用户名: 密码: 验证码:
反射聚光利用太阳能的基础理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用太阳能高效率低成本发电是当前重要研究课题。聚光系统可极大地减少昂贵的光伏电池使用量,降低成本。而采用分频技术则将可用于光电转换频段的太阳能投射到光伏电池上,减小光伏电池散热负荷,提高效率,同时把其余波段集热回收,从而进一步提高太阳能的综合利用效率。因此本文重点对几种太阳能聚光系统的聚光性能进行理论和实验研究分析,并探讨分频器光学特性对性能的影响。
     首先以光谱辐射热力学理论为基础,对分频利用太阳能方法进行了分析。提出两级反射聚光分频光伏发电和光热利用的两种方案,采用无量纲分析方法推导了二次反射聚光分频槽式系统几何聚光比的解析计算式。根据光学薄膜的基本原理,使用Needle方法设计了在两级聚光分频系统中使用的低通高反截止膜分频器,高低折射率材料分别选用五氧化二铌和二氧化硅,使用磁控溅射进行了镀膜,实验测得垂直入射时硅电池有效频段的反射率高于95%。采用光线追踪法建立了能流密度分布的光学计算模型,推导了考虑分频作用的局部能流密度分布的计算公式。模型考虑了太阳形状的影响,能够对安装误差、表面坡度等光学误差进行分析,并对跟踪系统误差进行评估。根据所提出的Buie CSR 6的年平均太阳形状模型进行了计算,得到了二次反射聚光分频槽式及碟式系统的分频器、接收器、光伏电池等入射表面上的能流密度分布。由于二次反射存在遮挡使得分频器及热接收器中心能流密度较低,而光伏接受面呈中间高两边低的分布,采用再次反射聚光可以得到均匀的能流密度。同时计算表明分频器安装误差对热接受器能流密度分布影响较小,而对光伏接受面的光强分布有较大影响。
     自行设计了双轴调节太阳跟踪装置,其特征在于通过南北向布置的赤经轴按时钟角速度转动,同步带动一个挂在赤经轴两端的内框转动,在内框的东西框边的赤纬轴上安装有接收面支架,由手动螺旋调节机构调节接收面支架的平面与赤经转轴的夹角每天等于赤纬度。跟踪时限从早7点到下午5点,受光面为10 m~2,驱动器功率12 W,该装置可安装四碟式聚光器、半抛物槽和菲涅尔聚光器,其控制系统简单,跟踪精度高,成本低廉,很有应用前景。
     提出了半槽式反射聚光系统,该系统可避免接收器遮挡,实现高倍聚光,并且抗风性能好。建立了考虑太阳光不平行度影响的光学模型,研究了几何集中比与聚光镜相对口径和光电池安装位置的关系,给出了不同开口下光伏表面能流密度分布最均匀的电池倾角。对半槽式反射系统的能流密度分布及聚光光伏性能进行了实验研究。采用CCD法得到了能流密度的相对分布并用热流计标定出能流密度分布。进行了光伏组件聚光发电的实验研究。设计了一种以二氧化钛和二氧化硅分别作为高低折射率膜料的分频器,透射全部的可见光及近红外小部分而反射其余辐射光线,理论分析了采用分频技术对电池温度分布及系统效率影响,计算结果表明采用分频可以降低电池温度提高聚光系统的聚光比以及光电转换效率。
     提出了两种使用平板玻璃镜获得等光强分布的反射聚光设计新方法,即等光强半槽式和折平板式反射聚光系统。给出了考虑太阳光不平行度影响的等光强半槽式反射聚光系统的设计公式,得到了均匀的能流密度分布。推导了折平板反射聚光系统的平行光聚光公式,可在给定接收截面宽度、倾角、与第一反射面的距离高度时,计算出聚光度所需的反射板数,每块反射板的宽度、倾角及坐标位置;建立了实验装置对折平板聚光系统接收平面能流密度分布进行了测量并进行了光伏组件性能实验,结果表明折平板玻璃镜聚光系统可以得到比半槽式系统更为均匀的辐射能流密度,并且系统的发电效率也较高。
Efficient and cost-effective solar power generation is an important research issue nowadays.Concentrating photovoltaic system can greatly reduce the amount of the expensive solar cells and decrease the cost of the power generation.Using the spectral beam splitting technology,the specific spectral solar irradiance that is suitable for photovoltaic conversion will be transmitted onto the cell,so the heat toad of the cell can be reduced and the conversion efficiency will be increased. Meanwhile,the rest part of the solar irradiance will be recovered to increase the overall utilization efficiency of the solar energy.Therefore,this dissertation mainly focuses on the theoretical and experimental analysis of the concentrating system performance as well as the effect of the optical properties of the beam filter.
