 82.
    [18] Luna-Xavier JL, Bourgeat-Lami E, Guyot A. Colloid Polym Sci, 2001,279: 947.
    [19] Zhang K, Chen HT, Chen X, et al. Macromol Mater Eng, 2003, 288(4):380.
    [20] Chen J D, Carrot C, Chalamet Y, et al. J Appl Polym Sci, 2003, 88: 1376.
    [21] Avella M, Errico ME, Martelli S, et al. Appi Organometal Chem, 2001,15: 43. [22〕周卫平,朱光中,翟泽军.现代化工, 2002, 22(6): 19.
    [23] 任显诚,蔡绪伏,陈健中.中国塑料, 2001, 15 (12): 36.
    [24] 胡圣飞,杜志云.工程塑料应用,2000, 28(2):1.
    [25] Zerda AS, Caskey TC, Lesser AJ. Macromolecules, 2003, 36: 1603.
    [26] Hu XS, Zhang WH, Si MY, et al. Macromolecules, 2003, 36: 823.
    [27] Liu LM, Qi Z N, Zhu X G. J Appl Polym Sci, 1999, 71: 1133.
    [28] 王胜杰,李强,漆宗能等.高分子学报,1998,(2): 149
    [29]刘晓辉,范家起,李强等.高分子学报,2000, (5): 563.
    [30] Pravin Kodhire, Rajendra Kalgaonar, Sangeeta Hambir, et al. J Appl Polym Sci, 2001,81: 1786.
    [31] Pralay Maiti, Pham Hoai Nam, Masami Okamoto. Macromolecules, 2002, 35: 2042.
    [32]庞金兴,熊焰,吴力立等.华中科技大学学报(自然科学版),2002, 30(7): 108. [33」王洪涛,刘维民,杨生荣,等.高分子材料科学与工程,1997, 13(1): 79.
    [34] 徐瑞芬,佘广一为.有机硅材料,2003, 17(6): 11.
    [35] 裘式纶,翟庆洲等.纳米材料生产和应用资料汇编,1999,1.
    [36] 祖庸,王训等.纳米材料生产和应用资料汇编,1999,75.
    [37] Gilman J W, Kashiwagi T, Lichtenhan J. SAMPE. Jouma1, 1997, 33 (4): 40.
    [38] 纳米有机复合材料应用技术研讨会论文集,1998.
    [39] Caris CHM, Louisa P M, Herk A M. British Polym J, 1989, 21: 133.
    [40] Nakatsuka T. J. Polym Sci, 1982, 27: 259.
    [41] 杨中文,刘西文. 现代塑料加工应用,1999 ,11(6) : 38.
    [42] 郑亚萍,王波. 复合材料学报,2002 ,19(4) : 11.
    [43] 尚修勇,朱子康,漆宗能. 复合材料学报, 2000 ,17(4) : 5.
    [44] 郑亚萍宁荣昌. 高分子材料科学与工程, 2002 ,18 (5) : 148.
    [45] 王洪祚,王颖. 环氧树脂应用技术,2000 , 17(2) : 29.
    [46] Mascia L. The role of additive in plastics. London : Applied Science Publicshers, 1974: 215.
    [47] 王相田,胡黎明. 化学通报,1995 , (3) : 13.
    [48] 张金柱,汪信,陆路德等. 工程塑料应用, 2003 , 31(1): 20.
    [49] Kausch H H. Crazing in polymers. Berlin : Sprigner-Verlag ,1990. 138
    [50] 熊传溪,闻荻江,皮正杰. 高分子材料科学与工程,1994(4) :69
    [51] 孙载坚. 塑料增韧. 北京:化学工业出版社,1992. 210
    [52] 葛曷一. 玻璃钢/ 复合材料,1999, (3) ∶13
    [53]高海霞,程国峰等. 无机化学学报,2006,22(5):872-876.
    [54]沈忠林,崔杰,王平华. 塑料工业,2005.6,33(6):35-37.
    [55]李树材,左治.塑料科技,2006,34(173):4-6
    [56] Manhong Tian, Guangshun Chen, Shaoyun Guo. Macromol. Mater. Eng. 2005, 290:927–932.
    [57]王辉,包永忠,黄志明,等. 高分子学报,2005年10月,第5期:693-696.
    [58] Mingwang Pan, Xudong Shi, Xiucuo Li, Haiyan Hu, Liucheng Zhang. Journal of Applied Polymer Science,2004,94:277-286.
