用户名: 密码: 验证码:
棒线材轧制过程多场耦合数值模拟与工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轧制是金属塑性成型的重要方法,轧制成型的钢材是数量最大的金属材料制品。在诸多轧制产品中,棒线材由于断面形状简单,品种繁多,所以其用途非常广泛。随着现代工业的飞速发展,各领域对棒线材产品的质量要求越来越严格和专门化。这就要求各钢铁企业不断改进生产工艺,精确控制轧钢过程,生产多规格、高品质的棒线材产品。然而,由于轧钢过程涉及多阶段、多因素,是几何与材料高度非线性的复杂接触问题,要对其进行较全面的在线生产试验研究,需要耗费大量的人力、物力和财力。近年来,物理冶金和有限元理论的研究取得巨大进展,热力模拟实验设备日益普及,它们从理论和实验两个方面为轧钢过程的多场耦合数值模拟打下了坚实的基础。通过对轧钢过程进行多场耦合数值模拟,冶金工作者可以全面、细致地了解和掌握轧制过程中轧件内部各宏观场量和微观场量的分布与演变情况,从而达到缩短研发周期、降低生产成本和提高产品质量的目的。在前期工作的基础上,本文紧紧围绕棒线材轧制过程多场耦合数值模拟这一主题展开研究,主要研究内容和结论如下:
     1.基于大型非线性有限元软件MSC.Marc,开发了棒线材轧制过程的多场耦合数值模拟技术。借助该技术,对某特钢集团棒线材1号生产线采用150mm×150mm方坯生产Φ12.7mm、Φ15.4mm和φ22.4mm轴承钢、碳素钢及不锈钢棒线材的轧制过程与该特钢集团棒线材2号生产线采用180mm×180mm方坯生产Φ10.0mm、Φ17.5mm和φ25.0mm轴承钢棒线材的轧制过程进行多场耦合三维数值模拟,得到了轧制过程中轧件内部各宏观场量和微观场量的分布与演变情况。Φ15.4mm轴承钢棒线材轧制过程中,温度和晶粒尺寸的模拟结果与实验结果吻合较好,轧制速度的模拟值与工艺设定值吻合较好,验证了模拟的准确性。
     2.详细分析了轴承钢、碳素钢和不锈钢棒线材轧制过程中轧件内部温度和微观组织的演变情况。结果表明,轴承钢轧制过程中的微观组织演变情况非常复杂,轧件内的奥氏体晶粒尺寸在动态再结晶、亚动态再结晶、静态再结晶和晶粒长大的共同作用下,总体上不断减小;完全再结晶后的晶粒长大能够显著影响碳素钢轧件内部的奥氏体晶粒尺寸;而不锈钢轧制过程中奥氏体晶粒尺寸的变化主要取决于轧制时的动态再结晶。
     3.采用分段模拟的方法对不同工艺参数条件下Φ15.4mm轴承钢棒线材的轧制过程进行多场耦合三维数值模拟,分析了轧件温度、轧制速度、轧辊辊缝、轧辊辊径和初始奥氏体晶粒尺寸对轧件内部奥氏体晶粒尺寸演变的影响。结果表明,轧件温度的改变能够显著影响轧件内部奥氏体晶粒尺寸的演变;轧制速度的适当调整和轧辊辊径的适当减小基本不影响轧件内部奥氏体晶粒尺寸的演变;初始晶粒尺寸大小和轧辊辊缝的适当调整能够影响奥氏体晶粒尺寸的演变,但对多道次轧制后的晶粒尺寸影响较小。在实际轧制过程中,为了获得合格产品,可以在保证定径过程轧制温度的基础上;对其他各工艺参数进行适当调整。
     4.基于棒线材轧制过程的孔型设计原理,开发了采用300mm×300mm方坯轧制生产Φ70mm与Φ80mm轴承钢棒材的孔型系统。通过数值模拟,对设计的轧制工艺进行了优化。然后,根据优化后的轧制工艺,对该轧制过程进行多场耦合三维数值模拟,得到了轧制过程中轧件内部温度、应变、应变率和奥氏体晶粒尺寸的分布与演变情况,预测了各道次轧制时的轧制力和轧件变形情况。模拟结果表明,采用优化后的轧制工艺,能够获得合格的棒材产品,且内部组织比较均匀。
Rolling is the major method of metal plastic forming. Rolled steel occupies considerable proportion of metal products. In all rolled products, rod and wire with simple shape and numerous varieties are widely used. With the rapid development of modern industry, industrial fields put forward stricter and more specialistic demands on the quality of rod and wire products. So iron and steel enterprises must optimize production technology, and accurately control rolling process to produce rod and wire products with numerous specifications and high quality. While rolling process which includes many phases and depends on many factors is a complicated contact problem with geometric nonlinear and material nonlinear. A detailed study on the problem by on-line experiments needs to consume a large amount of manpower, material resources and financial resources. In recent years, the universalization of thermo-mechanical simulation machines and great progress of physical metallurgy and finite element theories lay experimental and theoretical foundations for multi-field coupled numerical simulation of rolling process. The simulation can help metallurgists understand the distributions and evolutions of macroscopic and microscopic field-variables in the rolled piece during the rolling process in detail, then achieve the aim to shorten development time, reduce production costs and upgrade the quality of product. Based on previous work, the paper pays all attention to multi-field coupled numerical simulation of rod and wire rolling process. The main research contents and conclusions are as follows:
