用户名: 密码: 验证码:
河流海岸系统综合水动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波浪、潮流、波生流、河川径流等是河口海岸地区重要的水动力学现象。这些水动力学现象具有不同的时空尺度,但又相互作用、相互影响。建立一个实用的统一理论对这些现象及其相互作用进行描述是非常必要的,也是富有挑战性的。
     本论文将能精确地反映海域内波动流场的非线性和频散特性、可以应用到潮汐、风暴潮等对河口产生重要影响的近岸水动力模型和能够模拟河道内洪水演进等非恒定流问题的河道水动力学模型进行耦合,结合二维模型和一维模型各自的优势,建立了一个河流海岸系统综合水动力学模型。
     近岸水动力学模型基于改进的Boussinesq方程。模型中采用了Kennedy等人建议的[1]波浪破碎模型。数学模型的数值求解在交错网格上进行,时间步进采用ADI格式,离散后的方程组用追赶法求解。验证和应用的结果表明,基于Boussinesq方程的近岸水动力学模型具有强大的功能和良好的精度。不仅能够描述近岸波浪传播、变形乃至破碎等现象,同时也能描述波生流现象。
     河流水动力学模型基于Saint-Venant方程。数值方法采用了Preissman格式。验证和应用的结果表明,河道水动力学模型不仅能够精确地描述河道内孤立波的传播及碰撞,对于钱塘江涌潮的描述也具有非常高的精度。论文利用流量和水位的连续条件,实现了近岸水动力学模型及河道水
     动力学模型的耦合求解,建立了河流海岸综合水动力学模型。综合水动模型用于研究长江口及口内感潮河道径流与潮流的相互作用,涨潮及落潮过程中水流运动的基本规律。计算得到的各测站水位、流速及流向与观测资料吻合良好。
An integrated model for the study of river, estuarine, and coastal hydrodynamics is developed. The model consists of a two-dimensional component for coastal hydrodynamics and a one-dimensional component for river channel flows.
     The two-dimensional model for coastal hydrodynamics is based on the extended Boussinesq equations. A simple but effective model is introduced to represent the energy dissipation due to wave breaking and seabed friction. The model is applied to the computation of wave transformation and breaking over a submerged shoal, and of wave transformation around a detached breakwater. In both cases, the computational results are in good agreement with experimental data. The model is also shown to be valid for wave-induced currents. The excellent performance of the model is demonstrated as applied to the simulation of the rip current generated by waves propagating over a plane beach with two longshore bars separated by a narrow channel.
     The Saint-Venant equations are used as the governing equations of river hydrodynamics. They are also solved by the finite difference method. The model is verified by an analytic solution for the propagation and collision of solitary waves. It is also used to the computation of the tidal bore in Qiantang River, and the computational results are shown to agree well with measured data.
     The integrated model is used to study the interaction between the river flow and the tidal flow in the estuary of Yangtze River. The computational results are demonstrated to be in good agreement with the measured data.
引文
[1] Chen Q, Kirby J T, Dalrymple R A, et al. Boussinesq Modeling of Wave Transformation, Breaking, and Runup. II: 2D. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 48-56.
    [2]恽才兴.长江河口近期演变基本规律.北京:海洋出版社, 2004.
    [3]谷汉斌,孙精石,郑宝友等.近岸波浪数学模型的发展.水道港口, 2004, 25(02): 78-83.
    [4]李孟国,蒋德才.关于波浪缓坡方程的研究.海洋通报, 1999, 18(04): 70-92.
    [5]陶建华.水波的数值模拟.天津:天津大学出版社, 2005.
    [6]李孟国,王正林,蒋德才.关于波浪Boussinesq方程的研究.青岛海洋大学学报(自然科学版), 2002, 32(03): 345-354.
    [7] Boussinesq J. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal. Journal of Mathematiques Pures et Appliquees, 1872, 17(2): 55-108.
    [8] Peregrine D H. Long waves on a beach. Journal of Fluid Mechanics, 1967, 27(4): 815-827.
    [9] Witting J M. A Unified Model for the Evolution of Nonlinear Water Waves. Journal of Computational Physics, 1984, 56: 203-236.
    [10] Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal and Ocean Engineering, 1993, 119(6): 618-638.
    [11] Madsen P A, Murray R, Sorensen O R. A new form of Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 1991, 15: 371-388.
    [12] Abbott M B, McCowan A D, Warren I R. Accuracy of short wave numerical models. Journal of Hydraulic Engineering, 1984, 110(10): 1287-1301.
    [13] Madsen P A, Sorensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly varying bathymetry. Coastal Engineering, 1992, 18: 183-204.
    [14]张永刚.波浪折射-绕射及反射的数值模拟. [博士]大连理工大学,大连, 1995.
    [15]林建国,邱大洪,邹志利.新型Boussinesq方程的进一步改善.海洋学报,1998, 20(2): 113-129.
    [16] Wei G, Kirby J T, Grilli S T, et al. A fully nonlinear Boussinesq model for surface waves. PartⅠ. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 1995, 294: 71-92.
