用户名: 密码: 验证码:
太阳能利用中的热物理基础理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类社会发展及环境保护的需求,寻求可再生而洁净新能源取代有限的且污染环境的矿物燃料是全世界急迫和重要的课题。太阳能作为最丰富、最洁净的永久的能源,其高效利用和低成本地转换成电能,是当今研究的热点。太阳能传递和与接收器之间的能量转换过程,均是在开放的非平衡状态下进行的,而现有的经典辐射热力学是建立在平衡态空腔光子气模型的基础上,难以直接应用;另外现有的光热利用、光电利用或光电-热综合利用大多停留在以能量守恒定律来进行分析评价的层次,尚未系统地以热力学第二定律结合光谱特性进行太阳能利用分析和研究。因此有必要开展太阳能利用中的热物理基础理论研究,包括光谱有效能的表征,熵参数描述,开放系、非平衡态的太阳辐射能传递、转换过程的辐射热力学体系构建,辐射能与物质界面的光热、光电量子作用的机理探讨等。在此基础上提出科学利用太阳能的方法并进行相关实验研究。
     本文在本课题组工作的基础上,主要的研究工作如下:
     首先利用非平衡态辐射热力学的基础理论,对非平衡态辐射场,特别是对太阳能辐射接收器入口处的辐射能状态进行了描述和表征,区分了太阳辐射能在光热作用时显示宏观平均能量特性,和在光伏、光化作用时显示量子特性的两重性特点。根据太阳辐射能在传递中因为扩散性产生的能流密度降低和辐射流的光谱频率组成与太阳表面辐射相同的特点,计算了地面接收的太阳辐射能在热利用时比太阳表面辐射能降低的品位和熵增,确定了在光伏、光化作用时地面和太阳表面光谱辐射量子特性相同。
     其次,研究太阳辐射能与物质作用的能量转换机理和增强措施。从研究和修正光与物质作用的机理入手,提出光子波模型假设,对光子波与物质中存在的原子核-原子核和原子核-电子两种简谐振子之间的作用过程进行了分析,结果与用经典波动理论分析得到的结果是一致的,一定程度上说明了光子波模型的正确性。光子波驱动力与物质表面层的分子、声子、原子核-电子简谐振子的频率不同,表现出不同光谱辐射的热作用和量子作用的不同机制,分子和声子吸收辐射能主要把辐射能转换为物质的热能,光与物质量子作用,辐射能激发物质内部的电子跃迁,辐射能转换为电能并伴随有热能。对影响半导体材料型的太阳辐射接收器的吸收系数和反射率等参数进行了详细分析,结果表明,拥有较小共振跃迁频率、较小能带隙和较大阻尼系数的半导体材料对有效太阳辐射的吸收率更高。
     在此基础上,为提高光电转换效率,又利用光子波与物质作用模型,对单晶硅太阳电池表面镀膜材料光学性质进行了分析;又采用在太阳电池表面构造了多种不同形状,规则的、不规则的、有序的、无序的微结构表面,比较了它们对太阳辐射能吸收率的差别,结果显示,无序的表面微结构相对有序的表面微结构更利于太阳电池吸收率的提高;使用Needle法对用于光伏发电的光谱选择性透过涂层进行了分析和优化设计。
     为了提高太阳辐射能的整体利用率,提出了两级透射-反射聚光分频电热联产系统的方案,分析了利用线聚焦菲涅耳透镜、光谱选择性透过涂层和太阳能集热管等部件构成的电热联产系统的光学行为和效率,计算结果表明,作者提出的系统,太阳能利用率高于相同条件下传统的太阳能聚光光伏系统,并有结构简单,成本低廉,易于生产的优势。
     最后,为了改善传统聚光系统在太阳能光电池接收面上照射的光强不一致,降低光伏转换效率的问题,设计了等光强带聚焦菲涅耳透镜聚光器和折平板等光强反射聚光器。理论上,利用蒙特卡罗光线追迹法,对两种聚光器进行了考虑太阳辐射夹角的光学模拟,并对聚光器的结构参数对聚光效果的影响进行了分析,证明所设计的聚光器聚光均匀性都很好;实验上,在太阳双轴跟踪装置上安装了折平板等光强反射聚光光伏系统,采用CCD法对实验中折平板聚光器的聚光效果进行了测量,并对此条件下太阳电池单体和组件的伏安特性曲线进行了测试;实验结果与理论分析结果都符合得很好,系统中太阳电池单体和组件的光电转换效率均大于相同条件下半槽式抛物面聚光光伏系统中的太阳电池效率。折平板等光强聚光器的生产成本较低,便于加工,适用于中低倍数的太阳能聚光光伏系统中。
Because of the requirements for human social development and environmental protection, it is very urgent and important to pursue renewable and clean energy sources to replace limited and polluting fossil fuels. Solar energy is the most abundant and cleanest renewable energy source. How to convert solar energy into electricity efficiently and cheaply is one of the hotspots in the world. However, the classical radiation thermodynamics based on the model of photon gas in thermal equilibrium enclosed in a cavity is not suitable for the open and non-equilibrium solar radiation. In the other hand, the performances of photo-thermal, photovoltaic and hybrid Photovoltaic/Thermal utilizations are mainly analyzed by using the law of energy conservation, the second law of thermodynamics combined with spectral characteristics of solar energy has not been applied in the theoretical analysis work. Therefore, it is necessary to do a further study on the fundamental thermophysics for solar energy utilization, and the framework includes the characterization of spectral available energy, description of entropy, radiation thermodynamics system for the transfer and transform process of open and non-equilibrium solar radiation, thermal and quantum interaction between radiation energy and matters. On the basis of these theoretical researches, a scientific approach to using solar energy is proposed and the related experimental study is carried out.
     On the basis of the previous work of our group, the main research work of this thesis is as follows:
