用户名: 密码: 验证码:
基于氨水吸收技术的低品位热能远距离输送研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低品位热能的远距离输送是上世纪末引起许多发达国家关注的新课题,尤其是在核能和工业的余热利用方面已经引起重视,成为提高能源利用率的新突破口。尽管已经有不少方法被提了出来,但是目前还没有克服有效地利用远距离低品位热能的难题。这些方法包括可逆化学反应、蓄热材料、氢吸附合金、气-固吸附和气-液吸收等。其中气-液吸收是近年提出来的新思路,与之相关的研究报道还很少。在此基础上,本文对氨水吸收技术应用于低品位热能的远距离输送进行深入的研究,主要内容包括:
     (1)对各种氨水吸收循环方式应用于低品位热能远距离输送的可行性进行研究。这些循环包括单级氨水吸收循环、双效氨水吸收循环、单纯复叠式氨水吸收循环、两级氨水吸收循环、带发生器稀溶液膨胀的两级氨水吸收循环、氨水吸收压缩复合循环、氨水吸收喷射复合循环、GAX氨水吸收循环以及扩散氨水吸收循环。研究结果表明,单级氨水吸收循环是目前最适合的选择,而单纯复叠式氨水吸收循环、带发生器稀溶液膨胀的两级氨水吸收循环和氨水吸收压缩复合循环也符合低品位热能远距离输送的基本条件。
     (2)对基于单级氨水吸收循环的低品位热能远距离输送系统进行了热力学和流体力学分析。分析结果表明,单级氨水吸收循环适合在夏季为远距离用户提供空调制冷,冷能输出温度在5°C以上比较合适,在冬季提供地板采暖和生活热水,热能输出温度在60°C以下比较合适。当热源端有130°C以上的余热可供利用时,在上述条件下,远距离制冷或制热的热力效率都可达0.5以上,而电力效率基本都在50以上。
     (3)针对城市采暖系统的现状,提出了一个可提升用户端输出能量品位的新型氨水吸收循环。该循环综合了两级循环、双效循环以及第二类热泵的优点,能够实现在用户端自备第二热源从而提高用户端输出温度的目的但没有增加输送负担。模拟计算结果表明,该循环尤其适合在寒冷地区使用,并且在用户端输出的热能温度比单级氨水吸收循环高得多,当输出温度达到热源温度水平时,仍然保证热力效率在0.3以上。以该循环为基础,引伸出两类简化形式,第一类简化形式适合在环境温度较高时在用户端输出高温热能,第二类简化形式则适合在环境温度较高时在用户端输出低温冷能。从新型氨水吸收循环出发,结合单级氨水吸收循环,形成了一套用户端输出温度范围大、环境适应性广的全年运行解决方案。以热源温度120°C为例,在环境温度为20~40°C,用户端输出温度30~140°C的大范围内都可以实现。
     (4)设计并构建了一套紧凑的小型化实验样机,对基于单级氨水吸收循环的低品位热能远距离输送系统进行热力学验证,分别对夏季远距离制冷、冬季和过渡季远距离制热进行实验研究。实验结果表明,夏季远距离制冷的热力效率一般在0.4以上,冬季远距离制热的热力效率一般在0.5以上。借助氨水吸收技术,将热能转换为氨水溶液浓度差的形式的化学能,可以实现在环境温度下低品位热能的远距离输送。该实验基本验证了基于单级氨水吸收循环的低品位热能远距离输送系统的热力学可行性。
     (5)对基于氨水吸收技术的低品位热能远距离输送系统进行了经济性评估。通过一个例子说明,在热源端和用户端铺设输送管路所需的成本其回收期仅有15个月。氨水吸收系统在不同的季节运行,输送管路的填充量会发生变化,这对填充量巨大的远距离输送系统来说是极为不便的。本文提出了一个可操作性的建议,即维持全年溶液浓度不变,牺牲热源和用户端输出温度适应性的折中方案。
Transportation of low grade thermal energy over long distance is a newly developed research subject since the end of last century. It has gained more and more attention in the utilization of the waste heat from nuclear power generation and industrial processes, and it has been considered as a possible direction to improve the energy utilization efficiency. Several methods have been developed but none of them is competitent for overcoming the long distance problem to utilize the low grade thermal energy which locates far away. These methods include reversible chemical reactions, heat storage materials, hydrogen absoring alloys, solid gas adsorption and liquid gas absorption, etc, in which liquid gas absorption is a novel way which has been introduced in recent years. The rearching work on it has been rarely reported. In this thesis, the transportation of low grade thermal energy over long distance by ammonia water absorption technology was deeply studied. The following main points are involved.
