用户名: 密码: 验证码:
颗粒、晶须强韧化碳化硅陶瓷及在密封环中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅陶瓷具有比重小、硬度高、比强度高、耐磨、耐腐蚀、耐高温、抗热震性能良好等特点,被誉为第四代机械密封材料,广泛用于各类特殊工况条件下工业设备和装置的机械密封。目前,工业化生产的碳化硅陶瓷密封环主要采用反应烧结法制备;由于游离硅的存在,反应烧结碳化硅密封环的耐高温性、耐腐蚀性较差,力学性能偏低,对应用环境和工况条件有诸多限制。而对使用温度、耐腐蚀性能等要求较高的密封环则采用无压固相烧结法制备;该烧结方法制得的密封环硬度高、弹性模量大,但抗弯强度和断裂韧性依然较低,且摩擦系数较大,自身组对时磨损量大,在使用过程中的可靠性差,工作寿命较短;此外,该烧结方法还存在烧结温度高(最高达2300℃)、能耗大等问题,较高的生产成本限制了碳化硅密封环的推广应用。由此,国内外众多学者致力于研究低温液相烧结技术制备高强度、高韧性碳化硅陶瓷,并取得一定的成效。但目前低温液相烧结技术的研究基本处于实验室阶段,尚未见其应用于碳化硅密封环的工业化生产。
     本文以工业级碳化硅微粉为主要原料,采用无压液相烧结技术开展碳化硅陶瓷的强韧化研究,并应用于碳化硅密封环的工业生产。通过在SiC基体中引入力学性能优异的第二相材料提高其抗弯强度和断裂韧性,以石墨颗粒为添加剂改善SiC复合陶瓷的自润滑性能,实现了高性能SiC密封环的低成本生产。主要研究结果如下:
     (一)以纳米和微米SiC晶须、纳米SiC、SiB6、TiN颗粒作为第二相材料,系统研究了pH值、分散剂种类及其含量对第二相材料在水介质中分散的影响机制,考察了SiC复合料浆的流变特性、喷雾造粒及复合粉体的成型性能。研究结果表明:1)pH值对微米SiC晶须、纳米SiC晶须和纳米SiC颗粒的分散有一定影响,但随着沉降时间的延长,其影响逐渐变弱;2)六偏磷酸钠对五种第二相材料均具有良好的分散效果,在一定添加量和沉降时间下,第二相材料水基悬浮液的沉降高度均在94.0%以上,六偏磷酸钠主要以提高颗粒间的静电斥力来实现晶须或颗粒的分散;3)羧甲基纤维素钠对微米SiC晶须有很好的分散效果,其添加量为4.0wt%,沉降时间为22.0h,微米SiC晶须悬浮液的相对沉降高度为98.0%,羧甲基纤维素钠主要通过增大晶须表面的亲水性和提高晶须表面的电位绝对值实现分散;4)SiC基复合料浆呈现出剪切变稀特性,具有塑性流体的特征;喷雾造粒后,SiC复合造粒粉具有良好的流动特性和成型性能。
     (二)分别以纳米SiB6颗粒、微米ZrB2颗粒、纳米或微米SiC晶须、纳米SiC颗粒/微米SiC晶须、纳米TiN颗粒/微米SiC晶须为第二相材料,采用无压液相烧结技术,制备出SiC/nmSiB6、SiC/μmZrB2、SiC/μmSiCw、SiC/nmSiCw、SiC/nmSiC/μmSiCw、SiC/nmTiN/μmSiCw等六种SiC复合陶瓷,分析了第二相材料对碳化硅陶瓷力学性能的影响规律。研究结果表明:1)第二相材料对碳化硅陶瓷力学性能的影响与其自身材料特性、增强相组成、添加量、烧结制度有关,且对同一陶瓷材料的不同力学性能的影响规律也不尽相同;2)添加纳米SiB6颗粒总体上提高了碳化硅陶瓷的维氏硬度和断裂韧性,而添加微米ZrB2颗粒均能在一定程度上提高抗弯强度、维氏硬度、断裂韧性;3)微米和纳米SiC晶须对碳化硅陶瓷力学性能的影响随添加量增加和烧结温度升高具有不同的变化规律,综合而言,SiC晶须能明显提高碳化硅陶瓷的维氏硬度和断裂韧性,纳米SiC晶须添加量为10wt%时,维氏硬度可达33.6GPa,而微米SiC晶须添加量为30wt%时,断裂韧性可达8.4MPa·m1/2;4)同时引入纳米SiC颗粒和微米SiC晶须后,随着纳米SiC颗粒与微米SiC晶须质量比的增加,复合陶瓷的抗弯强度和维氏硬度总体上呈增加趋势,而断裂韧性则先降低后升高;5)同时引入纳米TiN颗粒和微米SiC晶须后,复合陶瓷的抗弯强度明显提高,而维氏硬度和断裂韧性随烧结温度的升高呈现不同的变化规律,添加2.5wt%纳米TiN颗粒和2.5wt%微米SiC晶须的复合陶瓷抗弯强度可达1123MPa,断裂韧性可达8.9MPa·m1/2。
     (三)结合SiC/nmSiB6、SiC/μmZrB2、SiC/μmSiCw、SiC/nmSiCw、SiC/nmSiC/μmSiCw、SiC/nmTiN/μmSiCw等SiC复合陶瓷的力学性能和显微结构,探讨了颗粒、晶须对碳化硅陶瓷的强韧化机制。研究结果表明:1)单独引入纳米SiB6、TiN、SiC和微米ZrB2颗粒时,颗粒通过对基体晶界的钉扎作用,来抑制复合陶瓷晶粒异常长大,形成晶粒尺寸细小、分布均匀的显微结构,降低了陶瓷中晶粒的临界缺陷尺寸;与基体间线膨胀系数失配所产生的残余应力,有效提高了强度;同时产生裂纹偏转和裂纹桥联,提高了断裂韧性;此外合理的晶粒级配改善了晶界结构,提高了强度;2)高长径比的微米和纳米SiC晶须引入后,在基体中产生裂纹偏转和裂纹桥联,提高了断裂韧性;其与基体间弹性模量差异导致的残余应力,有效提高了强度;同时陶瓷中存在的孔隙可以吸收能量,提高了断裂韧性;3)纳米TiN/微米SiC晶须、纳米SiC/微米SiC晶须同时引入,集成颗粒、晶须的增强增韧机制,产生了明显的协同效应,有效改善了碳化硅陶瓷的力学性能。
     (四)以石墨为润滑添加剂,初步探讨了石墨含量和烧结温度对SiC/石墨复合陶瓷的自润滑性能和力学性能的影响,并揭示了其自润滑机制。研究结果表明:1)随着石墨添加量的增加,SiC/石墨复合陶瓷的抗弯强度和维氏硬度不断降低,但摩擦系数也明显减小,当石墨含量为10wt%、烧结温度为1850℃,碳化硅陶瓷的摩擦系数由未添加的0.46降至0.21,显示了良好的自润滑性能;2)含石墨碳化硅陶瓷密封材料的自润滑机制主要为片状结构石墨的低摩擦、自润滑特性可以改善碳化硅密封环的自润滑性能;其次,脱落的石墨磨屑部分粘附于密封端面,部分破碎、细化后粘附于其他硬性磨粒表面形成保护层,隔绝了磨粒与端面或密封端面之间的直接接触,从而改善碳化硅密封环的摩擦性能。
     (五)借助工业生产设备及工艺技术,采用无压液相烧结技术,生产出高强度、高韧性或自润滑性能优异的碳化硅陶瓷密封环,并取得一定的经济效益和社会效益。研究结果表明:1)生产出同时含2.5wt%微米SiC晶须和2.5wt%纳米TiN颗粒的碳化硅复合陶瓷密封环,其抗弯强度和断裂韧性远高于该公司现有密封产品,其他性能可以满足使用需求;2)生产出含石墨碳化硅陶瓷密封环,其摩擦系数低于现有产品,力学性能虽低于现有产品,但能够满足行业标准;3)两种新型碳化硅陶瓷密封环的崩口率低、可加工性能良好、产品报废率低、成品率高,可节约能耗20%-30%。