     Firstly, according to the fundamental theory of non-equilibrium state radiation thermodynamics, the non-equilibrium radiation, especially the energy state of the entrance of solar radiation receiver, is described and represented. The duality of light-matter interaction is distinguished, one is the macro energy characteristics in photo-thermal utilization and the other is quantum characteristics in photovoltaic utilization and actinism. According to the characteristics that solar energy is diluted in transfer process but keep the same spectrum, the decreased energy quality and entropy increase of the received solar energy in thermal utilization are calculated, and the quantum characteristics of spectral radiations on sun surface and the earth are validated the same in photovoltaic utilization and actinism.
     Secondly, the energy conversion mechanism and enhancement methods of the interaction between light and matters are studied. Starting from the modification of the interaction mechanism between light and matters, a photon wave model is proposed. The interaction between the photon wave driving force and atomic nucleus-atomic nucleus oscillator, and the one between the photon wave driving force and atomic nucleus-electronic oscillator are analyzed. The results are the same as those calculated by the classical wave theory, which illustrates the correctness of the photon wave model to a certain extent. Photon waves with different frequencies show either photo-thermal or quantum effects when they interact with molecules, phonons and atomic nucleus-electronic oscillators on the surfaces of matters. The radiation absorbed by molecules and phonons will be transformed into heat energy and the quantum effect concomitantly turns solar radiation into electricity and heat energy. The parameters which affect the absorptivity and the reflectivity of the semiconductor radiation receivers are analyzed. The results show that a semiconductor material with a small resonance transition frequency, a small energy band gap and a large damping coefficient can make a better usage of the available solar radiation.
     To increase the photoelectric conversion efficiency, the optical properties of a coating material for silicon solar cells are analyzed by using the photon wave model. Then the effects on the absorptivity of solar cells caused by the surface micro structures are studied, including the regular surface with different micro structure, regular and irregular surface micro structures and the different cone angles of the same regular surface micro structure. The results show that the absorptivity of the irregular micro structure is higher than the one of the regular micro structure. The Needle method is employed to optimize the spectral selective transmission coating for PV systems.
     To improve the total efficiency of solar radiation utilization, a two stage transmission and reflection concentrating PV/thermal system with beam splitting technique is proposed. A system composed by linear Fresnel lens, spectral selective transmission coating, solar thermal receiver and other components is proposed, and the optical analysis and efficiency of the PV/thermal system are made. The results show that the efficiency of the proposed PV/thermal system is higher than a traditional system undef the same conditions. The proposed system also takes advantage of simple structure, low cost, and easy manufacture.