     First,basis on the theory of the spectrum radiation thermodynamics,the method of the solar energy utilization with beam splitting technology is analyzed. The two-stage reflective concentrating beam splitting system is proposed and two solutions of solar photovoltaic/thermal hybrid system are presented.Nondimensional analytical expressions of the geometric concentration ratio of the twostage parabolic tough reflective concentrating system are derived.Basis on the elementary principle of the optical thin film,the low-pass broad-cut filter employed in the two-stage concentrating splitting system has been designed using Needle optimization method.Using niobium pentaoxide and silicon dioxide as the high and low refractive index materials,respectively.The film coating is carried out with magnetron sputtering method,and the test results show that the reflectivity of the available spectrum for the silicon solar cell is above 95%.Based on the ray tracing algorithms,a detailed three-dimensional optical model is set up to evaluate the flux density distribution on the elements' surfaces,and the expression of the local flux density with effect of the spectral beam split is derived.The effects of the solar brightness distribution and optical errors(e.g.,alignment error and surface slope error) are also involved and the tracking error is also analyzed.The numerical calculation is carried out using the annual mean Buie CSR 6 sunshade, the flux density distributions on the beam filter,heat receiver and photovoltaic cell are obtained.Due to the shielding of the beam filter,the flux density on the central part of the splitting mirror surface is low while the rest part is uniform, and the flux density on the central part of the solar cell is higher than that on the sides.It is also shown that the distribution on the filter is slightly affected by its alignment error while it greatly affect the distribution on the photovoltaic receiver surface.
     The dual-axis sun tracking device is designed and manufactured.The rotation axis of the right ascension is arranged in north-south direction and runs at the speed of 15°per hour.Meanwhile the inner frame set on the two ends of the right ascension axis also rotates.The declination axis is set on the two ends of the inner frame in east-west direction.Using a hand-operated screw adjusting mechanism,the angle between the receive plane and the right ascension axis is controlled to be equivalent to the latitude every day.Tracking time is limited from 7 am to 5 pm,the concentrating area is 10 m~2,and the driver power is only 12 W.The tracking device is loaded the four-dish concentrator,semi-parabolic trough and Fresnel concentrator.The low-cost device is a promising system for that the control system is simple,the tracking precision is high.
     A semi-parabolic trough concentrating system is presented,which can realize high concentration ratio by avoiding the shielding of the receiver,and the antiwind performance is good.A detailed optical model is presented to evaluate the relations between the geometric concentration ratio,the relative aperture and the photovoltaic cell location,and the optimal inclination angles of the cell are given to obtain uniform flux density at different concentrator relative apertures.The spatial distribution of the flux density on the solar cell plane and the performances of the semi-parabolic trough concentrating photovoltaic system are experimentally studied.The spatial distribution of the flux density is investigated by the CCD method and calibrated by heat flow meter.The electrical performance of the photovoltaic system is experimentally studied.A beam filter coated with materials of high refractive index titanium dioxide and low refractive index silicon dioxide has been designed,which can transmit all the visible light and part of the near- infrared band and reflect the rest band irradiance.The influence of the spectral beam splitting technology on the cell temperature and the system efficiency is theoretically studied.The results show that spectral beam splitting technology on the concentrating photovoltaic system can reduce the cell temperature and increase concentration ratio together with photoelectric conversion efficiency.
     Two new reflective concentrating systems,the semi-parabolic-trough system and zigzag-plate system,which can obtain iso-intensity distribution using plate mirrors,are proposed.Considering the effect of the incident sun rays' nonparallelism, the design formulas and uniform flux density distribution for the semiparabolic -trough system are presented.As for the zigzag-plate system,the design formulas with the parallel rays are also derived.With the known position(including the tilt angle and the distance on the vertical direction) and the width of the receiver plane,the number and the width of each mirror as well as the tile angle and the position will be evaluated.Experimental device has been set up to test the flux density distribution of the concentrating system,and the photovoltaic performance experiment has also been carried out.The experimental results show that the flux density distribution of the zigzag-plate mirror concentrating system is more uniform than that of the semi-trough concentrating system using parabolic reflector,and the photovoltaic conversion efficiency of the zigzag-plate system is higher than that of the semi-parabolic system.