     (1) A series of cycles were analyzed to generally investigate the feasibility of the transportation of low grade thermal energy over long distance by ammonia wate absorption technology. These cycles included single stage ammonia water absorption cycle, double effect cycle, simple cascade cycle, typical two stage cycle, two stage cycle with expanding process of the weak solution from generator, compression absorption hybrid cycle, ejection absorption hybrid cycle, GAX cycle and diffusion absorption cycle. The comparison showed that the single stage cycle was the best choice, and the simple cascade cycle, the two stage cycle with expanding process and the compression absorption hybrid cycle were also suitable for the transportation of low grade thermal energy over long distance.
     (2) The thermodynamic and hydraulic analyses were performed on the single stage ammonia water absorption cycle to transport low grade thermal energy over long distance. The results showed that it was capable of producing heating or cooling for residential use. When a heat source at 120°C is available, in summer the single stage cycle can output cooling above 5°C at the user site for air conditioning use, or output heating below 60°C for floor radiation heating or hot water supply. When a heat source at 130°C is available, the cooling and the heating thermal COP can both reach as high as 0.5 and the electrical COP can both reach as high as 50.
     (3) A new cycle was proposed in order to extend the output heating temperature range at the user site. This cycle took the advantages of the two stage cycle, double effect cycle and the TYPE 2 absorption heat pump. It can self support a second heat source at the user site and lift the output heating temperature without extra transporting burden. The simulation showed that the new cycle was very suitable for producing high temperature heating over long distance in cold areas. When the output heating temperature is as high as the heat source temperature, the coeffient of performance reaches above 0.3. Based on the new cycle, two types of simplified cycles were introduced. The TYPE 1 simplified cycle is suitable for producing high temperature heating at high ambient temperatures, while the TYPE 2 is suitable for producing low temperature cooling at high ambient temperatures. The new cycle with its two types of simplified forms and the single stage cycle compose an all the year around solution for the transportation of low grade thermal energy over long distance. This solution can adapt a wide output temperature range from 30 to 140°C and a wide ambient temperature range from 20 to 40°C if a heat source at 120°C is available.
     (4) A compact small scale experimental prototype was designed and constructed in order to verifier the thermodynamic feasibility of the single stage ammonia water absorption cycle for the transportation of low grade thermal energy over long distance. The annual experimental data concerning producing cooling in summer and procucing heating in the others seaons have been gotten for evaluating the thermal performance of the prototype. It can be considered that the thermal feasibility of the single stage ammonia water absorption cycle for the transportation of low grade thermal energy over long distance has been basically verified.
     (5) The economical analysis was performed by a calculation example. It was shown that the payback period for constructing the pipeline between the source site and the user site was about 15 months. The filling amount of the working fluid in the pipeline varies in different seasons, which leads to a great inconvenience for all the year around running. A pracitical suggestion was introduced in order to overcome this problem, i.e, the concentration of solutions can be kept constant all through the year, but the heat source temperatures and the user output temperatures have to submit the environment temperatures.
引文
[1] PROGRAMME ENERGIE du CNRS (Cycles thermochimiques pour le transport de chaleur et de froidàlongue distance) 2002 : PRI9 2.
    [2] ACTION CONCERTEE ENERGIE du CNRS– Ministère déléguéàla recherche et aux nouvelles technologies (Transport de Froid) 2003 2005 : PR2.8.
    [3] PROGRAMME INTERDISCIPLINAIRE ENERGIE DU CNRS–VALOTHERM (Evaluation comparative des technologies de transport d’énergieàlongue distance pour la revalorisation de rejets thermiques basse température) 2007 : PR3.3 12.