     At last, to improve the low photoelectric conversion efficiency of solar cells due to the non-uniform light concentrated by traditional concentrators, a strip-focus Fresnel lens concentrator and a bending-plate reflection concentrator are proposed and designed. The Monte Carlo Ray Tracing Method is employed for the optical analysis of the two concentrators, in which the solar radiation cone angle is considered. And the effects of the structure parameters for the performance of the two concentrators are analyzed. The theoretical results show that the distributions of the concentrated light on the focal plane of the two concentrators are both with high uniformity. The experimental study of the bending-plate reflection concentration PV system is earned out by using a two-axis solar tracker. The flux distribution of the concentrated light of the bending-plate concentrator is measured by a CCD method, and the Ⅰ-Ⅴ characteristics of the silicon solar cell monomer and module are tested. The experimental results agree well with the theoretical results. The efficiencies of the silicon solar cell monomer and module in the bending-plate reflection concentrating PV (CPV) system are both higher than the ones in the parabolic trough CPV system. The cost of the bending-plate concentrator is much lower and easy manufacture, which make the bending-plate concentrator suitable for low and medium CPV system.
引文
[1]BP. Statistical Review of World EnergyJune 2011 [eb/ol]. http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publi cations/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_w orld_energy_full_report_2011.pdf
    [2]赵争鸣,刘建政,孙晓瑛,袁立强,太阳能光伏发电及其应用[M].北京:科学出版社,2008.
    [3]左然,施明恒,王希麟.可再生能源概论[M].北京:机械工业出版社,2007.
    [4]惠晶,方光辉.新能源转换与控制技术[M].北京:机械工业出版社,2008.
    [5]林玉兰,吕迎阳,梁广,等.基于半导体温差发电模块的锂电池充电装置[J].电源技术-研究与设计,2006,130(1):38-43.
    [6]Gueymard, C A. The sun's total and spectral irradiance for solar energy applications and solar radiation models [J]. Solar Energy,2004,76 (4):423-453.
    [7]喜文华,魏一康,张兰英.太阳能实用工程技术[M].兰州:兰州大学出版社,2001.
    [8]黄文雄.太阳能之应用及理论[M].台北:协志工业丛书出版股分有限公司,1978.
    [9]Martinez P J, Velazquez A, Viedma A. Performance analysis of a solar energy driven heating system [J]. Energy and Buildings,2005,37:1028-1034.
    [10]S Backhouse, G W Swift. A thermoacoustic Stirling heat engine [J].Nature,1999,339: 335-338.
    [11]Luo Erchang, Ling Hong, Dai Wei, Zhang Yong. A high-performance thermoacoustic refrigerator operating in room-temperature range [J]. Chinese Science Bulletin,2005, 50(22):2662-2664.
    [12]J SRINIVASAN. Solar pond technology [J]. Sadhana,18(1):39-55.
    [13]王如竹,戴彦军.太阳能制冷[M].北京:化学工业出版社,2007.
    [14]赵玉文,林安中.晶体硅太阳电池及材料[J].太阳能学报,1999,(特刊):85-94.
    [15]Zhao J H, Wang A H, Green M A.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells [J]. Appl. Phys. Lett.,1998,73(14): 1991-1993.
    [16]施正荣.晶体硅太阳能电池的现状与发展[C].中国第七届光伏会议,杭州,2002.
    [17]王世江,高宏铃.2010年全球太阳电池产业发展总结[J].太阳能,2011,10:32-34.
    [18]Planck M. The Theory of Heat Radiation [M]. Philadelphia:Blakistons,1914.
    [19]胡芃,陈则韶.量热技术和热物性测量-第2版[M].合肥:中国科学技术大学出版社,2009.
    [20]殷志强,徐晟,史月艳.渐变A1-N/Al太阳选择性吸收表面[J].真空科学与技术,1988,8(3):141-150.
    [21]傅竹西.固体光电子学[M].合肥:中国科学技术大学出版社,1999.
    [22]莫松平,陈则韶,江守利,等.太阳电池中光电转换的有效能[J].工程热物理学报,2008,29(11):1821-1825.
    [23]王存诚.辐射能热力学特性的研究[C].中国工程热物理学会工程热力学与能源利用会议.武夷山,1994.94-101.
    [24]Petela R. Exergy of heat radiation [C]. Trans. ASME, J Heat Transfer,1964,2:187-192.
    [25]Spanner D C. Introduction to thermodynamics [M]. London:Academic Press,1964.
    [26]Jeter S M, Maximum conversion efficiency for the utilization of direct solar radiation [J]. Solar Energy,1981,26 (3):231-236.
    [27]Petela R. Exergy of undiluted thermal radiation [J]. Solar Energy,2003,74 (6):469-488.