     The work was sponsored by the National Nature Science Foundation of China (No.50576092,50736005).
引文
[1]罗运俊,何梓年.太阳能利用技术[M].北京:化学工业出版社,2005.
    [2]赵争鸣,刘建政,孙晓瑛,袁立强.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [3]SUKHATME S P.Solar Energy[M].New Delhi:Tata McGraw-Hill Publishing Company Limited,1996.
    [4]杨德仁.太阳能电池材料[M].北京:化学工业出版社,2006.
    [5]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005.
    [6]陆维德,赵玉文.21世纪我国太阳能利用发展战略[C]//21世纪我国的能源战略研讨会论文集..[s.l.]:[s-n.],1998:103-107.
    [7]黄河.聚光太阳能发电的进展[J].太阳能,2004(3):33-44.
    [8]JAFFE L D.Test results on parabolic dish concentrators for solar thermal power systems[J].Solar Energy,1989,42:173-187.
    [9]鹏飞.我国太阳能热发电技术的一座里程碑[J].太阳能,2006(3):59-60.
    [10]FEUERMANN D,GORDON J M.High-concentration photovoltaic designs based on miniature parabolic dishes[J].Solar Energy,2001,70(5):423-430.
    [11]KAZMERSKI L L.Solar photovoltaics research and development at the tipping point:A 2005 technology overview[J].Journal of Electron Spectroscopy and Related Phenomena,2006,150(2-3):105-135.
    [12]SWANSON R M.The promise of concentrators[J].Progress in Photovoltaics,2000,8(1):93-111.
    [13]TIAN W,WANG Y P,HAN L J.Technology development of photovoltaic concentrator system[J].Acta Energiae Solaris Sinica,2005,26(4):597-605.
    [14]LUQUE A,SALA G,ARBOIRO J C,et al.Some results of the EUCLIDES photovoltaic concentrator prototype[J].Progress in Photovoltaics,1997,5(3):195-212.
    [15]RADZIEMSKA E.The effect of temperature on the power drop in crystalline silicon solar cells[J].Renewable Energy,2003,28(1):1-12.
    [16]ROYNE A,DEY C J,MILLS D R.Cooling of photovoltaic cells under concentrated illumination:a critical review[J].Solar Energy Materials and Solar Cells,2005,86(4):451-483.
    [17]JIN H G,JI J,WANG Z F,et al.Solar thermal power cycle with intergration of methanol decomposition and middle-temperature solar thermal energy[J].Solar Energy,2005,78:49-58.
    [18]IMENES A G,MILLS D R.Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems:a review[J].Solar Energy Materials and Solar Cells,2004,84(1-4):19-69.
    [19]FLETCHER E A.Solarthermal processing:A review[J].Journal of Solar Energy Engineering-Transactions of the Asme,2001,123(2):63-74.
    [20]KHAN A,YAMAGUCHI M,TAKAMOTO T.Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios[J].Applied Physics Letters,2004,85(15):3098-3100.
    [21]KUMAR R A,SURESH M S,NAGARAJU J.GaAs/Ge solar cell AC parameters under illumination[J].Solar Energy,2004,76(4):417-421.
    [22]刘祖平.一种跟踪和聚光的全新理论-陈应天在太阳能利用研究领域的重大创新[J].中国科学技术大学学报,2006,36(12):1245-1256.
    [23]CHEN Y T,CHONG K K,LIM C S,et al.Report of the first prototype of non-imaging focusing heliostat and its application in high temperature solar furnace[J].Solar Energy,2002,72(6):531-544.
    [24]LUQUE A,SALA G,LUQUE-HEREDIA I.Photovoltaic concentration at the onset of its commercial deployment[J].Progress in Photovoltaics,2006,14(5):413-42s.
    [25]BLOCKER W.High-efficiency solar energy conversion through flux concentration and spectrum splitting[J].Proceedings of the IEEE,1978,66(1):104-105.
    [26]JIANG S L,Hu P,Mo S P,et al.Modeling for two-stage dish concentrating spectral beam splitting PV/T system[C]//Asia-Pacific Power and Energy Engineering Conference.Wuhan:IEEE,2009.