    [59] Chaoying Wan, Xiuying Qiao, Yong Zhang, Yinxi Zhang. Journal of Applied Polymer Science, 2003,89, 2184–2191
    [60] Jie Ren, Yanxia Huang, Yan Liu, Xiaozhen Tang. Polymer Testing,2005, 24 ,316–323
    [61] Qingguo Wang,Xiaohong Zhang, Yan Jin, Hua Gui, et al. Macromol. Mater. Eng. 2006, 291, 655–660.
    [62]张学军,迟伟东译. 功能杂化材料.化学工业出版社.2006:20.
    [63]解廷秀,周重光. 应用基础与工程科学学报,1999,7(2):158-162.
    [64] Marianne Gilbert,Siavash Haghighat,Soo Keow Chua,et al. Macromal Symp, 2006, 233: 198-202.
    [65]郝五棉,王耀斌,辛经萍. 聚氯乙烯,2002,3:15-17.
    [66]韩和良,夏陆岳.聚氯乙烯,2003,4:24-32.
    [67]韩和良. 纳米CaCO3微乳化聚氯乙烯原位合成方法. 中国专利:00132864.6, 2002-6-12.
    [68] Shuisheng Sun, Chunzhong Li, et al. European Polymer Journal ,2006,42: 1643–1652.
    [69]戚栋明,包永忠,黄志明,翁志学. 聚氯乙烯,2006,4:6-9.
    [70]Xiong Ying, Guangshun Chen, Shaoyun Guo. Joural of Applied Polymer Science, 2006, 102: 1084-1091.
    [71]Xiao-Lin Xie, Qing-Xi Liu, Rort Kwok-Yiu Li, et al. Polymer, 2004, 15: 6665-6673.
    [72] 王成云,张伟亚,杨左军,等.聚氯乙烯,2001,6:3.
    [73]戈明亮,姚日生,徐卫兵.现代塑料与加工,2001,13(1):11-14.
    [74] Zhu-Mei Liang, Chao-Ying Wan, Yong Zhang, et al. Journal of Applied Polymer Science, 2004,92:567-575.
    [75] 戈明亮,徐卫兵. 塑料工业,2005年5月,第33卷增刊:96-98.
    [76] DONGYAN WANG,CHARLES A. WILKIE.JOURNAL OF VINYL & ADDmVE TECHNOLOGY, 2002, 8, 4:238-245.
    [77]胡海彦, 潘明旺. 高分子材料科学与工程,2004,20(5):162-165.
    [78] 郭汉洋, 徐卫兵. 高分子材料科学与工程,2005,21(6):254-257.
    [79] 包永忠,黄志明,翁治学.中国专利:200410017944.6,2005-1-12.
    [80] 陈春霞,钱思明.材料研究学报,2000.6,12(3):334-336.
    [81] 新型抗菌PVC塑料[R].塑料工业,32(4): 55.
    [82] 尚文宇,谢大荣,刘大峰.中国塑料,2000 ,14(3) : 24.
    [83] 宋洪祥.纳米复合技术在PVC增韧改性中的应用.化工文摘,2001年8月: 33.
    [84] Kenji Yamada, Masafumi Uchida, Motowo Takayanagi, Kohei Goto. Journal of Applied Polymer Science,1986,32,5:5231-5244.
    [1] Li XH, Cao Z, Zhang ZJ, et al. Appl Surf Sci 2006, 22: 7856-7861.
    [2] Li XH, Cao Z, Liu F, et al. Chem Lett 2006, 35: 1-3.
    [3] 李小红, 李庆华, 张治军等. 摩擦学学报. 2005: 25(6): 499-503.
    [4] 张新力,周军,安志明等.纳米 CaCO3 改性 PVC 树脂原位聚合综合分散技术[P],中国专利,03149494.3,2004.1.
    [5] 舒文晓. 聚氯乙烯/纳米水滑石复合材料的制备和表征, 浙江大学硕士学位论文,2005,5.
    [1]. Xiao-Lin Xie, Qing-Xi Liu, Robert Kwok-Yiu Li. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization[J]. Polymer, 2004, 45 (17): 6665-6673.
    [2] Mingwang Pan, Xudong Shi, Xiucuo Li,et al. Morphology and Properties of PVC/Clay Nanocomposites via in Situ Emulsion Polymerization, Journal of Applied Polymer Science, 2004,94:277-286.