Silicon carbide ceramic has been widely used in the mechanical sealing of industrial equipments used in all kinds of special conditions, which has become the fourth mechanical seals because of its low weight, high strength, high hardness, resistance to abrasion and corrosion, good chemical stability and so on. The present industrial silicon carbide seals are mainly prepared by reaction-bonding method, which can not be used in some complicated conditions because of their low high-temperature resistance, abrasion resistance and mechanical properties. Seals with excellent mechanical properties and good corrosion resistance are produced by solid state pressureless sintering, and have high hardness and elastic modulus. However, their flexural strength and fracture toughness are still not high enough and they are easy to wear due to high friction coefficient and low self-lubrication, which reduces their reliability and working life. In addition, solid state pressureless sintering needs a temperature as high as 2300℃and a large amount of energy, which raises the cost and restricts the extension of use of silicon carbide seals. A large number of scholars have studied silicon carbide ceramics prepared by liquid phase pressureless sintering, but industrial liquid phase sintered silicon carbide seals are hardly reported.
     With industrial silicon carbide powders as matrix, liquid phase pressureless sintering was applied in the manufacutre of silicon carbide seals. The paper focused on the preparation of silicon carbide ceramics reinforced by particles or/and whiskers and their application in silicon carbide seals. The secondary phases with high mechanical properties were added to improve the flexural strength and fracture toughness of silicon carbide ceramics. In addition, self-lubricating graphite was also added to improve the friction properties of silicon carbide ceramics. Silicon carbide seals with high performances were produced by industrial producing process with a low cost. The main results are as follows:
     Nanometer and micrometer SiC whiskers, SiC nanoparticles. SiB6 nanoparticles. TiN nanoparticles were used as the secondary materials, and the effects of pH value, the kind and amount of dispersants on the dispersion of the secondary materials in aqueous media and the rheology and spray-drying of silicon carbide composite slurry were investigated. The results showed:(1) pH value has an effect on the dispersion of SiC nanoparticles, nanometer and micrometer SiC whiskers, but the effects of pH value disappeared when the sedimentation time lasted longer. (2) Sodium polyphosphate could disperse the secondary materials mentioned above, and the relative sedimentation height was all above 94.0% when its content was appropriate. The main mechanism of sodium polyphosphate was improving the static electricity among whiskers. (3) Carboxyl methyl cellulose sodium could disperse micrometer SiC whiskers effectively. When the content of carboxyl methyl cellulose sodium was 4.0wt% and the sedimentation time was 22.0 hours, the relative sedimentation height of micrometer SiC whiskers was 98.0% and the dispersion modes of carboxyl methyl cellulose were increasing the hydrophilicity and zeta potential of micrometer SiC whiskers. (4) Silicon carbide composite slurry showed a shear thinning rheology. which had the characteristics of pseudoplastic fluid. Silicon carbide composite granules were prepared by spray-drying and had a good flow characteristics and forming properties.