    [27]MUHS J D.Hybrid lighting doubles the efficiency and affordability of solar energy in commercial buildings[J].CADDET Energy Efficiency Newsletter,2000,4:6-9.
    [28]FRAAS W E,DANIELS W E,MUHS J.Infrared photovoltaics for combined solar lighting and electricity for buildings[C]//Proceedings of the 17th European Photovoltaic Solar Energy Conference.Munich:IEEE,2001.
    [29]MUHS J D.Design and analysis ofhybrid solar fighting and full spectrum solar energy systems[C]//Proceedings ofthe American Solar Energy Society SOLAR 2000 Conference.Madison:[s.n.],2000.
    [30]IMENES A G,BUIE D,MILLS D R,et al.A new strategy for improved spectral performance in solar power plants[J].Solar Energy,2006,80(10):1263-1269.
    [31]IMENES A G,BUIE D,MCKENZIE D.The design of broadband,wide-angle interference filters for solar concentrating systems[J].Solar Energy Materials and Solar Cells,2006,90(11):1579-1606.
    [32]葛新石,叶宏.传热的基本原理[M].北京:化学工业出版社,2007.
    [33]陈则韶.高等工程热力学[M].北京:高等教育出版社,2008.
    [34]PLANK M.Philadelphia:Blakistons[J].Solar Energy,1914.
    [35]JETER S M.Maximum conversion efficiency for the utilization of direct solar radiation[J].Solar Energy,1981,26(3):231-236.
    [36]陈则韶,莫松平.光量子等效温度和黑体辐射光谱有效能[J].自然科学进展,2007,17(5):687-691.
    [37]陈则韶,莫松平,李志宏,江守利,江斌,王海千,卢保罗.太阳能分频利用电热联产初步研究[J].工程热物理学报,2008,29(1):13-15.
    [38]江守利,陈则韶,胡艽,莫松平.二次反射聚光分频光伏系统的光学分析[J].工程热物理学报,2008,29(3):369-372.
    [39]林永昌,卢维强.光学薄膜原理[M].北京:国防工业出版社,1990:276-310.
    [40]唐晋发.现代光学薄膜技术[M].杭州:浙江大学出版社,2006.
    [41]江守利,陈则韶,胡艽,莫松平.半抛物槽式聚光分频光伏系统的性能分析[J].工程热物理学报,2009,30(3):365-369.
    [42]RUMYANTSEV V D,ANDREEV V M,BETT A W,et al.Progress in development of all-glass terrestrial concentrator modules based on composite Fresnel lenses and Ⅲ-Ⅴ solar cells[J].Conference Record of the Twenty-Eighth Ieee Photovoltaic Specialists Conference - 2000,2000:1169-1172 1839.
    [43]RYU K,RHEE J G,PARK K M,et al.Concept and design of modular Fresnel lenses for concentration solar PV system[J].Solar Energy,2006,S0(12):1580-1587.
    [44]LORENZO E,LUQUE A.Fresnel lens analysis for solar energy applications[J].Appl.Opt.,1981,20(17):2941.
    [45]LORENZO E,LUQUE A.Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators[J].
    [46]江守利,陈则韶,莫松平,陈建新.聚光分频光伏发电系统的光学分析[C]//.中国工程热物理学会.工程热力学与能源利用学术会议论文集.天津:[s.n.],2007:313-320.
    [47]江守利,陈则韶,胡艽,莫松平.聚光分频光伏系统的性能分析[C]//.中国工程热物理学会.工程热力学与能源利用学术会议论文集.绍兴:[s.n.],2008:51-51.
    [48]ANTON I,PACHON D,SALA G.Characterization of optical collectors for concentration photovoltaic applications[J].Progress in Photovoltaics,2003,11(6):387-405.
    [49]AL-SOUD M S,HRAYSHAT E S.Concentrator silicon solar cells from silicon industry rejects[J].Renewable Energy,2005,30(4):621-630.
    [50]赵兴梅,师建涛,郭鸿香.短波通滤光片膜系设计[J].应用光学,2006,27(5):415-418.
    [51]TIKHONRAVOV A V,TRUBETSKOV M K,DEBELL G W.Application of the needle optimization technique to the design of optical coatings[J].Applied Optics,1996,35(28):5493-5508.
    [52]TIKHONRAVOV A V,TRUBETSKOV M K,DEBELL G W.Optical coating design approaches based on the needle optimization technique[J].Applied Optics,2007,46(5):704-710.