    [28]Petela R. Exergy of radiation of a perfect gray body [J]. Zesz Nauk Pol S1., Energetyka (in Polish),1961,5:33-45.
    [29]Bejan A. Advanced engineering thermodynamics [M]. New York:J Wiley & Sons,1988.
    [30]陈则韶.热学新理论及其应用[C].新观点新学说学术沙龙文集38,中国科协学会学术部编,北京:中国科学出版社,2010:120-126.
    [31]陈则韶,莫松平.光量子等效温度和黑体辐射光谱有效能[J].自然科学进展,2007, 17(5):687-691.
    [32]陈则韶.高等工程热力学[M].北京:高等教育出版社,2008.
    [33]陈则韶,莫松平,胡芃.同复“对‘辐射热力学的新进展——辐射有效能光量子等效温度光量子熵常数’一文的讨论”[J].中国科学:技术科学,2010,40(4):422-424.
    [34]CHEN Zeshao, MO Songping, HU Peng. Recent progress in thermodynamics of radiation-exergy of radiation, effective temperature of photon and entropy constant of photon [J]. Sci China Ser E-Tech Sci,2008,51(8):1-14.
    [35]A D Kirwan Jr. Intrinsic photon entropy? The darkside of light [J]. International Journal of Engineering Science,2004,42; 725-734.
    [36]Etsuro Ito, Toshiro Komatsu, Hideo Suzuki. The entropy generation in visual-pigment system by the absorption of light [J]. Biophysical Chemistry,1998 74:59-70.
    [37]Brittin W, Gamow G. Negative entropy and photosynthesis [M]. In:Proc Natl Acad Sci USA,1961,47:724-727.
    [38]Schrodinger E. What is life? The physical aspects of living cell [M]. Cambridge:Cambridge University Press,1986.
    [39]Jennings R C, Engelmann E, Garlaschi F, et al. Photosynthesis and negative entropy production [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2005,1709 (3): 251-255.
    [40]Duysens L N M. The path of light in photosynthesis [J]. Brookhaven Symp Biol,1958,11: 18-25.
    [41]Knox R S. Photosynthetic efficiency and excitation transfer and trapping [J]. in Primary Processes in Photosynthesis (ed Barber J), Amsterdam:Elsevier,1977:55-97.
    [42]Meszena G, Westerhoff H V. Non-equilibrium thermodynamics of light absorption [J]. J Phys A:Math Gen,1999,32:301-311.
    [43]Meszena G., Westerhoff H V, Somsen O. Reply to Comment on 'Non-equilibrium thermodynamics of light absorption'[J]. J Phys A:Math Gen,2000,33:1301-1303.
    [44]Juretic D, Zupanovic P. Photosynthetic models with maximum entropy production in irreversible charge transfer steps [J]. Comput Biol Chem,2003,27:541-553.
    [45]张纪庄,张学学,江世臣.光合作用的简单热力学分析[C].中国工程热物理学会第十一届年会论文集,工程热力学与能源利用,北京,2005.39-42.
    [46]Andrews D L. Comment on 'Non-equilibrium thermodynamics of light absorption'[J]. J Phys A:Math Gen,2000,33:1297-1299.
    [47]Petela R. An Approach to the Exergy Analysis of Photosynthesis [J]. Solar Energy,2008,82: 311-328.
    [48]陈则韶,莫松平.辐射热力学中光量子的熵和光子气的熵[J].工程热物理学报,2007,28(2):193-195.
    [49]陈则韶,胡芃,莫松平,等.非平衡态辐射场能理状态参数的表征[J].工程热物理学报,2012,刊印中.
    [50]吴强,郭光灿.光学[M].合肥:中国科学技术大学出版社,2003.
    [51]David J. Introduction to Electrodynamics [M]. Griffiths:Prentice-Hall,1999.
    [52]沈学础.半导体光谱和光学性质[M].北京:科学出版社,2003:140-146.
    [53]Abdelaziz Zouari, Adel Ben Arab. Effect of the Front Surface Field on Crystalline Silicon Solar Cell Efficiency [J]. Renewable Energy,2011,36:1663-1670.
    [54]王辉,郑建邦,曹猛,等.低能离子注入对Pan/Si异质结太阳电池的改性研究[J].真空科学与技术,2000,20(5):336-339.
    [55]孙秀菊,李海玲,励旭东,等.硅太阳电池用MgF2/ZnS双层减反射薄膜的制备及表征[J].人工晶体学报,2009,38(3):547-551.