     Six kinds of materials were used as the secondary phases, which were SiB(, nanoparticles, micrometer ZrB2 particles, nanometer or micrometer SiC whiskers, SiC nanoparticles as well as micrometer SiC whiskers, TiN nanoparticles as well as micrometer SiC whiskers. SiC/nmSiB6, SiC/μmZrB2, SiC/μmSiCw, SiC/nmSiCw, SiC/nmSiC/μmSiCw, SiC/nmTiN/μmSiCw composite ceramics were prepared using liquid phase pressureless sintering, and the effects of the secondary phases on silicon carbide ceramics were investigated. The results showed:(1) Effects of the secondary phases on silicon carbide ceramics depended on the composition and properties of the secondary materials and the processing conditions. (2) The addition of SiB6 nanoparticles and micrometer ZrB2 particles can improve Vickers hardness and fracture toughness of silicon carbide composites, while ZrB2 could also improve flexural strength. (3) Effects of nanometer and micrometer SiC whiskers on silicon carbide ceramics varied with their contents and sintering temperature. When the content of micrometer SiC whiskers was 30wt%, the maximum fracture toughness was 8.4MPa·m1/2. When the content of nanometer SiC whiskers was 10wt%, Vickers hardness was 33.6GPa, which was maximum. (4) When both SiC nanoparticles and micrometer SiC whiskers were added, flexural strength and Vickers hardness of SiC/nmSiC/μmSiCw composites increased with the increase of the mass ratio of SiC nanoparticles to micrometer SiC whiskers, while fracture toughness decreased firstly and increased then. (5) When TiN nanoparticles as well as micrometer SiC whiskers were added, flexural strength of SiC/nmTiN/μmSiCw composites increased obviously while Vickers hardness and fracture toughness varied with the increase of temperature. SiC/nmTiN/μmSiCw composite with 2.5wt% TiN nanoparticles and 2.5wt% micrometer SiC whiskers had the highest flexural strength and fracture toughness. which were 1123MPa and 8.9MPa-m1/2 respectively.
     The strengthening and toughening mechanisms of silicon carbide ceramics by particles or/and whiskers were investigated on the basis of the above experiments. The results showed:(1) The strengthening and toughening mechanisms of SiB6 nanoparticles, TiN nanoparticles, SiC nanoparticles and micrometer ZrB2 particles to silicon carbide ceramics were as follows:1) Inhibiting the normal growth of grains by the pinning effect of these particles to the grain boundaries of the matrix, which was beneficial for homogeneous microstructure with fine grains.2) The residual stress induced by the differences of linear expansion coefficients between these particles and silicon carbide matrix strengthened the ceramics.3) Crack deflection and crack bridging improved fracture toughness.4) Reasonable aggregate gradation of grains improved the microstructure of grain boundary, which lead to the improvement of flexural strength. (2) The strengthening and toughening mechanisms of nanometer and micrometer SiC whiskers were as follows:1) Crack deflection and crack bridging improved fracture toughness.2) The residual stress induced by the differences of elastic modulus between silicon carbide whiskers and silicon carbide matrix improved flexural strength.3) The pores in ceramics could absorb some fracture energy. (3) When TiN or SiC nanoparticles as well as micrometer SiC whiskers were added at the same time, the synergistic effects of the strengthing and toughening mechanisms of nanoparticles and whiskers could be obtained, which improved the mechanical properties of silicon carbide ceramics effectively.
     With graphite as lubricant, SiC/graphite composite ceramics were prepared and effects of graphite content and sintering temperature on the self-lubrication and mechanical properties of the composites were investigated. Self-lubricating mechanisms were analyzed. The results showed that:(1) Flexural strength and Vickers hardness of SiC/graphite composites decreased with the increase of graphite content, while frictional coefficient also decreased. When the content of graphite was 1 Owt% and the sintering temperature was 1850℃, the frictional coefficient decreased from 0.46 (without graphite) to 0.21, which indicated good self-lubrication. (2) The self-lubricating mechanisms of graphite to silicon carbide ceramics were as follows:1) Some graphite separated from ceramic matrix attached to the frictional surface and the self-lubricating property of seals was improved by the structure of graphite.2) The graphite particles were broken into tiny pieces and they formed a layer on the surface of seal faces, which were separated from each other, and frictional properties were improved.
     Silicon carbide seals with excellent mechanical or self-lubricating properties were industrially produced using liquid phase pressureless sintering, and some economic and social profits were obtained. The results showed that:1) Silicon carbide seals with 2.5wt% micrometer SiC whiskers as well as 2.5wt% TiN nanoparticles had much higher flexural strength and fracture toughness than the present seals. Friction coefficient of the one with 10wt% graphite was lower than that of the present products. Although their mechanical properties were relatively lower, they could meet the standard of mechanical seals.2) The machining properties and producing efficiency of the two kinds of new seals were improved, and 20%~30% energy was saved.
引文
[1]N. Xiao, and M. M. Khonsari. Thermal Performance of Mechanical Seals with Textured Side-Wall. Tribology International,2012,45 (1):1-7.
    [2]C. J. Liao, W. F. Huang, Y. M. Wang, S. F. Suo, and X. F. Liu. Optimization Design for Mechanical Seals in Reactor Coolant Pumps Based on a Fluid-Solid Strong-Interaction Model. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2011,225 (C8):1851-1862.