    [53]卢进军,刘卫国.光学薄膜技术[M].西安:西北工业大学出版社,2005.
    [54]周健,林永昌,顾永琳.一种新的光学膜系设计方法-Needle法[J].北京理工大学学报,1997,17(5):570-573.
    [55]TIKHONRAVOV A V.Needle optimization technique:the history and the future[J].Optical Thin Films V:New Developments,1997,3133:2-7.
    [56]SULLIVAN B T,DOBROWOLSKI J A.Implementation of a numerical needle method for thin-film design[J].Applied Optics,1996,35(28):5484-5492.
    [57]GUEYMARD C A,MYERS D,EMERY K.Proposed reference irradiance spectra for solar energy systems testing[J].Solar Energy,2002,73(6):443-467.
    [58]黄文雄.太阳能之应用及理论[M].台湾:协志工业丛书出版股份有限公司,1979(民国六十七年):486-517.
    [59]江守利,陈则韶,胡艽,莫松平.二次反射聚光分频光伏系统的三维光学模型[J].太阳能学报,2009,30(8).
    [60]NEUMANN A,WITZKE A,JONES S A,et al.Representative terrestrial solar brightness profiles[J].Journal of Solar Energy Engineering-Transactions of the Asme,2002,124(2):198-204.
    [61]MINNAERT M.The Photosphere[C]//.KUIPER G P.The Sun,The Solar System I.Chicago:University of Chicago,1953.
    [62]NEUMANN A,GROER U.Experimenting with concentrated sunlight using the DLR solar furnace[J].Solar Energy,1996,58(4-6):181-190.
    [63]NEUMANN A,WITZKE A.The influence of sunshape on the DLR Solar Furnace beam[J].Solar Energy,1999,66(6):447-457.
    [64]BUIE D,MONGER A G,DEY C J.Sunshape distributions for terrestrial solar simulations[J].Solar Energy,2003,74(2):113-122.
    [65]BUIE D,MONGER A G.The effect of circumsolar radiation on a solar concentrating system[J].Solar Energy,2004,76(1-3):181-185.
    [66]ABU-KHADER M M,BADRAN O O,ABDALLAH S.Evaluating multi-axes sun-tracking system at different modes of operation in Jordan[J].Renewable and Sustainable Energy Reviews,2008,12(3):864-873.
    [67]ALIMAN O,DAUT I.Rotation-Elevation of Sun Tracking Modc to Gain High Concentration Solar Energy[C]//.DAUT I.Power Engineering,Energy and Electrical Drives,2007.POWERENG 2007.International Conference on..[S.l.]:[s.n.],2007:551-555.
    [68]AL-MOHAMAD A.Efficiency improvements of photo-voltaic panels using a Sun-tracking system[J].Applied Energy,2004,79(3):345-354.
    [69]COOPER P I.The absorption of radiation in solar stills[J].Solar Energy,1969,12(3):333-346.
    [70]刘民,杨亦强.均匀性的瞬态测量[J].宇航计测计算,2001,21(6):56-61.
    [71]CHEN W,LI J H.Optical performance analysis for parabolic-trough focusing collector with several tracking modes[J].Acta Energiae Solaris Sinica,2003,24(4):477-482.
    [72]江守利,胡艽,莫松平,陈则韶.抛物碟式两级聚光分频PV/T系统设计[C]//.严建华,章丽萍.能源与环境研究进展.杭州:浙江大学出版社,2008:176-181.
    [73]JETER M.Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation[J].Solar Energy,1986,39(5):11-12.
    [74]JEFFERIES K S.Optical analysis of parabolic dish concentrators for solar dynamic power systems in space[J].NASA Technical Memorandum 87080,1985.
    [75]HARRIS A J.Focal plane flux density distributions produced by solar concentrating reflectors[J].Solar Energy,1985,27:403-411.
    [76]PETER D J,WANG L L.Concentration distributions in cylidrical receiver /paraboidal dish concentrator systems[J].Solar Energy,1985,27:403-411.
    [77]HUANG B J,SUN F S.Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector[J].Energy Conversion and Management,2007,48(4):1273-1280.
    [78]张毅刚.新编MCS-51单片机应用设计[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [79]李志宏.多功能热泵控制及太阳能跟踪方案研究[D].合肥:中国科学技术大学,2008.