    [4] IEA/ECES Annex 18 Transportation of Thermal Energy Utilizing Thermal Energy Storage Technology.
    [5] Liu Q S, Yabe A, Kajiyama S and Jukuda K A review of study on thermal energy transport system by synthesis and decomposition reactions of methanol. JSME International Journal 2002; Serious B, 45(3):473 480.
    [6] Fujita Y, Shikata I, Kawai A, Kamano H. Latent heat storage and transportation system“TransHeat Container”. IEA/ECES Annex 18. In: 1st workshop and Expert Meeting, November 13 15, Tokyo, Japan; 2006.
    [7] Kato Y. Possibility of chemical heat storage in thermal energy transportation market. IEA, ECES IA Annex 18. In: Transportation of Energy utilizing Thermal Energy Storage Technology. 1st Workshop, November 13–15, Tokyo, Japan; 2006.
    [8] Ogura H. Waste heat recycling system using chemical heat pump container. IEA, ECES IA Annex 17. In: Advanced thermal energy storage through phose change materials and chemical reactions feasibility studies and demonstration projects, 3rd Workshop, October 1 2, Tokyo, Japan; 2002.
    [9] Martin V, Setterwall F. System design for efficient transportation of industrial waste heat to the built environment. IEA/ECES Annex 18. In: 1st workshop and Expert Meeting, November 13 15, Tokyo, Japan; 2006.
    [10] Setterwall F, Martin V. Chemical reactions for transportation of thermal energy. IEA/ECES Annex 18. In: Applications and System Boundary Conditions for Energy Transportation through Advanced Thermal Energy Storage Technology, 2nd Workshop, March 28 30, Bordeaux , France, 2007.
    [11] Kato Y. Trend analysis of thermal energy transportation techbologies from a questionnaire survey. In: Applications and System Boundary Conditions for Energy Transportation through Advanced ThermalEnergy Storage Technology, 2nd Workshop, March 28 30, Bordeaux , France, 2007.
    [12] Takahashi K, Higashi Y. The development of transport system of thermal energy. IEA/ECES Annex 18. In: Advanced Thermal Energy Storage, 4th Workshop, April 16 18, Lleida, Spain, 2008.
    [13] Kang B H and Yabe A, Performance analysis of a metal hydride heat transformer for waste heat recovery. Applied Thermal Engineering 1996; 16(8 9):677 690.
    [14] Takeda H, Kabutomori T, Wakisaka Y, Ohnishi K. Characteristics of heat hydrogen gas energy conversion and hydrogen gas transportation using hydrogen absorbing alloy. Journal of Alloys and Compounds 1997; 253 254:677 681.
    [15] Nasako K, Ito Y and Osumi M. Intermittent heat transport using hydrogen absorbing alloys. International Journal of Hydrogen Energy 1998; 23(9):815 824.
    [16] Nasako K, Ito Y and Osumi M. Long distance heat transport system using a hydrogen compressor. International Journal of Hydrogen Energy 1998; 23(10):911 919.
    [17] Hasegawa H, Ishitani H, Matsuhashi R, Yoshioka M. Analysis on waste heat transportation systems with different heat energy carriers. Applied Energy 1998; 61:1 12.
    [18] Srivastava N C, Eames I W. A reviews of adsorbents and adsorbates in solid vapour adsorption heat pump systems. Applied Thermal Engineering 1998; 18:707 714.
    [19] Yu Y Q, Zhang P, Wu J Y, Wang R Z. Energy upgrading by solid gas reaction heat transformer: A critical review. Renewable and Sustainable Energy Reviews 2007; doi: 10.1016/j.rser.2007.01.010.
    [20] Wang L W, Wang R Z, Oliveira R G. A review on adsorption working pairs for refrigeration. Renewable and Sustainable Energy Reviews 2008; doi:10.1016/j.rser.2007.12.002.
    [21] Berthiaud J, Mazet N, Luo L, Stitou D, Descamps I. Long distance transport of thermal energy using sorption cycles. Proc. ATI Conference, Milano, Italy, 14 17 May 2006.