    [3]Z. Wu, Z. Wang, G. Shi, and J. Sheng. Effect of Surface Oxidation on Thermal Shock Resistance of the ZrB2-SiC-ZrC ceramic. Composites Science and Technology,2011,71 (12): 1501-1506.
    [4]Y. Ishimine, and K. Takigawa. Slider for Mechanical Seal Ring of Shaft Seal Apparatus of Pump for Fish Preserves, Has Compact with Ratio of Air Holes of Specific Roundness and Diameter, to All Air Holes of Preset Diameter Set to Specific Range. Japan: JP2008542144-X,2010-02-15.
    [5]E. Buet, C. Sauder, S. Poissonnet, P. Brender, R. Gadiou, and C. Vix-Guterl. Influence of Chemical and Physical Properties of the Last Generation of Silicon Carbide Fibres on the Mechanical Behaviour of SiC/SiC Composite. Journal of the European Ceramic Society. 2012,32 (3):547-557.
    [6]R. Dhiman, K. Rana, E. Bengu, and P. Morgen. Synthesis, Characterization, and Wear and Friction Properties of Variably Structured SiC/Si Elements Made from Wood by Molten Si Impregnation. Journal of the European Ceramic Society,2012,32 (5):1105-1116.
    [7]J. H. Eom, Y. W. Kim, and I. H. Song. Effects of the Initial Alpha-SiC Content on the Microstructure, Mechanical Properties, and Permeability of Macroporous Silicon Carbide Ceramics. Journal of the European Ceramic Society,2012,32 (6):1283-1290.
    [8]S. S. Kumar, M. Devaiah, V. S. Bai, and T. Rajasekharan. Mechanical Properties of SiCp/Al2O3 Ceramic Matrix Composites Prepared by Directed Oxidation of an Aluminum Alloy. Ceramics International,2012.38 (2):1139-1147.
    [9]W. S. Yang, L. Fuso, S. Biamino, D. Vasquez, C. V. Bolivar, P. Fino, and C. Badini. Fabrication of Short Carbon Fibre Reinforced SiC Multilayer Composites by Tape Casting. Ceramics International,2012,38 (2):1011-1018.
    [10]Y. M. Zhang, S. Li, J. C. Han, and Y. F. Zhou. Fabrication and Characterization of Random Chopped Fiber Reinforced Reaction Bonded Silicon Carbide Composite. Ceramics International,2012,38 (2):1261-1266.
    [11]R. S. Kumar, D. Sivakumar, K. Venkateswarlu, and A. S. Gandhi. Mechanical Behavior of Molybdenum Disilicide Reinforced Silicon Carbide Composites. Scripta Materialia,2011,65 (9):838-841.
    [12]L. M. Liu. F. Ye, X. L. He, and Y. Zhou. Synthesis of Alpha-SiC/Alpha-SiAlON Composites by Spark Plasma Sintering:Phase Formation and Microstructures Development. Journal of the European Ceramic Society,2011,31 (12):2129-2135.
    [13]王昕,孙康宁,尹衍升,候耀永,周玉.纳米复合陶瓷材料研究进展.复合材料学报,1999,(01):106-111.
    [14]杨辉,张大海,葛曼珍,彭红.纳米复合陶瓷研究进展.陶瓷学报,1998,(01):48-52.
    [15]高濂,靳喜海,郑珊.纳米复相陶瓷.北京:化学工业出版社,2004.
    [16]李缨.碳化硅晶须及其陶瓷基复合材料.陶瓷,2007,(08):39-42.
    [17]王双喜,雷延权,林光涌,周玉.碳化硅晶须增强氧化锆复相陶瓷材料的组织观察.中国陶瓷,1998,(02):10-12.
    [18]聂立芳,张玉军,魏红康.碳化硅晶须增韧陶瓷基复合材料的研究进展.山东陶瓷,2006,(02):16-19.
    [19]李绍纯,戴长虹.碳化硅颗粒、晶须、晶片增韧陶瓷复合材料的研究现状.硅酸盐通报,2004,(06):63-65.
    [20]穆柏春.陶瓷材料的强韧化.北京:冶金工业出版社,2002.
    [21]李云凯,周张健.陶瓷及其复合材料.北京:北京理工大学出版社,2007.
    [22]X. H. Zhang, L. Xu, W. B. Han, L. Weng, J. C. Han, and S. Y. Du. Microstructure and Properties of Silicon Carbide Whisker Reinforced Zirconium Diboride Ultra-high Temperature Ceramics. Solid State Sciences,2009,11 (1):156-161.
    [23]X. H. Zhang, L. Xu, S. Y. Du, W. B. Han, and J. C. Han. Crack-healing Behavior of Zirconium Diboride Composite Reinforced with Silicon Carbide Whiskers. Scripta Materialia, 2008,59(11):1222-1225.
    [24]J. M. Ma, F. Ye, Y. G. Cao, C. F. Liu, and H. J. Zhang. Microstructure and Mechanical Properties of Liquid Phase Sintered Silicon Carbide Composites. Journal of Zhejiang University-Science A,2010,11 (10):766-770.
    [25]L. M. Liu, F. Ye. Y. Zhou, and Z. G. Zhang. Microstructure Compatibility and its Effect on the Mechanical Properties of the Alpha-SiC/beta-Si3N4 Co-reinforced Barium Aluminosilicate Glass Ceramic Matrix Composites. Scripta Materialia,2010,63 (2): 166-169.