    [17] Gobbi M F, Kirby J T. A Fourth Order Boussinesq-Type Wave Model. Presented at Proceedings of the 25th International Coastal Engineering Conference. New York, 1996.
    [18] Gobbi M F, Kirby J T, Wei G. A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4. Journal of Fluid Mechanics, 2000, 405: 181-210.
    [19] Zou Z L. High order Boussinesq equations. Ocean Engineering, 1999, 26: 767-792.
    [20]邹志利.高阶Boussinesq水波方程.中国科学(E辑), 1997, 27(5): 460-473.
    [21] Zou Z L. A new form of higher order Boussinesq equations. Ocean Engineering, 2000, 27: 557-575.
    [22]邹志利.高阶Boussinesq水波方程的改进.中国科学(E辑), 1999, 29(1): 87-96.
    [23] Longuet-Higgins M S, Stewart R W. radiation stresses in water waves: a physical discussion with application. Deep Sea Research, 1964, 11(5): 529-562.
    [24]郑金海,严以新.波浪辐射应力理论的应用和研究进展.水利水电科技进展, 1999, 19(06): 5-7.
    [25] Chen Q, Dalrymple R A, Kirby J T, et al. Boussinesq modeling of a rip current system. Journal of Geophysical Research, 1999, 104: 20617-20637.
    [26]陶建华.波浪在岸滩上的爬高和破碎的数学模拟.海洋学报(中文版), 1984, 15(01): 107-118.
    [27] Haller M C, Dalrymple R A, Svendsen I A. Modeling rip currents and nearshore circulation. Presented at Ocean Wave Measurement and Analysis, VA., 1997.
    [28] Chen Q, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of longshore currents. Journal of Geophysical Research, 2003, 108(C11): 26-1—26-18.
    [29] Visser P J. Laboratory measurements of uniform longshore currents. Coastal Engineering, 1991, 15: 563-593.
    [30]李绍武.近海、近岸地区波浪变形及波生流系统数学模型理论与应用. [博士]横滨国立大学,日本, 1997.
    [31]李绍武,柴山知也.近岸区人工岛周围波生流系统数学模型的验证.天津大学学报(自然科学与工程技术版), 1998, 31(05): 582-587.
    [32] Chen Q, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of waves and Longshore Currents Under Field Conditions. presented at Proceedings of the 27th International Coastal Engineering Conference, Sydney, 2000.
    [33] Noda E K. Wave-induced nearshore circulation. Journal Of Geophysical Research, 1974, 79(27): 4097-4106.
    [34]曹祖德,王运洪.水动力泥沙数值模拟.天津:天津大学出版社, 1994.
    [35]杨国录.河流数学模型.北京:海洋出版社, 1993.
    [36]余常昭.水力学(下册).北京:高等教育出版社, 1996.
    [37]周雪漪.计算水力学.北京:清华大学出版社, 1995.
    [38]张二骏,顾再仁,姚志坚.不恒定流一、二维联解潮流计算(上).人民珠江, 1986,(5): 8-13.
    [39]张二骏,顾再仁,姚志坚.不恒定流一、二维联解潮流计算(下).人民珠江, 1986,(6): 16-19.
    [40]吴伟明,李义天.河道水流泥沙运动一维、二维模型嵌套及交界面连接问题.武汉水利电力学院学报, 1991, 24(5): 539-545.
    [41]张世奇.一、二维连接的河口冲淤数模.水利水电技术, 1997, 28(7): 14-18.
    [42]张修忠.河道及河口一维及二维嵌套泥沙数学模型.水利学报, 2001, 10: 82-87.
    [43]张华庆,范平,李华国等.一、二维连接水沙数学模型及在河口治理中的应用.水道港口, 2001, 22(3): 101-112.
    [44]张蔚.河网与河口地区耦合模型的研究与应用. [博士]河海大学,南京, 2006.
    [45] Kennedy A B, Chen Q, Kirby J T, et al. Boussinesq Modeling of Wave Transformation, Breaking, and Runup. I: 1D. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 39-47.
    [46] Sorensen O R, Schaffer H A, Madsen P A. Surf zone dynamics simulated by a Boussinesq type model. III. Wave-induced horizontal nearshore circulations. Coastal Engineering, 1998, 33(2-3): 155-176.
    [47] Zelt J A. The run-up of nonbreaking and breaking solitary waves. Coastal Engineering, 1991, 15: 205-246.
    [48] Kobayashi N, Karjadi E A, Johnson B D. Dispersion effects on longshore currents in surf zones. Oceanographic Literature Review, 1998, 45(1): 3.
    [49] Chen Q, Dalrymple R A, James T. Kirby, et al. Boussinesq modeling of a rip current system. Journal Of Geophysical Research, 1999, 104: 20617-20637.
    [50] Whitford D J, Thornton E B. Bed shear stress coefficients for longshore currentsover a barred profile. Coastal Engineering, 1996, 27(3-4): 243-262.