     1. Based on nonlinear finite element software MSC.Marc, the paper develops multi-field coupled numerical simulation technique of rod and wire rolling process. In a special steel group, rod and wire rolling production line-No.1 producesΦ12.7mm,Φ15.4mm and 022.4mm bearing steel, carbon steel and stainless steel rods and wires using 150mm×150mm square billets, and rod and wire rolling production line-No.2 producesΦ10.0mm,Φ17.5mm andΦ25.0mm bearing steel rods and wires using 180mm×180mm square billets. With the aid of the technique, the paper performs multi-field coupled numerical simulation on these rolling processes, and the distributions and evolutions of macroscopic and microscopic field-variables in the rolled pieces during these rolling processes are obtained. During the rolling process ofΦ15.4mm bearing steel rod and wire, the simulation results of temperature and grain size are in good agreement with measured ones, and the simulation values of mill speed quite agree with technological parameters. The comparisons show the validity of simulation results.
     2. The paper analyzes the evolutions of macroscopic and microscopic field-variables in the rolled pieces during the rolling processes of bearing steel, carbon steel and stainless steel rods and wires in detail. Results show that microstructure evolution during the rolling process of bearing steel is very complex, and the combined action of dynamic recrystallization, meta-dynamic recrystallization, static recrystallization and grain growth makes austenite grain size in the rolled piece decrease continuously. In addition, grain growth after complete recrystallization has an important effect on the grain size in the rolled piece of carbon steel, and the evolution of grain size during the rolling process of stainless steel depends mainly on dynamic recrystallization which occurs in deformation phases.
     3. The paper simulates the rolling processes ofΦ15.4mm bearing steel rod and wire under different technological parameters with the segmental simulation method, and analyzes the effects of temperature, mill speed, roller gap, roller diameter and initial grain size on the evolution of grain size in the rolled piece. Results show that the change of rolling temperature has an important effect on the evolution of grain size in the rolled piece. The appropriate adjustment of mill speed and the appropriate reduction of roller diameter have little influence on the evolution of grain size in the rolled piece. Initial grain size and the appropriate adjustment of roller gap can affect the evolution of grain size to a certain extent, but have no effect on the grain size after multi-pass rolling. When the temperature of rolled piece during the sizing process can be ensured, iron and steel enterprises can adjust other technological parameters in a certain range to produce qualified products.
     4. Based on pass design theory of rod and wire rolling process, the paper designs a pass system to produceΦ70mm andΦ80mm bearing steel rods using 300mm×300mm square billets. According to simulation results, the paper optimizes the rolling technology, and performs multi-field coupled numerical simulation on the rolling process with optimized technology. The distributions and evolutions of temperature, strain, strain rate and austenite grain size in the rolled piece during the rolling process are obtained, and rolling force and deformation of rolled piece in every pass are predicted. Simulation results show that qualified rod products can be obtained with optimized technology, and the uniformity of microstructure in rolled piece is good.