    [26]S. N. Ivicheva, Y. F. Kargin, A. S. Lysenkov, and O. V. Baranova. Microstructure and Properties of SiC-Whisker-Reinforced Si3N4 Ceramics with Calcium Aluminate Additions. Inorganic Materials,2010,46 (9):942-947.
    [27]Y. F. Hua, L. T. Zhang, L. F. Cheng, Z. X. Li, and J. H. Du. Microstructure and Mechanical Properties of SiC(p)/SiC and SiC(w)/SiC Composites by CVI. Journal of Materials Science, 2010,45 (2):392-398.
    [28]黄勇,汪长安.高性能多相复合陶瓷.北京:清华大学出版社,2008.
    [29]陆祖标.碳化硅密封材料的研制.流体工程,1984,(02):14-16.
    [30]俞立.机械密封摩擦副的新型材料——碳化硅.流体工程,1987,(03):33-38+65.
    [31]谭寿洪.机械密封用高性能碳化硅陶瓷的无压烧结研究进展.流体机械,2005,(02):9-13.
    [32]陈世兴.碳化硅及其作为机械密封材料的应用.中国陶瓷,1989,(02):61.
    [33]江东亮.精细陶瓷材料.北京:中国物资出版社,2000.
    [34]肖汉宁,高朋召.高性能结构陶瓷及其应用.北京:化学工业出版社,2006.
    [35]杜丕一,潘颐.材料科学基础.北京:中国建材工业出版社,2002.
    [36]张宁,茹红强,才庆魁,SiC粉体制备及陶瓷材料液相烧结.北京:化学工业出版社,2008.
    [37]丘泰,龚亦农,徐洁,李远强.碳热还原法低温合成SiC粉末的研究.江苏陶瓷,2001,(02):12-15.
    [38]郭兴忠,杨介更,王建武,曹明,高黎华,傅培新,杨辉.流化床对撞式气流粉碎制备SiC超微粉.材料科学与工程学报,2003,(06):813-816.
    [39]郭兴忠,杨辉,王建武,曹明.聚乙二醇表面改性SiC粉体的物性表征.材料工程,2004,(03):7-10.
    [40]R. A. Cutler, K. M. Rigtrup, and A. V. Virkar. Synthesis, Sintering, Microstructure, and Mechanical Properties of Ceramics Made by Exothermic Reactions. Journal of the American Ceramic Society,1992,75 (1):36-43.
    [41]杨晓云,黄震威,吴玉琨,叶恒强.球磨Si,C混合粉末合成纳米SiC的高分辨电镜观察.金属学报,2000,(07):684-688.
    [42]V. Raman,O. Bahl, and U. Dhawan. Synthesis of Silicon Carbide through the Sol-Gel Process from Different Precursors. Journal of Materials Science,1995,30 (10):2686-2693.
    [43]Y. M. Chiang, R. P. Messner, C. D. Terwilliger, and D. R. Behrendt. Reaction-Formed Silicon Carbide. Materials Science and Engineering:A,1991,144 (1):63-74.
    [44]金钦汉.微波化学.北京:科学技术出版社,1999.
    [45]俞肇元,贺春林,张滨,刘常升,国玉军,才庆魁.激光制备碳化硅纳米粉的研究.粉末冶金技术,2001,(03):162-164.
    [46]陈祖熊,王坚.精细陶瓷-理论与实践.北京:化学工业出版社,2005.
    [47]王树海,李安明,乐红志.先进陶瓷的现代制备技术.北京:化学工业出版社,2007.
    [48]P. A. Lessing, A. W. Erickson, and D. C. Kunerth. Thermal Cycling of Siliconized-SiC at High Temperatures. Journal of Materials Science,2001,36 (6):1389-1394.
    [49]E. Gugel. Sintering of Silicon Carbide.1986.
    [50]王守平,孙俊才.热压碳化硅耐磨复合材料的研究.陶瓷研究与职业教育,2006,(02):45-46.
    [51]J. A. Coppola, L. N. Hailey, and C. H. McMurtry. Sintered Alpha Silicon Carbide Ceramic Body Having Equiaxed Microstructure.1979.
    [52]Y. Zhou, H. Tanaka, S. Otani, and Y. Bando. Low-Temperature Pressureless Sintering of Alpha-SiC with A14C3-B4C-C Additions. Journal of the American Ceramic Society,1999,82 (8):1959-1964.
    [53]S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz. Pressureless Sintering of ZrB2-SiC Ceramics. Journal of the American Ceramic Society,2008,91(1):26-32.
    [54]C. Blanc, F. Thevenot, and D. Goeuriot. Microstructural and Mechanical Characterization of SiC-Submicron TiB2 composites. Journal of the European Ceramic Society,1999,19 (5): 561-569.
    [55]R. M. German. Liquid Phase Sintering. New York:Plenum Press,1985.
    [56]M. A. Mulla, and V. D. Krstic. Low Temperature Pressureless Sintering of β-Silicon Carbide with Aluminum Oxide and Yttrium Oxide Additions. J. Am. Ceram. Soc.1991,70 (3): 439-443.
    [57]A. Samanta, K. Dhargupta, A. De, and S. Ghatak. SiC-YAG Sintered Composites from Hydroxy Hydrogel Powder Precursors. Ceramics international,2000,26 (8):831-838.
    [58]E. M. Levin, and H. F. McMurdie. Phase Diagrams for Ceramists, Supplement.1975.