    [56]Hua Bao, Xiulin Ruan. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications [J]. Optics Letters,2010,35(20):3378-3380.
    [57]杨果,帅永,于春亮,等.表面微结构对GaAs电池性能的影响研究[J/OL].中国科技论文在线,2010.
    [58]Jiang Shouli, Wang Gang, Hu Peng, Chen Zeshao. The Design of Beam Splitter for Two-Stage Reflective Spectral Beam Splitting Concentrating PV/Thermal System [J]. APPEEC,2010.
    [59]江守利,陈则韶,胡芃,等.半抛物槽式聚光分频光伏系统的性能分析[J].工程热物理学报,2009,30(3):365-369.
    [60]章国芳,朱天宇,王希晨.塔式太阳能热发电技术进展及在我国的应用前景[J].太阳能,2008,11:33-37.
    [61]Jiang Shouli, Hu Peng, Mo Songping, Chen Zeshao. Modeling for Two-Stage Dish Concentrating Spectral Beam Splitting Photovoltaic/thermal System [C]. APPEEC,2009: 1-4.
    [62]张明,黄良甫,罗崇泰,等.空间菲涅耳透镜的材料与工艺要求分析[J].太阳能学报,2002,23(1):1-3.
    [63]姚叙红,朱临泉,薛忠晋,等.菲涅耳透镜提高太阳能利用率的研究[J].红外,2009:30-34.
    [64]Zhai H, Dai Y J, Wu J Y, Wang R Z, Zhang L Y. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens [J]. Energy Conversion and Management,2010,51:48-55.
    [65]徐永锋,李明,王六玲,等.聚光光强对光伏电池阵列输出性能的影响[J].物理学报,2009,58(11):8067-8076.
    [66]Singh P, Liburdy J A. A Solar Concentrator Design for Uniform Flux on a Flat Receiver [J]. Energy Conversion and Management,1993,34(7):533-543.
    [67]Kwangsun Ryu, Jin-Geun Rhee, Kang-Min Park, et al. Concept and design of modular Fresnel lenses for concentration solar PV system [J]. Solar energy,2006,80:1580-1587.
    [68]崔福庆,何雅玲,陶于兵,等.新型线聚焦菲涅耳透镜设计及其聚光特性研究[J].工程热物理学报,2010,31(5):733-736.
    [69]陈则韶,莫松平,李志宏,等.太阳能分频利用电热联产初步研究[J].工程热物理学报,2008,29(1):13-15.
    [70]葛新石,龚堡,俞善庆.太阳能利用中的光谱选择性涂层[M].北京:科学出版社,1980.
    [1]Petela R. Exergy of undiluted thermal radiation [J]. Solar Energy,2003,74 (6):469-488.
    [2]Petela R. An approach to the exergy analysis of photosynthesis [J], Solar Energy,2008,82: 311-328.
    [3]陈则韶,莫松平,胡芃.辐射热力学的新进展-辐射有效能、光子等效温度、光量子熵常数[J].中国科学:技术科学,2009,39(4):609-617.
    [4]Planck M. The Theory of Heat radiation [M]. Philadelphia:Blakistons,1914.
    [5]陈则韶,莫松平.光量子等效温度和黑体辐射光谱有效能[J].自然科学进展,2007,17(5):687-691.
    [6]陈则韶,莫松平.辐射热力学中光量子的熵和光子气的熵[J].工程热物理学报,2007,28(2):193-195.
    [7]Planck M., Translated by Brose H L. Theory of Heat:being Volume V of "Introduction to Theoretical Physics"[M]. London:Macmillan,1932:276--278.
    [8]杨世铭,陶文铨.传热学—4版[M].北京:高等教育出版社,2006.
    [9]Z.M. Zhang, S. Basu. Entropy flow and generation in radiative transfer between surfaces [J]. Int. J. of Heat and Mass Transfer,50, Issues3-4,2007:702-712.
    [10]陈则韶,莫松平,胡芃.回复“对‘辐射热力学的新进展——辐射有效能光量子等效温度光量子熵常数’一文的讨论”[J].中国科学:技术科学,2010,40(4):422-424.
    [11]Petela R. Exergy of undiluted thennal radiation [J]. Solar Energy,2003,74 (6):469-488.
    [1]吴强,郭光灿.光学[M].合肥:中国科学技术大学出版社,2003.