引文
[1]许石民,孙登月.板带材生产工艺及设备[M].北京:冶金工业出版社,2008.
    [2]康永林.轧制工程学[M].北京:冶金工业出版社,2004.
    [3]王有铭,李曼云,韦光.钢材的控制轧制与控制冷却[M].北京:冶金工业出版社,1995.
    [4]任勇,程晓茹.轧制过程数学模型[M].北京:冶金工业出版社,2008.
    [5]刘相华.刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994.
    [6]Collins I F, Dewhurst P. A slipline field analysis of asymmetrical hot rolling [J]. International Journal of Mechanical Sciences,1975,17(10):643-651.
    [7]Lahoti G D, Akgerman N, Oh S I, et al. Computer-aided analysis of metal flow and stresses in plate rolling [J]. Journal of Mechanical Working Technology,1980,4(2):105-119.
    [8]Liu C, Hartley P, Sturgess C E N, et al. Finite-element modelling of deformation and spread in slab rolling [J]. International Journal of Mechanical Sciences,1987,29(4):271-283.
    [9]刘才.弹塑性有限元方法对轧制过程的模拟[J].东北重型机械学院学报,1987,11(3):66-74.
    [10]刘相华,白光润.在微型机上用刚塑性有限元法求解H型钢轧制问题[J].金属科学与工艺,1986,5(3):93-98.
    [11]许思广,王海文,李国祯.环件轧制过程中宽展的研究[J].太原重型机械学院学报,1988,9(3):1-10.
    [12]Yang D Y, Kim K H, Hawkyard J B. Simulation of T-section profile ring rolling by the 3-D rigid-plastic finite element method [J]. International Journal of Mechanical Sciences,1991,33(7): 541-550.
    [13]Lin Z C, Lin V H. Analysis of the variation of the cold-rolling characteristics of rolling force, strip shape, stress and temperature, for a three-dimensional strip [J]. Journal of Materials Processing Technology,1995,54:326-340.
    [14]Sassani F, Xiao M. Modelling hot flat-rolling of components having curved profiles-Part I. Deformation analysis [J]. International Journal of Mechanical Sciences,1995,37(12): 1269-1281.
    [15]Hwang Y M, Tzou G Y. An analytical approach to asymmetrical cold-and hot-rolling of clad sheet using the slab method [J]. Journal of Materials Processing Technology,1996,62:249-259.
    [16]Larkiola J, Myllykoski P, Korhonen A S, et al. The role of neural networks in the optimisation of rolling processes [J]. Journal of Materials Processing Technology,1998,80/81:16-23.
    [17]肖宏,申光宪,连家创.三维弹塑性边界元法模拟板带轧制过程[J].钢铁,1993,28(3):39-43.
    [18]杜凤山,刘才.三辊轧制过程中的大变形有限元分析[J].固体力学学报,1995,16(4):325-328.
    [19]熊尚武,刘相华,王国栋,等.板坯稳态立轧时的三维刚塑性有限元模拟[J].钢铁研究学报,1998,10(2):23-28.
    [20]张鹏,鹿守理,高永生,等.板带轧制过程温度场有限元模拟及影响因素分析(Ⅰ)[J].北京科技大学学报,1997,19(5):471-475.
    [21]刘宏民,连家创,段振勇.三次样条函数条元法及对带材轧制过程的模拟[J].燕山大学学报,1998,22(1):51-55.
    [22]Riahifar R, Serajzadeh S. Three-dimensional model for hot rolling of aluminum alloys [J]. Materials and Design,2007,28:2366-2372.
    [23]Lin Z C, Shen C C.A coupled finite element method for a three-dimensional analysis of the flat rolling of aluminum with different reductions [J]. Journal of Materials Processing Technology, 2001,110:10-18.