    [22] Stitou D, Spinner B, Mazet N. New sorption cycles for heat and/or cold production adapted for long distance heat transmission. ASME, Advanced Energy Systems Division AES 2002; 42:441 446.
    [23] Berthiaud J. Procédésàsorption solide/gaz pour le transport de chaleur et de froidàlongue distance. Doctor Dissertation. PROMES : Perpignan, France, 2007
    [24] Robert M Tozer, Ron W James. Fundamental thermodynamics of ideal absorption cycles. International Journal of Refrigeration 1997; 20(2):120 135.
    [25] Robert Tozer, Ron W. James. Heat powered refrigeration cycles. Applied Thermal Engineering 1998; 18:731 743.
    [26] Khalid A Joudi, Ali H Lafta. Simulation of a simple absorption refrigeration system. Energy Conversion and Management 2001; 42:1575 1605;
    [27] Pongsid Srikhirin, Satha Aphornratana, Supachart Chungpaibulpatana. A review of absorptionrefrigeration technologies. Renewable and Sustainable Energy Reviews, Volume 5, Issue 4, December 2001, Pages 343 372
    [28] Fan Y, Luo L, Souyri B. Review of solar sorption refrigeration technologies: Development and applications. Renewable and Sustainable Energy Reviews 2007; 11:1758 1775.
    [29]尉迟斌等,实用制冷与空调工程手册,机械工业出版社,2002.
    [30] Sun D W. Comparison of the performances of NH3 H2O, NH3 LiNO3 and NH3SCN absorption refrigeration systems. Energy Conversion and Management 1998; 39(5/6):357 368.
    [31] Aberto C, Manel V, Shrirang K Chaudhari, Kashinath R Patil. Absorption heat pump with the TFE TEGDME and TFE H2O TEGDME systems. Applied Thermal Engineering 1996; 16(4):335 345.
    [32] Mahmoud B, Manel V, Marc M, Alberto C. Absorption of water vapour in the falling film of water (LiBr+LiI+LiNO3+LiCl) in a vertical tube at air cooling thermal conditions. International Journal of Thermal Sciences 2005; 44:491 498.
    [33] Borde I, Jelinek M, Daltrophe N C. Absorption system based on the refrigerant R134a. International Journal of Refrigeration 1995; 18(6):387 394.
    [34] Wang X, Shi L, Yin J, Zhu M S. A two stage heat transformer with H2O/LiBr for the first stage and 2,2,2 trifluoroethanol(TFE)/N methy1 2 pyrrolidone(NMP) for the second stage. Applied Energy 2002; 71:235 249.
    [35] Medrono M, Bourouis M, Coronas A. Double lift absorption refrigeration cycles driven by low temperature heat sources using organic fluid mixtures as working pairs. Applied Energy 2001; 68:173 185.
    [36] Arivazhagan S, Saravanan R, Renganarayanan S. Experimental studies on HFC based two stage half effect vapour absorption cooling system. Applied Thermal Energy 2006; doi:10.1016/j.applthermaleng.2005.12.014.
    [37]陈燕,吴裕远,孙韶华. NH3 H2O LiBr三元溶液体系气液相平衡特性实验研究.上海交通大学学报,2005年8月第39卷第8期.
    [38] Zhao Z C, Zhang X D, Ma X H. Thermodynamic performance of a double effect absorption heat transformer using TFE E181 as the working pair. Applied Energy 2005; 82:107 116.
    [39] Venegas M, Izquierdo M, Rodríguez Lecuona A. Heat and mass transfer during absorption of ammonia vapour by LiNO3 NH3 solution droplets. International Journal of Heat amd Mass Transfer 2004; 47:2653 2667.
    [40] Antonis L, Marina D, Caroline M, JoséV, Juan F Rodríguez. Performance evaluation and simulation of a new absorpbent for an absorption refrigeration system. International Journal of Refrigeration 2004;27:324 330.
    [41] White S D, A novel solvent separation process with integrated open cycle absorption refrigeration. Applied Thermal Engineering 1999; 19:337 347.