    [2]石顺祥,刘继芳,孙艳玲.光的电磁理论[M].西安:西安电子科技大学出版社,2006.
    [3]李志林.材料物理[M].北京:化学工业出版社,2009.
    [4]C.基泰尔.固体物理导论[M].北京:化学工业出版社,2005:127-131.
    [5]沈学础.半导体光谱和光学性质[M].北京:科学出版社,2003:257.
    [6]章钧豪.量子力学波动模型是不能描述电子跃迁过程的[J].科学中国人,2005,9:56-57.
    [7]费浩生.非线性光学[M].北京:高等教育出版社,1990.
    [8]Edward D. Palik. Handbook of Optical Constants of Solids [M]. Academic Press NY,1985.
    [9]Chu-Chi Ting, San-Yuan Chen, Dean-Mo Liu. Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films [J]. Journal of Applied Physics,2000,88:4628-4633.
    [10]Hua Bao, Xiulin Ruan. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications [J]. Optics Letters,2010,35(20):3378-3380.
    [11]杨果,帅永,于春亮,等.表面微结构对GaAs电池性能的影响研究[J/OL].中国科技论 文在线,2010.
    [12]J.A. Duffie, W.A, Beckman. Solar Engineering of Thennal Processes [M]. USA:WILEY, 2006.
    [13]程光煦,杜朝玲,张善涛,等.光与物质作用的描述与表征[J].物理学进展,2005,25(1):1-47.
    [1]葛新石,龚堡,俞善庆.太阳能利用中的光谱选择性涂层[M].北京:科学出版社,1980.
    [2]廖伟初,柯秀芳.太阳能中高温光谱选择性涂层的研究进展和应用[J].材料研究与应用,2008,2(4):490-493.
    [3]Zhuomin M. Zhang. Nano/Microscale Heat Transfer [M]. McGraw-Hill,2007.
    [4]H. Field. Solar Cell Spectral Response Measurement Errors Related to Spectral Band Width and Chopped Light Waveform [J/OL]. doi:10.1109/PVSC.1997.654130
    [5]廖延彪.光学原理与应用[M].北京:电子工业出版社,2006:142-143.
    [6]唐晋发.现代光学薄膜技术[M].杭州:浙江大学出版社,2006.
    [7]卢进军,刘卫国.光学薄膜技术[M].西安:西北工业大学出版社,2005.
    [8]TIKHONRAVOV A V, TRUBETSKOV M K, DEBELL G W. Application of the needle optimization technique to the design of optical coatings [J]. Applied Optics,1996,35(28): 5493-5508.
    [9]TIKHONRAVOV A V, TRUBETSKOV M K, DEBELL G W. Optical coating design approaches based on the needle optimization technique [J]. Applied Optics,2007,46(5): 704-710.
    [10][10] TIKHONRAVOV A V. Needle optimization technique:the history and the future [J]. Optical Thin Films V:New Developments,1997,3133:2-7.
    [11]周健,林永昌,顾永琳.一种新的光学膜系设计方法-Needle法[J].北京理工大学学报,1997,17(5):570-573.
    [12]江守利.反射聚光利用太阳能的基础理论与实验研究[D].中国科学技术大学博士学位论文,2009,合肥.
    [13]Jang Shou-li, Hu Peng, Mo Song-ping, Chen Ze-shao. Modeling for Two-Stage Dish Concentrating Spectral Beam Splitting Photovoltaic/thermal System [J]. APPEEC,2009: 84-88.
    [14]SULLIVAN B T, DOBROWOLSKI J A. Implementation of a numerical needle method for thin-film design[J]. Applied Optics,1996,35(28):5484-5492.
    [15]Shou-li Jiang, Gang Wang, Peng Hu, Ze-shao Chen, Lei Jia. The Design of Beam Splitter for Two-Stage Reflective Spectral Beam Splitting Concentrating PV/Thermal System [J]. APPEEC,2011:1-4.
    [16]李芳,张诚,林永昌.膜系优化设计中的模糊输入及评价函数的改进[J].光子学报,2000,29(1):68-71.
    [1]黄文雄.太阳能之应用及理论[M].台北:协志工业出版社,1978.
    [2]田玮,王一平,韩立君,等.聚光光伏系统的技术进展[J].太阳能学报,2005,26(4):597-604.