    [24]Duan X, Sheppard T. Three dimensional thermal mechanical coupled simulation during hot rolling of aluminium alloy 3003 [J]. International Journal of Mechanical Sciences,2002,44: 2155-2172.
    [25]Hwang S M, Sun C G, Ryoo S R, et al. An integrated FE process model for precision analysis of thermo-mechanical behaviors of rolls and strip in hot strip rolling [J]. Computer Methods in Applied Mechanics and Engineering,2002,191:4015-4033.
    [26]Komori K, Koumura K. Simulation of deformation and temperature in multi-pass H-shape rolling [J]. Journal of Materials Processing Technology,2000,105:24-31.
    [27]Kim S Y, Im Y T. Three-dimensional finite element analysis of non-isothermal shape rolling [J]. Journal of Materials Processing Technology,2002,127:57-63.
    [28]Song J L, Dowson A L, Jacobs M H, et al. Coupled thermo-mechanical finite-element modelling of hot ring rolling process [J]. Journal of Materials Processing Technology,2002,121:332-340.
    [29]Jiang Z Y, Tieu A K, Lu C, et al. Three-dimensional thermo-mechanical finite element simulation of ribbed strip rolling with friction variation [J]. Finite Elements in Analysis and Design,2004,40:1139-1155.
    [30]Pater Z. Finite element analysis of cross wedge rolling [J]. Journal of Materials Processing Technology,2006,173:201-208.
    [31]Shih C K, Hung C H, Hsu R Q. The finite element analysis on planetary rolling process [J]. Journal of Materials Processing Technology,2001,113:115-123.
    [32]刘立忠,刘相华,姜正义.利用显式动力学有限元法模拟平板轧制过程[J].塑性工程学报,2001,8(1):51-54.
    [33]喻海良,刘相华,李长生.多道次立-平辊轧制轧件角部金属流动状态有限元模拟[J].东北大学学报(自然科学版),2005,26(10):982-985.
    [34]徐旭东,王秉新,刘相华,等.H型钢轧制力的数值模拟分析[J].钢铁,2005,40(7):56-59.
    [35]康永林,宋仁伯,任学平,等.变形参数对半固态轧制影响规律的有限元模拟[J].塑性工程学报,2002,9(3):66-71.
    [36]洪慧平,康永林,冯长桃,等.三维有限元分析张力对连轧大规格芯棒钢变形及温度的影响[J].特殊钢,2003,24(2):10-12.
    [37]赵志毅,洪慧平,谢建新,等.全浮动芯棒连轧管过程三维热力耦合有限元模拟[J].北京科技大学学报,2007,29(3):315-319.
    [38]董洪波,康永林,尚进.60kg/m钢轨热轧过程的三维有限元模拟[J].特殊钢,2003,24(5):6-9.
    [39]阎军,鹿守理.角钢蝶式孔限制宽展的三维有限元分析[J].塑性工程学报,2000,7(2):12-15.
    [40]兰勇军,陈祥永,黄成江,等.带钢热轧过程中温度演变的数值模拟和实验研究[J].金属学报,2001,37(1):99-103.
    [41]于辉,杜凤山,藏新良,等.无缝钢管张力减径过程的有限元分析[J].塑性工程学报,2008,15(4):108-111.
    [42]于辉,杜凤山,藏新良,等.微张力减径过程热力耦合有限元模拟[J].中国机械工程,2008,19(14):1744-1747.
    [43]王辅忠,刘国权,张勇钢.33Mn2V油井管张力减径过程的三维热力耦合有限元模拟[J].北京科技大学学报,2004,26(5):538-541.
    [44]Yuan S Y, Zhang L W, Liao S L, et al. Simulation of deformation and temperature in multi-pass continuous rolling by three-dimensional FEM [J]. Journal of Materials Processing Technology, 2009,209:2760-2766.
    [45]Yuan S Y, Zhang L W, Liao S L, et al. Static and dynamic finite element analysis of 304 stainless steel rod and wire hot continuous rolling process [J]. Journal of University of Science and Technology Beijing,2008,15(3):324-329.