    [59]S. K. Lee, and C. H. Kim. Effects of α-SiC Versus β-SiC Starting Powders on Microstructure and Fracture Toughness of SiC Sintered with Al2O3-Y2O3 Additives. Journal of the American Ceramic Society,1994,77(6):1655-1658.
    [60]Y. W. Kim, M. Mitomo, and T. Nishimura. High-Temperature Strength of Liquid-Phase-Sintered SiC with AlN and Re2O3(Re=Y,Yb). Journal of the American Ceramic Society,2002,85 (4):1007-1009.
    [61]T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud. Effect of Weight Loss on Liquid-Phase-Sintered Silicon Carbide. Journal of the American Ceramic Society,1997,80 (4):1047-1052.
    [62]黄政仁,谭寿洪,江东亮,赵诚宰.原位增韧SiC-YAG复相陶瓷的致密化.无机材料学报,1999,(05):726-732.
    [63]谭寿洪,陈忠明,江东亮.液相烧结SiC陶瓷.硅酸盐学报,1998,(02):65-71.
    [64]赵珍,何新波,曲选辉,张勇.SPS制备碳化硅陶瓷的研究.粉末冶金工业,2007,(03):28-32.
    [65]张勇,何新波,曲选辉,孔祥磊,段柏华.放电等离子烧结工艺制备致密碳化硅陶瓷.机械工程材料,2008,(03):45-47+51.
    [66]S. Mandal, A. Seal, S. Dalui, A. Dey, S. Ghatak, and A. Mukhopadhyay. Mechanical characteristics of microwave sintered silicon carbide. Bulletin of Materials Science,2001.24 (2):121-124.
    [67]A. Morancais, F. Louvet, D. S. Smith, and J. P. Bonnet. High Porosity SiC Ceramics Prepared via a Process Involving an SHS Stage. Journal of the European Ceramic Society, 2003,23(11):1949-1956.
    [68]谢茂林,罗德礼,鲜晓斌,冷邦义,谢东华,鲁伟员.高温超高压烧结纳米SiC的研究.无机材料学报,2008,(04):811-814.
    [69]熊昆,徐光亮,李冬梅.SiC复相陶瓷的强化增韧趋势.稀有金属,2008,(01):101-106.
    [70]邬国平,谢方民,徐斌.流体密封用碳化硅陶瓷增韧技术研究进展.流体机械,2006,(11):34-39.
    [71]张玉军,张伟儒.结构陶瓷材料及其应用.北京:化学工业出版社,2005.
    [72]I. A. Chou, H. M. Chan, and M. P. Harmer. Machining-Induced Surface Residual Stress Behavior in Al2O3/SiC Nanocomposites. Journal of the American Ceramic Society,1996,79 (9):2403-2409.
    [73]Y. K. Jeong, A. Nakahira, P. E. D. Morgan, and K. Niihara. Effect of Milling Conditions on the Strength of Alumina-Silicon Carbide Nanocomposites. Journal of the American Ceramic Society,1997,80 (5):1307-1309.
    [74]韩亚苓,线全刚,蒋玉齐,战可涛,李家麟,梁勇.无压烧结A1203/SiC纳米复相陶瓷的研究.硅酸盐学报,2001,(01):76-79.
    [75]佘继红,江东亮,谭寿洪,郭景坤.碳化硅陶瓷及其复合材料的热等静压烧结研究.无机材料学报,1996,(04):646-652.
    [76]李海淼.SiC/纳米TiN复合浆料特性及复相陶瓷制备[硕士学位论文].杭州:浙江大学材料系,2008.
    [77]马奇. SiC-AIN水基料浆喷雾干燥及复相陶瓷的制备[硕士学位论文].杭州:浙江大学材料系,2007.
    [78]朱潇怡.纳米TiN/SiCw增强碳化硅陶瓷的制备[硕士学位论文].杭州:浙江大学材料系,2011.
    [79]E. Fitzer, and R. Gadow. Fiber-Reinforced Silicon Carbide. American Ceramic Society Bulletin,1986,65 (2):326-335.
    [80]X. B. He, and H. Yang. Preparation of SiC Fiber-Reinforced SiC Composites. Journal of materials processing technology,2005,159(1):135-138.
    [81]N. Igawa, T. Taguchi, T. Nozawa, L. Snead, T. Hinoki, J. McLaughlin, Y. Katoh, S. Jitsukawa, and A. Kohyama. Fabrication of SiC Fiber Reinforced SiC Composite by Chemical Vapor Infiltration for Excellent Mechanical Properties. Journal of Physics and Chemistry of Solids,2005,66 (2-4):551-554.
    [82]J. S. Lee, M. Imai, and T. Yano. Fabrication and Mechanical Properties of Oriented SiC Short-Fiber-Reinforced SiC Composite by Tape Casting. Materials Science and Engineering: A,2003,339(1):90-95.
    [83]J. S. Lee, and T. Yano. Fabrication of Short-Fiber-Reinforced SiC Composites by Polycarbosilane Infiltration. Journal of the European Ceramic Society,2004,24 (1):25-31.
    [84]S. Jacques, A. Lopez-Marure, C. Vincent, H. Vincent, and J. Bouix. SiC/SiC Minicomposites with Structure-Graded BN Interphases. Journal of the European Ceramic Society,2000,20 (12):1929-1938.
    [85]Y. Katoh, A. Kohyama, T. Hinoki, W. Yang, and W. Zhang. Mechanical Properties of Advanced SiC Fiber-Reinforced CVI-SiC Composites.2000:399-406.