    [3] Jeon H J , Park K M, Shin S H. PVC-PCC nanocomposites resin composition with superior and methods for preparing the same[P]. US Patent, 20070100044A1, 2007-5-3.
    [4] 包永忠,黄志明,翁志学.聚氯乙烯/水滑石纳米复合树脂的制备[P], 200410017944.6, 2005.
    [5] 黄东, 安志明, 周军等. 纳米CaCO3 原位聚合PVC 树脂的生产及加工应用. 聚氯乙烯,2003,5:28-31.
    [6] 黄志明,包永忠,单国荣等. 氯乙烯/纳米碳酸钙原位悬浮聚合转化率的控制,聚氯乙烯,2003,1:16-18.
    [7] 潘祖仁,邱文豹,王贵恒.《 塑料工业手册(聚氯乙烯)》,化学工业出版社,1999,8:920.
    [8] 孙水升. 无机纳米粒子改性聚氯乙烯复合材料的性能与界面研究,华东理工大学博士学位论文,2007.1.18:56.
    [9] 孙水升,李春忠, 张玲,等. 纳米二氧化硅颗粒表面设计及其填充聚氯乙烯复合材料的性能,高校化学工程学报,2006,20(5):802.
    [10] 黄慧忠 等编著. 《表面化学分析》,上海:华东理工大学出版社,2007.1.
    [11] 王正熙 编著. 《聚合物红外光谱分析和签定》,成都:四川大学出版社,1989.
    [12] Li X H, Cao Z, Zhang Z J. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Applied Surface Science, 2006, 252: 7856-7861.
    [13] 李小红, 李庆华, 张治军. 一种可反应性纳米SiO2 的制备和表征及其摩擦磨损性能研究,摩擦学报,2005,25(6): 499-503.
    [1] Aiping Zhu, Aiyun Cai, Jie Zhang, et al. PMMA-grafted-Silica/PVC Nanocomposites: Mechanical Performance and Barrier Properties. Journal of Applied Polymer Science, 2008, 108: 2189-2196.
    [2] Yakun Guo,Meiying Wang,Hongqi Zhang,et al. The Surface Modification of Nanosilica, Preparationof Nanosilica/Acrylic Core-Shell Composite Latex, and Its Application in Toughening PVC Matrix, Journal of Applied Polymer Science, 2008, 107: 2671-2680
    [3] L. Zhang,1 K. C. Tam,1 L. H. Gan, Effect of Nano-Silica Filler on the Rheological and Morphological Properties of Polypropylene/Liquid-Crystalline Polymer Blends.Journal of Applied Polymer Science, 2003, 87: 1487-1492.
    [4] Min Zhi Rong, Ming Qiu Zhang, Shun Long Pan,et al.Interfacial Effects in Polypropylene–Silica Nanocomposites, Journal of Applied Polymer Science, 2004, 92:1771-1781.
    [5] Gu Li, Kan-Cheng Mai, Kai-Cai Feng,et al. Preparation and characterization of nano-CaCO3 encapsulated by copolymerization of styrene and maleic anhydride, Polymer International,2006, 55: 891–897.
    [6] Sachin Jain, Han Goossens, Martin van Duin, et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene, Polymer, 2005,46 : 8805–8818.
    [7] Yongsheng Zhao, Kejian Wang*, Fuhua Zhu, Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: Effects of coupling agents and layered silicate, Polymer Degradation and Stability, 2006, 91: 2874-2883.
    [8] 武德珍,宋勇志,金日光. PVC\弹性体\纳米CaCO3复合体系的加工和组成对力学性能的影响, 复合材料学报,2004, 1(24): 119-123.
    [9] 赵芸 ,李峰,D. G. Evans, 等。镁基高抑烟纳米阻燃剂在高分子材料中的应用研究,塑料,2002,4(31):57-63.
    [10] 张璐,佟立芳,方征平. 纳米碳酸钙增容PVC/LDPE共混体系的研究,高分子材料科学与工程,2005,21(6):251-254.
    [11] Zuiderduin WCJ, Westzaan C, Hue’tink J, Gaymans RJ.Toughening of polypropylene with calcium carbonate particles. Polymer 2003, 44: 261–75.
    [12] J.Jancar Dynamic Moduli of CaCO3 and Mg(OH)2-Filled Polypropylene. Journal of Materials Science.1991, 26(15): 4123-4129.