    [46]Yuan S Y, Zhang L W, Liao S L, et al.3D FE analysis of thermal behavior of billet in rod and wire hot continuous rolling process [J]. Journal of Iron and Steel Research, International,2007, 14(1):29-32,46.
    [47]Liao S L, Zhang L W, Yuan S Y, et al. Modeling and finite element analysis of rod and wire steel rolling process [J]. Journal of University of Science and Technology Beijing,2008,15(4): 412-419.
    [48]邓小虎.金属热变形及焊接凝固过程的元胞自动机模拟[D].大连:大连理工大学,2009.
    [49]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling [J]. Metal Science, 1979,13:187-194.
    [50]Sellars C M. Computer modelling of hot-working processes [J]. Materials Science and Technology,1985,1:325-332.
    [51]Sellars C M. Modelling microstructural development during hot rolling [J]. Materials Science and Technology,1990,6:1072-1081.
    [52]Hodgson P D. Microstructure modelling for property prediction and control [J]. Journal of Materials and Processing Technology,1996,60:27-33.
    [53]Devadas C, Samarasekera I V, Hawbolt E B. The thermal and metallurgical state of steel strip during hot rolling-Part Ⅲ. Microstructural evolution [J]. Metallurgical Transactions A,1991, 22A:335-349.
    [54]Anelli E. Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars [J]. ISIJ International,1992,32(3):440-449.
    [55]Nanba S, Kitamura M, Shimada M, et al. Prediction of microstructure distribution in the through-thickness direction during and after hot rolling in carbon steels [J]. ISIJ International, 1992,32(3):377-386.
    [56]Wang S R, Tseng A A. Macro-and micro-modelling of hot rolling of steel coupled by a micro-constitutive relationship [J]. Materials and Design,1995,16(6):315-336.
    [57]Sun W P, Hawbolt E B. Comparison between static and metadynamic recrystallization-An application to the hot rolling of steels [J]. ISIJ International,1997,37(10):1000-1009.
    [58]许思广,曹起骤,连家创.环件轧制中晶粒变化的计算机模拟[J].塑性工程学报,1994,1(2):24-29.
    [59]刘振宇,王国栋,张强.C-Mn钢板带热连轧生产过程中再结晶行为的模拟计算[J].钢铁研究学报,1995,7(6):27-31.
    [60]Beynon J H, Sellars C M. Modelling microstructure and its effects during multipass hot rolling [J]. ISIJ International,1992,32(3):359-367.
    [61]Siwecki T. Modelling of microstructure evolution during recrystallization controlled rolling [J]. ISIJ International,1992,32(3):368-376.
    [62]Kuziak R, Glowacki M, Pietrzyk M. Modelling of plastic flow, heat transfer and microstructural evolution during rolling of eutectoid steel rods [J]. Journal of Materials Processing Technology, 1996,60:589-596.
    [63]F. Siciliano Jr., Minami K, Maccagno T M, et al. Mathematical modeling of the mean flow stress, fractional softening and grain size during the hot strip of C-Mn steels [J]. ISIJ International,1996, 36(12):1500-1506.
    [64]Dyja H, Korczak P. The thermal-mechanical and microstructural model for the FEM simulation of hot plate rolling [J]. Journal of Materials and Processing Technology,1999,92/93:463-467.
    [65]Cho S H, Kang K B, Jonas J J. The dynamic, static and metadynamic recrystallization of a Nb-microalloyed steel [J]. ISIJ International,2001,41(1):63-69.
    [66]Manohar P A, Lim K, Rollett A D, et al. Computational exploration of microstructural evolution in a medium C-Mn steel and applications to rod mill [J]. ISIJ International,2003,43(9): 1421-1430.
    [67]Wang B X, Liu X H, Wang G D. Dynamic recrystallization behavior and microstructural evolution in a Mn-Cr gear steel [J]. Materials Science and Engineering A,2005,393:102-108.
    [68]Zhang Z H, Liu Y N, Liang X K. The effect of Nb on recrystallization behavior of a Nb micro-alloyed steel [J]. Materials Science and Engineering A,2008,474:254-260.