    [86]K. Ozawa, T. Nozawa, Y. Katoh, T. Hinoki, and A. Kohyama. Mechanical Properties of Advanced SiC/SiC Composites after Neutron Irradiation. Journal of nuclear materials,2007, 367:713-718.
    [87]S. Lee. Y. Katoh. J. Park, S. Dong, A. Kohyama, S. Suyama, and H. Yoon. Microstructural and Mechanical Characteristics of SiC/SiC Composites with Modified-RS Process. Journal of nuclear materials,2001,289(1):30-36.
    [88]何柏林,孙佳.碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用.硅酸盐通报,2009,(06):1197-1202+1207.
    [89]邹世钦,张长瑞,周新贵,曹英斌.碳纤维增强SiC陶瓷复合材料的研究进展.高科技纤维与应用,2003,(02):15-20.
    [90]徐永东,张立同,成来飞,朱文超.CVI法制备三维碳纤维增韧碳化硅复合材料.硅酸盐 学报,1996,(05):4-9.
    [91]王毅强,张立同,成来飞,王波.纤维表面处理对单向C/SiC复合材料拉伸强度的影响.固体火箭技术,2007,(06):534-536+540.
    [92]徐永东,张立同,成来飞,韩金探.CVI法制备连续纤维增韧陶瓷基复合材料.硅酸盐学报,1995,(03):319-326.
    [93]李秀华,杨正方,谈家琪,袁启明.SiC晶须(A1203纤维)对氧化锆增韧莫来石陶瓷力学行为的影响.无机材料学报,1990,(01):55-60.
    [94]李志宏,朱玉梅,卫冰.SiC晶须补强莫来石基陶瓷复合材料的研究.金刚石与磨料磨具工程,1997,(04):17-21.
    [95]彭晓峰,黄校先,张玉峰.碳化硅晶须补强氧化铝复合材料的制备及其力学性能.无机材料学报,1998,(04):469-476.
    [96]聂立芳,张玉军,魏红康.碳化硅晶须增韧陶瓷基复合材料的研究进展.山东陶瓷,2006,(02):16-19.
    [97]王东方,郦剑,毛志远.碳化硅晶须增韧氮化硅瓷的冲蚀磨损研究.浙江大学学报(自然科学版),1996,(01):1-6.
    [98]汪长安,黄勇,郭海,徐利华,李建保.定向排布的SiC晶须补强Si3N4复合材料的制备.硅酸盐学报,1997,(01):56-62.
    [99]张玉峰,黄校先,郭景坤,李包顺.SiC晶须补强Si3N4复合材料的研究.无机材料学报,1992,(03):329-333.
    [100]周元康,何锋.SiC陶瓷密封材料的性能分析.贵州工学院学报,1993,(04):67-73.
    [101]李志强,李祥云,马奇,辛玲,王西.喷雾造粒技术在反应烧结SiC密封材料中的应用研究.流体机械,2007,(07):40-43.
    [102]陈智慧,李江涛,胡章贵,徐久军.两步烧结法合成钇铝石榴石透明陶瓷.无机材料学报,2008,(01):130-134.
    [103]朱孔军,王道利,邵斌,裘进浩,季宏丽.用两步烧结法制备(K(0.48-x)Na(0.52))(Nb(0.95-x)Sb(0.07))O(3-x)LiTaO3无铅压电陶瓷.硅酸盐学报,2011,(12):1928-1933.
    [104]束德林.工程材料力学性能.北京:机械工业出版社,2003.
    [105]金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000.
    [106]K. Niihara, R. Morena, and D. Hasselman. Evaluation of Klc of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios. Journal of Materials Science Letters, 1982,1 (1):13-16.
    [107]高廉,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社,2003.
    [108]王成文,戴长虹,刘昌明,时春华.SiC晶须的分散研究.苏州科技学院学报(工程技术版),2007,(02):67-69+74.
    [109]夏启斌,李忠,邱显扬,戴子林.六偏磷酸钠对蛇纹石的分散机理研究.矿冶工程,2002,(02):51-54.
    [110]丁浩,崔林.六偏磷酸钠在金红石与硅钙质矿物浮选分离中的作用机理.有色金属,1991,(04):33-40.
    [111]邱海霞,于九皋,林通.羧甲基纤维素钠蒙脱土纳米复合膜的制备及性能.高分子学报,2004,(03):419-423.
    [112]张燕兴,叶君,熊犍.红外光谱测定羧甲基纤维素钠的羧基含量.造纸科学与技术,2010,(01):71-75.
    [113]张为,姚素英,刘艳艳,王涌萍,阎富兰,田莉萍,牛秀文.四甲基氢氧化铵在MEMS中的应用.微电子学,2001,(06):422-424.
    [114]李海淼,郭兴忠,朱潇怡,杨辉,高黎华TMAH对TiN纳米粉体分散行为的影响.无机化学学报,2008,(03):456-460.
    [115]陈永熙,周毅,付黄埔,李凝芳.SiC晶须-氮化铝分散工艺的研究.武汉工业大学学报,1994,(03):95-98.
    [116]黄政仁,李雨林,江东亮,谭寿洪.分散工艺对复合材料性能的影响.无机材料学报,1993,(02):214-220.
    [117]无机材料科学基础.武汉:武汉理工大学出版社,2003.
    [118]张国军,邹冀,倪德伟,刘海涛,阚艳梅.硼化物陶瓷:烧结致密化、微结构调控与性能提升.无机材料学报,2012,(03):225-233.