    [3]Luque A, Sala G, Luque-Heredia I. Photovoltaic concentration at the onset of its commercial deployment [J]. Progress in Photovoltaics,2006,14 (5):413-428.
    [4]黄国华,施玉川,杨宏,等.常规太阳电池聚光特性实验[J].太阳能学报,2006,27(1):19-22.
    [5]喜文华,魏一康,张兰英.太阳能实用工程技术[M].兰州:兰州大学出版社,2001.
    [6]张明,黄良甫,罗崇泰,等.空间菲涅耳透镜的材料与工艺要求分析[J].太阳能学报,2002,23(1):1-3.
    [7]Luque A, Sala G, Arboiro JC. Electric and thermal model for non-uniformly illuminated concentration cells [J]. Solar Energy Materials & Solar Cells,1998,51:269-290.
    [8]陈则韶.一种用于聚光发电的廉价高精度二维跟踪太阳机构[P].中国专利:200810123177.2009-12-23.
    [9]江守利,陈则韶,胡芃,等.半抛物槽式聚光分频光伏系统的性能分析[J].工程热物理学报,2009,30(3):365-369.
    [10]章国芳,朱天宇,王希晨.塔式太阳能热发电技术进展及在我国的应用前景[J].太阳能,2008,11:33-37.
    [11]Jiang Shouli, Hu Peng, Mo Songping, Chen Zeshao. Modeling for Two-Stage Dish Concentrating Spectral Beam Splitting Photovoltaic/thermal System [C]. APPEEC,2009: 1-4.
    [12]姚叙红,朱临泉,薛忠晋,等.菲涅耳透镜提高太阳能利用率的研究[J].红外,2009:30-34.
    [13]Zhai H, Dai Y J, Wu J Y, Wang R Z, Zhang L Y. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens [J]. Energy Conversion and Management,2010,51:48-55.
    [14]江韬,李辉,李宝霞,等.用于光伏系统新型菲涅耳线聚焦聚光透镜设计[J]. ACTA PHOTONICA SINICA,2002,31(2):196-199.
    [15]翟辉,代彦军,吴静怡.基于菲涅尔透镜的聚焦太阳能PV/T系统热电性能研究[J].工程热物理学报,2007,28(5):725-728.
    [16]徐永锋,李明,王六玲,等.聚光光强对光伏电池阵列输出性能的影响[J].物理学报,2009,58(11):8067-8076.
    [17]江守利.反射聚光利用太阳能的基础理论与实验研究:[博士学位论文][D].合肥:中国科学技术大学,2009:94.
    [18]Kwangsun Ryu, Jin-Geun Rhee, Kang-Min Park, et al. Concept and design of modular Fresnel lenses for concentration solar PV system [J]. Solar energy,2006,80:1580-1587.
    [19]杜胜华,夏新林,唐尧.太阳光不平行度对太阳能聚焦性能影响的数值研究[J].太阳能学报,2006,27(4):388-393.
    [20]Daniel Chemisana, Manuel Ibanez. Linear Fresnel concentrators for building integrated applications [J]. Energy Conversion and Management,2010,51:1476-1480.
    [21]李安定,李斌,杨培尧,等.碟式聚光太阳热发电技术[J].太阳能,2003,3:25-27.
    [22]Singh P, Liburdy J A. A Solar Concentrator Design for Uniform Flux on a Flat Receiver [J]. Energy Conversion and Management,1993,34(7):533-543.
    [23]江守利,陈则韶,胡芃,等.等光强分布的平板玻璃反射聚光太阳能系统的实验研究[J].工程热物理学报,2010,31(6):917-920.
    [24]陈则韶,江守利,王刚,等.太阳能均匀光叠加反射聚光镜的设计方法[P].中国专利:200910185169,2010-03-10.
    [25]J.A. Duffie, W.A, Beckman. Solar Engineering of Thermal Processes [M]. USA:WILEY, 2006.
    [26]Ulmer, S., Reinalter, W., Heller, P., Eckhard Lupfert, Diego Martinez. Beam characterization and improvement with a flux mapping system for dish concentrators [J]. Journal of Solar Energy Engineering, Transactions of the ASME,2002,124 (2),182-188.
    [27]戴景民,刘颖,于天河.基于CCD的聚焦光斑能流密度分布测量系统的研制[J].光电子-激光,2008,19(11):1507-1511.
    [28]秦佑镇.家用同步跟踪型太阳能开水器[P].中国专利:CN00219088.5,2001-08-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700