    [69]Lin Y C, Chen M S, Zhong J. Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel [J]. Materials and Design,2009,30: 908-913.
    [70]Manuel Gomez, Lucia Rancel, Bernardo J. Fernandez, et al. Evolution of austenite static recrystallization and grain size during hot rolling of a V-microalloyed steel [J]. Materials Science and Engineering A,2009,501:188-196.
    [71]Bianchia J H, Karjalainen L P. Modelling of dynamic and metadynamic recrystallisation during bar rolling of a medium carbon spring steel [J]. Journal of Materials Processing Technology, 2005,160:267-277.
    [72]Manshadi A D, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J]. Materials Science and Engineering A,2008,485: 664-672.
    [73]赵宪明,吴迪,陈学军.60Si2Mn钢动态再结晶数学模型的实验研究[J].钢铁研究学报,2003,15(5):32-34.
    [74]王秉新,刘相华,王国栋.22CrS齿轮钢变形奥氏体动态再结晶行为及组织演变[J].东北大学学报(自然科学版),2003,24(5):478-481.
    [75]Serajzadeh S, Mirbagheri H, Taheri A K. Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel [J]. Journal of Materials Processing Technology,2002,125/126:89-96.
    [76]Serajzadeh S. Prediction of microstructural changes during hot rod rolling [J]. International Journal of Machine Tools & Manufacture,2003,43:1487-1495.
    [77]Liu Y, Lin J. Modelling of microstructural evolution in multipass hot rolling [J]. Journal of Materials Processing Technology,2003,143/144:723-728.
    [78]Hong C P, Park J J. Design of pass schedule for austenite grain refinement in plate rolling of a plain carbon steel [J]. Journal of Materials Processing Technology,2003,143/144:758-763.
    [79]Park J J, Lee S J. Design of rolling pass schedules to improve grain-size uniformity in thickness [J]. Journal of Materials Processing Technology,2003,140:454-459.
    [80]Zhou S X. An integrated model for hot rolling of steel strips [J]. Journal of Materials Processing Technology,2003,134:338-351.
    [81]Qu Z D, Zhang S H, Li D Z. Finite element analysis for microstructure evolution in hot finishing rolling of steel strips [J]. Acta Metallurgica Sinica (English Letters),2007,20(2):79-86.
    [82]Wang M T, Zang X L, Li X T. Finite element simulation of hot strip continuous rolling process coupling microstructural evolution [J]. Journal of Iron and Steel Research, International,2007, 14(3):30-36.
    [83]Xu Y B, Yu Y M, Liu X H, et al. Prediction of rolling load recrystallization kinetics and microstructure during hot strip rolling [J]. Journal of Iron and Steel Research, International,2007, 14(6):42-46.
    [84]Tang G B, Liu Z D, Dong H, et al. Numerical simulation of austenite recrystallization in CSP hot rolled C-Mn steel strip [J]. Journal of Iron and Steel Research, International,2007,14(4):49-55, 60.
    [85]崔振山,刘才.热轧过程微观组织演变的数值预报与试验研究[J].机械工程学报,2000,36(7):92-95.
    [86]崔振山,刘才,乔桂英.H型钢热轧过程微观组织的数值预报[J].燕山大学学报,2000,24(2):123-126.
    [87]何纯玉,吴迪,赵宪明.高速线材生产过程组织性能预测模型仿真[J].钢铁研究学报,2007,19(6):56-60.
    [88]吴迪,赵宪明,何纯玉.高碳钢高速线材轧制组织性能预测模型研究[J].钢铁,2003,38(3):43-46.
    [89]Zhang Y X, Zhang H O, Wang G L. Application of mathematical model for microstructure and mechanical property of hot rolled wire rods [J]. Applied Mathematical Modelling,2009,33: 1259-1269.
    [90]张国滨,张贵杰,武学泽,等.棒材热连轧时奥氏体再结晶规律的研究[J].钢铁,2000,35(6):45-48.