    [119]程干超.六硼化硅单晶生长.人工晶体学报,1990,(02):109-113.
    [120]王新刚,刘吉轩,阚艳梅,张国军,王佩玲.ZrB2-SiC陶瓷的注浆成型与无压烧结.无机材料学报,2009,(04):831-835.
    [121]R. German, and Z. Munir. Enhanced Low-Temperature Sintering of Tungsten. Metallurgical and Materials Transactions A,1976,7(11):1873-1877.
    [122]X. Guo, and H. Yang. Sintering and Microstructure of Silicon Carbide Ceramic with Y3Al5O12 Added by Sol-Gel Method. Journal of Zhejiang University Science,2005, (03): 60-65.
    [123]X. J. Zhou, G. J. Zhang, Y. G. Li, Y. M. Kan, and P. L. Wang. Hot Pressed ZrB2-SiC-C Ultra High Temperature Ceramics with Polycarbosilane as a Precursor. Materials Letters, 2007,61 (4):960-963.
    [124]安征,郭梦熊.SiC晶须特性对复合材料力学性能的影响.材料工程,1995,(12):28-31.
    [125]P. F. Becher, C. H. HSUEH, P. Angelini, and T. N. Tiegs. Toughening Behavior in Whisker-Reinforced Ceramic Matrix Composites. Journal of the American Ceramic Society, 1988,71 (12):1050-1061.
    [126]王景,张立同,成来飞,华云峰.SiC晶须增韧SiC mini复合材料的制备与性能分析.航空材料学报,2009,(01):68-71.
    [127]李秀华,杨正方,谈家琪,袁启明.SiC晶须(A12O3纤维)对氧化锆增韧莫来石陶瓷力学行为的影响.无机材料学报,1990,(01):55-60.
    [128]薛玉娥,林香祝,陈仁悟.氮化钛涂层的磨损特性.稀有金属材料与工程,1990,(02):42-46.
    [129]胡初潜.等离子氮化钛和Cr17Ni2钢的腐蚀特性.稀有金属,1996,(03):241.
    [130]冷先锋.不同晶粒尺寸LiTaO3韧化A1203陶瓷的微观结构和性能研究.2010.
    [131]周咏辉,艾兴,赵军,袁训亮,薛强. Al2O3/(W,Ti)C纳米复合陶瓷材料的力学性能与强 韧化机理.山东大学学报(工学版),2008,(01):1-4+27.
    [132]张大海,杨辉,阚红华,翁文剑,葛曼珍,余瑞莲.Al2O3/SiC(p)复合陶瓷力学性能研究.浙江大学学报(自然科学版),1997,(05):22-29.
    [133]朱爱武,张喜燕,唐锋林.纳米金属材料的强度与晶粒尺寸的关系.热处理技术与装备,2007,(02):17-19+24.
    [134]S. Tanaka, N. Fukushima, J. Matsushita, T. Akatsu, K. Niihara, and E. Yasuda. Mechanical Properties of SiB6 Addition of Carbon Sintered Body.2000:346-354.
    [135]赵敏海,刘爱国,郭面焕,汪志健.石墨固体自润滑材料研究现状.焊接,2007,(12):24-27+57-58.
    [136]陈晓虎.材料转移层对Al2O3基自润滑陶瓷/铸铁摩擦副摩擦的影响研究.陶瓷科学与艺术,2002,(03):5-7.
    [137]周松青,肖汉宁.SiC及其复相陶瓷高温自润滑特性的研究.中国陶瓷工业,2004,(06):10-15.
    [138]陈九菊,修可白,孟庆刚.二硫化钼纳米颗粒的制备与润滑性能研究.黑龙江工程学院学报(自然科学版),2010,(03):72-75.
    [139]郭青.二硫化钼固体润滑性能及其应用.精密制造与自动化,2007,(03):26-29.
    [140]王月梅,周惠娣,陈建敏,陈磊,冶银平.含二硫化钼、石墨和三氧化二锑的水性环氧树脂黏结固体润滑涂层的摩擦磨损性能.摩擦学学报,2010,(06):577-583.
    [141]黄加林,傅玉灿,丁文锋,陈珍珍,徐九华,苏宏华.石墨自润滑钎焊cBN砂轮节块界面微观结构.金刚石与磨料磨具工程,2011,(01):39-42.
    [142]李艳华,梅平.石墨润滑性的理论解释新探.教材通讯,1993,(03):37.
    [143]朱洪睿,张绪平,杨永建,牛志鹏.石墨铝基自润滑材料的制备及性能表征.润滑与密封,2012,(01):73-77.
    [144]聂明德,周兆福,党鸿辛.聚四氟乙烯对齿轮润滑成膜膏润滑性能的影响.固体润滑,1990,(01):7-14.
    [145]余乃梅,汪青萍,林剑清.聚四氟乙烯自润滑共混材料的配方、结构与性能关系.厦门大学学报(自然科学版),1986,(06):666-671.
    [146]陈宇红,韩非,江涌,韩凤兰,吴澜尔.AlN-Y2O3液相烧结碳化硅陶瓷.兵器材料科学与工程,2009,(05):1-3.
    [147]陈宇红,韩凤兰,吴澜尔.液相烧结碳化硅陶瓷.矿产综合利用,2003,(02):33-36.
    [148]武卫兵,靳正国.碳化硅陶瓷的液相烧结及其研究进展.山东陶瓷,2002,(01):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700