    [80]窦振中.单片机外围器件实用手册输出通道器件分册[M].北京:北京航空航天大学出版社,2003.
    [81]陈则韶,李志宏,史敏,张秀平,江斌,钟瑜,贾磊.冷暖空调热水三用机的功能控制[J].流体机械,2009,37(3):69-73.
    [82]王庆有.CCD应用技术[M].天津:天津大学出版社,2000.
    [83]MACCARI A,MONTECCHI M.An optical profilometer for the characterisation of parabolic trough solar concentrators[J].Solar Energy,2007,81(2):185-194.
    [84]翟载腾.任意条件下光伏阵列的输出特性预测[D].合肥:中国科学技术大学,2008.
    [85]丁金磊.太阳电池Ⅰ-Ⅴ方程显式求解原理研究及应用[D].合肥:中国科学技术大学,2007.
    [86]LUQUE A,SALA G,ARBOIRO J C.Electric and thermal model for nonuniformly illuminated concentration cells[J].Solar Energy Materials and Solar Cells,1998,51(3-4):269-290.
    [87]刘颖,戴景民,郎治国,辛春锁.旋转抛物面聚光器焦面能流分布的有限元分析(J].光学学报,2007(10).
    [88]景晓军,周贤伟,付娅丽.图像处理技术及其应用[M].北京:国防出版社,2005.
    [89]PARRETTA A,PRIVATO C,NENNA G,et al.Monitoring of concentrated radiation beam for photovoltaic and thermal solar energy conversion applications [J].Applied Optics,2006,45(30):7885-7897.
    [90]PARRETTA A,ANTONINI A,ARMANI M,et al.Double-cavity radiometer for high-flux density solar radiation measurements[J].Applied Optics,2007,46(12):2166-2179.
    [91]M.D J,LIU Y.Measurement and analysis of flux density distribution for spot focused by concentrator[J].Journal of Applied Optics,2008,29(6):917-920.
    [92]丁金磊,程晓舫,余世杰,何慧若.晶体硅太阳电池最大功率下负载的函数表达[J].中国工程科学,2005(06).
    [93]SLADE A,GORDON R,DUTRA D,et al.Long term reliability of mass-produced high-efficiency silicon point-contact solar cells under 250/spl times/concentration[C]//.GORDON R.Photovoltaic Specialists Conference,2002.Conference Record of the Twenty-Ninth IEEE..[S.l.]:[s.n.],2002:1015-1018.
    [94]SWARTZ G A,NAPOLI L S,KLEIN N.Silicon solar cells for use at high solar concentration[C]//.NAPOLI L S.Electron Devices Meeting,1977International..[S.l.]:[s.n.],1977,23:226-228.
    [95]SCHWARTZ R J,LAMMERT M D.Silicon solar cells for high concentration applications[C]//.LAMMERT M D.Electron Devices Meeting,1975International..[S.l.]:[s.n.],1975,21:350-352.
    [96]SEWANG Y,GARBOUSHIAN V.Reduced temperature dependence of high-concentration photovoltaic solar cell open-circuit voltage(Voc) at high concentration levels[C]//.GARBOUSHIAN V.Photovoltaic Energy Conversion,IEEE Photovoltaic Specialists Conference - 1994..[S.l.]:[s.n.],1994,2:1500-1504 vol.2.
    [97]GUEYMARD C A.The sun's total and spectral irradiance for solar energy applications and solar radiation models[J].Solar Energy,2004,76(4):423-453.
    [98]黄国华,施玉川,杨宏,苑进社.常规太阳电池聚光特性实验[J].太阳能学报,2006,27(1):19-22.
    [99]吴玉庭,朱宏晔,任建勋,梁新刚.聚光条件下太阳电池的散热特性分析[J].太阳能学报,2004,25(3):337-340.
    [100]CHEKNANE A,BENYOUCEF B,CHAKER A.Performance of concentrator solar cells with passive cooling[J].Semiconductor Science and Technology,2006,21(2):144-147.
    [101]ROYNE A,DEY C J,MILLS D R.Cooling of photovoltaic cells under concentrated illumination:a critical review[J].Solar Energy Materials and Solar Cells,2005,86(4):451-483.
    [102]宁铎.折面形抛物柱太阳能聚光器的研制[J].太阳能学报,2003,24(5):616-619.
    [103]GRANQVIST C G.Solar energy materials[J].Advanced Materials,2003,15(21):1789-1803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700