    [91]Jang Y S, Ko D C, Kim B M. Application of the finite element method to predict microstructure evolution in the hot forging of steel [J]. Journal of Materials Processing Technology,2000,101: 85-94.
    [92]Na Y S, Yeom J T, Park N K, et al. Simulation of microstructures for alloy 718 blade forging using 3D FEM simulator [J]. Journal of Materials Processing Technology,2003,141:337-342.
    [93]Cho J R, Jeong H S, Cha D J, et al. Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM [J]. Journal of Materials Processing Technology, 2005,160:1-8.
    [94]Jiang W G, Wang G C, Lu S Q, et al. Prediction of microstructure evolution of Al-1%Mg alloy during hot forming and sequential heat treatment [J]. Journal of Materials Processing Technology, 2007,182:274-280.
    [95]Du F S, Wang M T, Li X T. Research on deformation and microstructure evolution during forging of large-scale parts [J]. Journal of Materials Processing Technology,2007,187/188: 591-594.
    [96]Yeom J T, Lee C S, Kim J H, et al. Finite-element analysis of microstructure evolution in the cogging of an Alloy 718 ingot [J]. Materials Science and Engineering A,2007,449/451: 722-726.
    [97]Lin Y C, Chen M S, Zhong J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process [J]. Computational Materials Science,2008,43:1117-1122.
    [98]Lin Y C, Chen M S, Zhong J. Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel [J]. Materials and Design,2009,30: 908-913.
    [99]Lee H W, Kwon H C, Im Y T, et al. Numerical investigation of austenite grain size distribution in square-diamond pass hot bar rolling [J]. Journal of Materials Processing Technology,2007,191: 114-118.
    [100]Jung K H, Lee H W, Im Y T. A microstructure evolution model for numerical prediction of austenite grain size distribution [J]. International Journal of Mechanical Sciences,2010,52: 1136-1144.
    [101]Jung K H, Lee H W, Im Y T. Numerical prediction of austenite grain size in a bar rolling process using an evolution model based on a hot compression test [J]. Materials Science and Engineering A,2009,519:94-104.
    [102]Yanagimoto J, Ito T, Liu J. FE-based analysis for the microstructure evolution in hot bar rolling [J]. ISIJ International,2000,40(1):65-70.
    [103]Li X T, Wang M T, Du F S. Coupling thermomechanical and microstructural FE analysis in plate rolling process [J]. Journal of Iron and Steel Research, International,2008,15(4):42-50.
    [104]李学通,杜凤山,臧新良.板带粗轧过程热、力、组织耦合三维有限元模拟[J].中国机械工程,2006,17(1):92-95.
    [105]王敏婷,杜凤山,李学通,等.楔横轧轴类件热变形时奥氏体微观组织演变的预测[J].金属学报,2005,41(2):118-122.
    [106]Li X T, Wang M T, Du F S. The coupling thermal-mechanical and microstructural model for the FEM simulation of cross wedge rolling [J]. Journal of Materials Processing Technology,2006, 172:202-207.
    [107]Wang M T, Li X T, Du F S, et al. A coupled thermal-mechanical and microstructural simulation of the cross wedge rolling process and experimental verification [J]. Materials Science and Engineering A,2005,391:305-312.
    [108]贺庆强,张勤河,袁宝民,等.H型钢粗轧微观组织演化的数值分析[J].钢铁研究,2009,37(3):37-40.
    [109]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2002.
    [110]陈火红,杨剑,薛小香,等.新编Marc有限元实例教程[M].北京:机械工业出版社,2007.
    [111]张立文.数值模拟技术在金属材料固态加工中的应用[D].大连:大连理工大学,2004.
    [112]原思宇.特殊钢棒线材热连轧过程的有限元模拟与分析[D].大连:大连理工大学,2007.
    [113]江国栋.304不锈钢棒线材热连轧过程的数值模拟研究[D].大连:大连理工大学,2004.
    [114]廖舒纶.GCr15轴承钢棒线材热连轧过程微观组织演化的数值模拟[D].大连:大连理工大学,2008.
    [115]李茂.DEFOEM和Marc平台下棒线材热连轧过程的数值模拟[D].大连:大连理工大学,2006.