    [42] Saravanan R, Maiya M P. Experimental analysis of a bubble pump operated H2O LiBr vapour absorption cooler. Applied Thermal Engineering 2003; 23:2383 2397.
    [43] Hellmann H M, Grossman G. Simulation and analysis of an open cycle hehumidifier evaporator regenerator (DER) absorption chiller for low grade heat utilization. International Journal of Refrigeration 1995; 18(3)177 189.
    [44] Imroz Sohel M, Dawoud B, Dynamic modeling and simulation of a gravity assisted solution pump of a novel ammonia water absorption refrigeration unit. Applied Thermal Engineering 2006; 26:688 699.
    [45] JoséF S, Jaime S. Ammonia water absorption absorption refrigeration systems with flooded evaporators. Applied Thermal Engineering 2006; doi:10.1016/j.applthermaleg.2006.03.011.
    [46] Stephen D White, Brain K O’Neill. Analysis of an improved aqua ammonia absorption refrigeration cycle employing evaporator blowdown to provide rectifier reflux. Applied Energy 1995; 50:323 337.
    [47] Chen J, Chang H, Chen S R. Simulation study of a hybrid absorber heat exchanger using hollow fiber membrane module for the ammonia water absorption cycle. International Journal of Refrigeration 2006; 29:1043 1052.
    [48] Mejri Kh, Ben Ezzine N, Guizani Y, Bellagi A. Discussion of the feasibility of the Einstein refrigeration cycle. International Journal of Refrigeration 2006; 29:60 70.
    [49] Medrano M, Bourouis M, Coronas A. Double lift absorption refrigeration cycles driven by low temperature heat sources using organic fluid mixtures as working pair. Applied Energy 2001; 173 185.
    [50] Kim J S, Ziegler F, Lee H. Simulation of the compressor assisted triple effect H2O LiBr absorption cooling cycles. Applied Thermal Engineering 2002; 22:295 308.
    [51] Cheung K, Hwang Y, Judge J F, Kolos K, Singh A, Radermacher R. Performance assessment of multistage absorption cycles. International Journal of Refrigeration 1996; 19(7):473 481.
    [52] Berlitz T, Plank H, Ziegler F. An ammonia water absorption refrigeration with a large temperature lift for combined heating and cooling. International Journal of Refrigeration 1998; 21(3):219 229.
    [53] Minciuc E, Le Corre O, Athanasovici V, Tazerout M, Bitir I. Thermodynamic analysis of tri generation with absorption chilling machine. Applied Thermal Engineering 2003; 23:1391 1405.
    [54] S?zen A, ?zalp M. Performance improvement of absorption refrigeration system using triple pressure level. Applied Thermal Engineering 2003; 23:1577 1593;
    [55] Kang Y T, Hong H, Park K S. Performance analysis of advanced hybrid GAX cycles: HGAX.International Journal of Refrigeration 2004; 27:442 448.
    [56] Minea V, Chiriac F. Hybrid absorption heat pump with ammonia/water mixture– some design guidelines and district heating application. International Journal of Refrigeration 2006; doi:10.1016/j.ijrefrig.2006.03.007.
    [57] Liu M, Zhang N. Proposal and analysis of a novel ammonia water cycle for power and refrigeration cogeneration. Energy 2007; 32:961 970.
    [58] MonéC D, Chau D S, Phelan P E. Economic feasibility of combined heat and power and absorption refrigeration with commercially available gas turbines. Energy Conversion and Management 2001; 42:1559 1573.
    [59] S?zen A. Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond’s temperature. Renewable Energy 2003; 29:501 515.
    [60] Bruno J C, Vidal A, Coronas A. Improvement of the raw gas drying proess in olefin plants using an absorption cooling system driven by quench oil waste heat. Energy Conversion and Management 2006; 47:97 113.
    [61] Hammad M, Habali S. Design and performance study of a solar energy powered vaccine cabinet. Applied Thermal Engineering 2000; 20:1785 1798.
    [62] Francisco A, Illanes R, Torres J L, Castillo M, Blas M, Prieto E, García A. Development and testing of a prototype of low power water ammonia absorption equipment for solar energy applications. Renewable Energy 2002; 25:537 544.