    [51]陆金甫,关治.偏微分方程数值解法.北京:清华大学出版社, 2004.
    [52] Kirby J T, Wei G, Chen Q, FUNWAVE1.0: fully Nonlinear Boussinesq Wave Model Documentation and User's Manual, Center for Applied Coastal Research Department of Civil Engineering University of Delaware, Newark 1998.
    [53] Wei G, Kirby J T. Time-dependent numerical code for the extended Boussinesq equations. J. Waterway, Port, Coastal and Ocean Eng, 1995, 121(5): 251-261.
    [54] Israeli M, Orszag S A. Approximation of radiation boundary conditions. Journal of Computational Physics, 1981, 41: 115-135.
    [55] Madsen P A, Sorensen O R, Schaffer H A. Surf zone dynamics simulated by a Boussinesq type model. Part II: surf beat and swash oscillations for wave groups and irregular waves. Coastal Engineering, 1997, 32: 289-319.
    [56] Carrier G F, Greenspan H P. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics, 1958, 4: 97-109.
    [57] Chawla A, Kirby J T, Wave transformation over a submerged shoal, Dept. of Civ. Eng., Delaware, CACR Report No.96-03, 1996.
    [58] Watanabe A, Maruyama K. Numerical Modeling of Nearshore Wave Field under Combined Refraction, Diffraction And Breaking. Coastal Engineering in Japan, 1986, 29: 19-39.
    [59] Nishimura H, Maruyama K, Sakurai T. On the numerical Computation of Nearshore Currents. Coastal Engineering in Japan, 1985, 28: 137-145.
    [60] Haller M C, Dalrymple R A, Svendsen I A. Experimental Modeling of a Rip Current System. presented at Proceedings of the Third International Symposiums on Ocean Wave Measurement and Analysis, VA., 1997.
    [61] Haller M C, Dalrymple R A, Svendsen I A. Experimental study of nearshore dynamics on a barred beach with rip channels. Journal Of Geophysical Research, 2002, 107(C6): 14-1 -- 14-21.
    [62] Delong L L, Thompson D B, Lee J K, The Computer Program Fourpt(Version 95.01)---A Model for Simulating One-Dimensional, Unsteady, Open-Channel Flow, U.S. GEOLOGICAL SURVEY 97-4016, 1997.
    [63] Korteweg D J, de Veris G. On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. Philos. Mag., 1895, 39: 422-443.
    [64]陈登远.孤子引论.北京:科学出版社, 2006.
    [65]王振东.孤立波与孤立子.力学与实践, 2005, 27: 86-88.
    [66]吴耀祖.水波动力学研究进展.力学进展, 2001, 31(3): 327-343.
    [67]万德成.用VOF法数值模拟孤立波迎撞及在后台阶上的演化.计算物理, 1998, 15(6): 655-666.
    [68]陈铭俊,陈仲英. RLW方程的Lagrange型二次广义搽粉法和双孤立波碰撞过程的数值模拟.应用数学与计算数学学报, 1993, 7(2): 21-32.
    [69]余锡平.一维明去非恒定流计算方法的改进. [硕士]水利水电工程系,清华大学,北京, 1986.
    [70]苏明德,徐昕,朱锦林, et al.数值模拟在钱塘江涌潮分析中的应用—1.数值计算方法.力学学报, 1999, 31(5): 521-532.
    [71]苏明德,徐昕,朱锦林, et al.数值模拟在钱塘江涌潮分析中的应用—2.计算结果和分析.力学学报, 1999, 31(6): 700-716.
    [72]曾剑.钱塘江河口建桥对涌潮的影响分析. [硕士]建筑工程学院,浙江大学,杭州, 2004.
    [73]祝丽丽.钱塘江潮流场及其对工程的复杂响应. [硕士]建筑工程学院,浙江大学,杭州, 2006.
    [74]穆锦斌,张小峰,谢作涛.摩阻对涌潮的影响.武汉大学学报(工学版), 2003, 38(1): 83-87.
    [75]吴伟明,李义天.河道水流泥沙运动一维、二维模型嵌套及交界面连接问题.武汉大学学报(工学版), 1991, 24(5): 539-545.
    [76]强娟.河网溃堤与溃堤波的一、二维耦合数值模拟. [硕士]环境学院,河海大学,南京, 2007.
    [77]王大国.港口非线性波浪耦合计算模型. [博士]大连理工大学,大连, 2005.
    [78]焦润红.河口围垦工程与一二维衔接数学模型的研究. [硕士]建筑工程学院,天津大学,天津, 2005.
    [79]薛海,孙东坡,赵宁.一个耦合数学模型及其在近海尾闾河段的应用.水动力学研究与进展, 2006, 21(1): 95-101.
    [80]朱建荣,三维有限体积河口海洋模式(FVCOM)在长江河口的应用,华东师范大学河口海岸国家重点实验室,上海2002.
    [81]黄惠明.长江河口盐水入侵一、二维数值计算研究. [硕士]海洋学院,河海大学,南京, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700