    [116]王祖唐,关延栋,肖景容,等.金属塑性成形理论[M].北京:机械工业出版社,1989.
    [117]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.
    [118]谢贻权,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1981.
    [119]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社,1997.
    [120]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [121]Ebrahimi R, Zahiri S H, Najafizadeh A. Mathematical modeling of the stress-strain curves of Ti-IF steel at high temperature [J]. Journal of Materials Processing Technology,2006,171: 301-305.
    [122]Elwazri A M, Wanjara P, Yue S. Dynamic recrystallization of austenite in microalloyed high carbon steels [J]. Materials Science and Engineering A,2003,339:209-215.
    [123]Rafael C. A model for the hot deformation of low-carbon steel [J]. Journal of Materials Processing Technology,1996,62:180-184.
    [124]Hee Y K, Woong H S, Soon H Hong. High temperature deformation of Ti-(46-48)Al-2W intermetallic compounds [J]. Materials Science and Engineering A,1998,251:216-225.
    [125]Pinheiro I P, Barbosa R, Cetlin P R. The relevance of dynamic recrystallization in the hot deformation of IF steel at high strain rates [J]. Materials Science and Engineering A,2007,457: 90-93.
    [126]Praveen P, Rajiv S. Microstructure and mechanics interaction in the modeling of hot rolling of rods [J]. Annals of the CIRP,1999,48(1):191-194.
    [127]Huang C, Hawbolt, Chen X, et al. Flow stress modeling and warm rolling simulation behavior of two Ti-Nb interstitial-free steels in the ferrite region [J]. Acta Materialia,2001,49:1445-1452.
    [128]Lin Y C, Chen M S, Zhong J. Study of static recrystallization kinetics in a low alloy steel [J]. Computational Materials Science,2008,44:316-321.
    [129]Grass H, Krempaszky C, Reip T, et al.3-D simulation of hot forming and microstructure evolution [J]. Computational Materials Science,2003,28:469-477.
    [130]Glowacki M, Kuziak R, Malinowski Z, et al. Modelling of heat transfer, plastic flow and microstructural evolution during shape rolling [J]. Journal of Materials Processing Technology, 1995,53:159-166.
    [131]Tang W M, Zheng Z X, Tang H J. Structural evolution and grain growth kinetics of the Fe-28A1 elemental powder during mechanical alloying and annealing [J]. Intermetallics,2007,15: 1020-1026.
    [132]刘景荣,李斌,毛磊.GCr15钢高速变形与再结晶的研究[J].物理测试,1995,6:7-11.
    [133]Hodgson P D, Gibbs R K. A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels [J]. ISIJ International,1992,32(12):1329-1338.
    [134]赵嘉蓉,张翔,谭钢军,等.热轧高碳钢线材制造工艺的计算机模拟[J].钢铁,2005,40(2):41-46.
    [135]Kwon O. A technology for the prediction and control of microstructural changes and mechanical properties in steel [J]. ISIJ International,1992,32(3):350-358.
    [136]熊家强.304奥氏体不锈钢热轧过程物理冶金模型研究[D].云南:昆明理工大学,2008.
    [137]李红,罗海文,杨才福,等.奥氏体不锈钢热轧加工性能的数学模型研究[J].材料导报,2006,20(10):102-106.
    [138]Kim S, Lee Y, Jang B L. Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling [J]. Materials Science and Engineering A, 2003,357:235-239.
    [139]Wahabi M El, Cabrera J M, Prado J M. Hot working of two AISI 304 steels:a comparative study [J]. Materials Science and Engineering A,2003,343:116-125.
    [140]韩静涛.钢铁生产短流程新技术—沙钢的实践(轧钢篇)[M].北京:冶金工业出版社,2000.
    [141]赵松筠,唐文林.型钢孔型设计[M].北京:冶金工业出版社,2000.
    [142]谢显宏.型钢生产与孔型设计[M].重庆:重庆大学出版社,1989.
    [143]庞玉华.金属塑性加工学[M].西安:西北工业大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700