    [63] S?zen A, Altíparmak D, Usta H. Development and testing of a prototype of absorption heat pump system operated by solar energy. Applied Thermal Engineering 2002; 22:1847 1859.
    [64] Tamm G, Goswami D Y, Lu S, Hasan A A. Theoretical and experimental investigation of an ammonia water power and refrigeration thermodynamic cycle. Solar Energy 2004; 76:217 228.
    [65] Y. T. Kang, A. Akisawa, Y. Sambe, T. Kashiwagi. Absorption heat pump systems for solution transportation at ambient temperature STA cycle. Energy 2000; 25:355 370.
    [66] Atsushi Akisawa, Yoshinori Hamamoto, Takao Kashiwagi. Performance of thermal energy transportation based on absorption system–Solution transportation absorption chiller–. International Sorption Heat Pump Conference, June 22 24, 2005; Denver, CO, USA.
    [67] Young Kyong Jo, Jin Kyeong Kim, Soon Geul Lee, Yong Tae Kang. Development of type 2 solution transportation absorption system for utilizing LNG cold energy. International Journal of Refrigeration 2007; 30:978 985.
    [68] JoséF S, Jaime S. The importance of the ammonia water purification process in ammonia water absorption systems. Energy Conversion and Management 2006; 47:1975 1987.
    [69] Wu D W, Wang R Z. Combined cooling, heating and power: a review. Progress in Energy and Combustion Science 2006; 32(5/6):459 495.
    [70] Jakob, U., Pink, W., 2007. Development and investigation of an ammonia/water absorption chiller chillii? PSC– for a solar cooling system. Proceedings of the 2nd International Conference Solar Air Conditioning, October 18 19, 2007, Tarragona, Spain, 440 445.
    [71] H?berle, A., Luginsland, F., Zahler, C., Berger, M., Rommel, M., Henning, H.M., Guerra, M., De Paoli, F., Motta, M., Aprile, M., 2007. A linear concentrating Fresnel collector driving a NH3 H2O absorption chiller. Proceedings of the 2nd International Conference Solar Air Conditioning, October 18 19, 2007, Tarragona, Spain, 662 667.
    [72] Jakob, U., Eicker, U., 2002. Solar cooling with diffusion absorption principle. World Renewable Energy Congress VII, June 29 July 5, 2002, Cologne, German.
    [73] Moser, H., Rieberer, R., 2007. Small capacity ammonia/water absorption heat pump for heating and cooling– used for solar cooling applications. Proceedings of the 2nd International Conference Solar Air Conditioning, 18 19 October 2007, Tarragona, Spain, 51 61.
    [74] Zetzsche, M., Koller, T., Brendel, T., Müller Steinhagen, H., 2007. Solar cooling with an ammonia/water absorption chiller. Proceedings of the 2nd International Conference Solar Air Conditioning, 18 19 October 2007, Tarragona, Spain, 536 541.
    [75] Sabatelli, V., Fiorenza, G., Marano, D., 2007. Technical status report on solar desalination and solar cooling. A technical report of the EU project“NEGST (New Generation of Thermal Solar Systems)”WP5.D1. In: http://www.swt technologie.de/html/publicdeliverables3.html, last accessed 15/01/2009.
    [76] Wang R Z, Ge T S, Chen C J, Ma Q, Xiong Z Q. Solar sorption cooling systems for residential applications : options and guidelines. International Journal of Refrigeration, Available online 13 February 2009.
    [77]徐士鸣.中压双效复叠吸收式制冷循环研究.大连理工大学学报. 2000年第40卷第3期.
    [78]徐士明,岳伟庭,冷振.单纯复叠吸收式制冷循环计算与分析.流体机械. 2008年第28卷第5期.
    [79]吳貽謙.熱能的輸送方法.科學月刊(台灣). 1976年6月78期.
    [80] Gershon Grossman, Abdi Zaltash, ABSIM—modular simulation of advanced absorption systems. International Journal of Refrigeration 2001; 24(6): 531 543.