    [13] 胡福增,郑安呐,张群安编.聚合物及其复合材料的表界面[M] 北京:中国轻工业出版社,2001.
    [14] Shuisheng Sun, Chunzhong Li, Ling Zhang, et al. European Polymer Journal ,2006,42: 1643–1652.
    [15] Pukanszky B, Turczanyi B, Tudos F. Composites dependence of tensile yield stress in filled polymers. J Mater Sci Lett 1988;7:160–2.
    [1] 崔玉霞. 高抗冲聚氯乙烯制备及加工应用性能研究,北京化工大学硕士学位论文,2001.4
    [2] 李秉人. 布拉本达流变仪研究PVC熔融特性及在树脂制备评价上的应用,塑料技术, 1987, (2): 4-10.
    [3] 包永忠,翁志学,黄志明. 宽分子量分布高聚合度PVC的合成和性能,合成树脂及塑料, 1999, 16 (4): 39.
    [4] 刘敏江,卢秀萍.高分子量聚氯乙烯增塑体系及其改性研究,塑料工业, 1999, 27 : 12 -14.
    [5] W.H. Starnes Jr. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride)[J]. Prog. Polym. Sci. 2002( 27): 2133–2170.
    [6] 李斌 著.《 聚氯乙烯(PVC)的抑烟与阻燃》,东北林业大学出版社,2000,5:6.
    [7] 过梅丽 编著. 《高聚物与复合材料的动态力学热分析》,2002,8.
    [8] Shen L, Phang IY, Chen L, et al. Polymer 2004, 45(10): 3341-3349.
    [9] 王辉,包永忠,黄志明,等. 聚氯乙烯/纳米水滑石复合材料的形态与力学性能. 高分子学报,2005,5:693-696.
    [10] Ning Chen, Chaoying Wan, Yong Zhang, et al. Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend, Polymer Testing 2004, 23: 169-174.
    [11] Jose′ Vega-Baudrit, Virtudes Navarro-Ban? o′n, Patricia Va′ zquez, et al. Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives, International Journal of Adhesion & Adhesives, 2006, 26: 378–387.
    [12] Jancar J. Influence of filler particle shape on elastic moduli of PP/CaCO3 and PP/Mg(OH)2 composites I: ‘‘Zero’’ interfacial adhesion. J Mater Sci 1989, 24: 3947-55.
    [13] Allsopp Michael W. Pure & Applied Chem istry, 1981, 53: 449-465.
    [14] 温绍国,翁志学,黄志明,潘祖仁,抗冲改性剂ACR的组成与粒径对R-PVC应用性能的影响,中国塑料,1997 11(5): 53-58.
    [15] 赵雄燕,CS-ACR-I型硬质PVC冲击改性剂的研制与应用,塑料,1993 22(3): 26-30.
    [16]吕坤,聚合物增韧机理研究进展,现代塑料加工应用,2000,12(4): 51-53.
    [17] N. A. S. Fernando, N. L. Thomas. Effect of Precipitated Calcium Carbonate on the Mechanical Properties of Poly(vinyl chloride), JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 2007, 10: 98-102.
    [18] 江国栋, 张军, 周民吉,等. 添加剂对硬质PVC 流变性能的影响,材料开发与应用,2005,20(4):18-23.
    [19] Cheng-Ho Chen, Hsin-Chiung Li, Chih-Chun Teng,et al. Fusion, Electrical Conductivity, Thermal, and Mechanical Properties of Rigid Poly(vinyl chloride) (PVC)/Carbon Black (CB) Composites, Journal of Applied Polymer Science, 2006(99): 2167–2173 . [20 ] 张季冰, 林师沛, 张承琦. 丙烯酸加工助剂对聚氯乙烯熔融行为的影响. 聚氯乙烯, 1995 (4) : 1~6.
    [21] 赵劲松, 李宁. PVC加工形态研究[J ] . 聚氯乙烯,1999 (4) : 36~39.
    [22] Saha Swapan. Rheological and morphological characteristics of polyvinylchloride/ polychloroprene blends – effect of temperature and mixing speed . European Polymer Journal , 2001 , 37 : 399~410.
    [22] Hua Youqing, Huang Yiqun, Siqin Dalai. Studies of molecular weight distribution, particle morphology, and rheological behavior of ultra - high molecular weight suspension PVC . Journal of Vinyl Technology, 1994 , 16 : 235~245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700