    [81]江守利,程文龙,赵锐,陈则韶.无散热损失的热泵型供热系统研究.暖通空调HV&AC 2007年37卷12期.
    [82] Pátek J and Klomfar J. Simple functions of fast calculations of selected thermodynamic properties of the ammonia water system. International Journal of Refrigeration 1995; 18(4):228 234.
    [83] Sun D W. Thermodynamic design data and optimum design maps for absorption refrigeration systems.Applied Thermal Engineering 1997; 17(3):211 221.
    [84] Schultz S C G. Equations of state for the system ammonia water for use with computers. Progr. Refrig. Sci. Technol., Proc. 13th Int. Congr. Refrig. 1971, 2:231 236.
    [85] Xu F, Yogi Goswami D. Thermodynamic properties of ammonia water mixtures for power cycle applications. Energy 1999 4:525 536.
    [86] Barhoumi M, Snoussi A, Ben Ezzine N. Mejbri K, Bellagi A. Modélisation des données thermodynamiques du mélange ammoniac/eau. International Journal of Refrigeration 2004; 27:271 283.
    [87] Mejbri K, Bellagi A. Modelling of the thermodynamic properties of the water ammonia mixture by three different approaches. International Journal of Refrigeration 2006; 29:211 218.
    [88]廖健敏.氨水吸收式制冷GAX循环性能分析.硕士学位论文.东南大学2004.
    [89]王晓坡.新型吸收式制冷系统研究.硕士学位论文.河北工业大学2004.
    [90]李庆杨、王能超、易大义,数值分析,华东科技大学出版社,2004.
    [91]蔡增基,龙天渝.流体力学泵与风机(第四版),中国建筑工业出版社,1999.
    [92] Conde M. Thermodynamic properties of {NH3+H2} mixtures for the industrial design of absorption refrigeration equipment. M. CONDE ENGINEERING 2006. http://www.mrc eng.com/
    [93]杨思文,氨水吸收式制冷机的基础理论和设计(1 13) .流体工程1989 1990(专题).
    [94]杨世铭,陶文铨.传热学(第四版),高等教育出版社, 2006年.
    [95]陈敏恒,丛德滋等.化工原理(第三版),化学工业出版社, 2006年.
    [96]尾花英朗[日].热交换器设计手册(下册).石油工业出版社1982.
    [97] Reindert H, Wassenaar, Guus Segal. Numerical results of falling film absorption with water/ammonia. International Journal of Thermal Sciences 1999;38:960 964.
    [98] Jesse D Killion, Srinivas Garimella. A critical review of models of coupled heat and mass transfer in falling film absorption. International Journal of Refrigeration 2001; 24:755 797.
    [99] Marc Medrano, Mahmoud Bourouis, Horacio Perez Blanco, Alberto Coronas. A simple model for falling film absorption on vertical tubes in the presence of non absorbables. International Journal of Refrigeration 2003; 26:108 116.
    [100] Md Raisul Inslam, N E Wijeysundera, J C Ho. Simplified models for coupled heat and mass transfer in falling film absorbers. International Journal of Heat and Mass Transfer 2004; 47:395 406.
    [101] Isamu Fujita, Eiji Hihara. Heat and mass transfer coefficients of falling film absorption process. International Journal of Heat and Mass Transfer 2005; 48:2779 2786.
    [102] JoséFernández Seara, Jaime Sieres, Crist?bal Rodríguez, Manuel Vázquez. Ammonia water absorption in vertical tubular absorbers. International Journal of Thermal Sciences 2005; 44:277 288.
    [103] Niu Xiaofeng, Du Kai, Du Shunxiang. Numerical analysis of falling film absorption with ammonia water in magnetic field. Applied Thermal Engineering 2007; doi:10.1016/j.applthermaleng.2006.12.001
    [104] D S Kim, C A Infante Ferreira. Flow patterns and heat and mass transfer coefficients of low Reynolds number falling film flows on vertical plates: Effects of a wire screen and an additive. International Journal of Refrigeration 2008; 32:138 149.
    [105]机械设计手册编委会.机械设计手册·11:管道与管道附件.机械工业出版社, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700