用户名: 密码: 验证码:
地下水中挥发性有机污染物的原位气相生物修复新型技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水中的挥发性有机物(Volatile Organic Compounds, VOCs)已经成为地下水污染的主要污染物之一。地下水中挥发性有机物的修复可分为异位修复和原位修复,由于异位修复需要将地下水或土壤移至地表,原位修复成为了主流的修复技术。污染土壤气提法(Soil Vapor Extraction, SVE)和两相提取(Dual-Phase Extraction, DPE)成为了最新的研究方向。主要原理就是将挥发性有机物以气态的形式转移至地表进行处理。气态挥发性有机物在地面的去除技术可以是生物法、活性炭吸附法、热力燃烧法、催化氧化法等。生物法在运营成本、无二次污染等方面有着独特的优点,但其占地面积大,不够专一高效,对特定难降解污染物处理的传统工艺存在技术瓶颈等缺点制约着生物法的应用和发展。
     论文以探索研究新型高效的分别处理易溶于水和难溶于水的有机物的生物反应器和研发特定难降解污染物的新技术为核心,以丙酮、正己烷、甲苯、三氯乙烯为处理对象,研究了两种新型生物反应器的各项工艺参数,同时又研究了生物滴滤器对三氯乙烯气体的厌氧脱氯过程。
     同国内外其他学者的相关研究相比,论文在以下几点工作具有创新和特色:
     (1)本研究采用了凝胶颗粒固定化活性污泥反应器处理丙酮气体。丙酮为易溶于水的物质代表。本研究不仅测试了处理效果,还建立了以颗粒内扩散-降解为基础的反应器模型,引入了颗粒调整系数的概念,讨论了颗粒内污染物的扩散特征和反应动力学特征。该反应器对丙酮的最大去除能力达到了476.8 g/m3/h,为传统生物滴滤器的去除能力的2倍。
     (2)本研究讨论了中空纤维膜生物反应器处理甲苯—正己烷二元复合气体的处理特征和物质间的相互影响。甲苯和正己烷是难溶于水的物质的代表,该两种物质在地下水污染中有时同时存在。研究发现甲苯入口浓度较低时,其降解效率不受正己烷的影响;当入口浓度较高时,正己烷对甲苯的降解有抑制作用,同时发现甲苯对正己烷的降解影响不大。该反应器以膜内腔体积计算,对甲苯的最大去除能力达到了700 g/m3/h以上,为传统生物滴滤器的去除能力的数倍。
     (3)本研究采用厌氧生物滴滤器对三氯乙烯进行了厌氧脱氯的研究,并测试了不同氧化还原电位,不同氧气浓度,不同电子供体和甲烷抑制剂对三氯乙烯脱氯性能以及各个脱氯基因数量和活性的影响。反应器对三氯乙烯的最大去除能力达到了12.0 g/m3/h以上。氧化还原电位的研究发现由于加入氧化剂后系统脱氯性能变差,而tceA基因的活性没有太大的抑制,因此vcrA基因在脱氯过程中起到了主要的作用。电子供体的研究发现vcrA基因对于维生素B12比tceA更加敏感。
     (4)本研究测定了三氯乙烯厌氧脱氯的动力学参数,以及不同氧化还原电位,不同氧气浓度对动力学最大降解速率的影响的活性系数。发现三氯乙烯的最大降解速率在三个氯代乙烯中是最大。顺式二氯乙烯的半饱和常数最大,说明它的酶亲和性是最差的。
VOCs (Volatile Organic Compounds) is a group of contaminants in the groundwater pollution. The remediation of VOCs in the groundwater includes ex-situ and in-situ remediation, as in the ex-situ remdediation the contaminanted soil or groundwater should be transferred to the surface, in-situ remediation turned to more popular. SVE (Soil Vapor Extraction) and DPE (Dual-Phase Extraction) became the latest research directions. The main principle is to extract the gaseous VOCs to the surface prior to degrade them. The techniques for gaseous VOCs removal from groundwater include biofiltration, adsorption by activated carbon, thermal incineration and catalyzed oxidation. Because of low cost and no secondary contaminants, biofiltration is a good choice, but the big reactor volume, lower elimination capacity compared to other methods and very hard to degrade refractory VOCs limit the application and development of biofiltration.
     This research focused on the development of novel bioreactors for soluble VOCs and insoluble VOCs, and development of novel technology for degradation of refractory VOCs. Acetone, toluene, n-hexane and TCE(trichloroethylene) were selected as the targeted contaminants, the research of technical parameters of novel bioreactor and TCE dechlorination in the anaerobic biotrickling filter was conducted as well.
     Compared to other research, this research contains four creative ideas:
     (1) In this research, the study of immobilized activated sludge reactor to treat gaseous acetone was conducted. Acetone is a typical soluble VOC. The reactor model based on the diffusion and degradation in one bead was developed, beads adjusting coefficient was applied in the model. The diffusion and kinetics characteristics of acetone in the bead were discussed. The maximum elimination capacity is 476.8 g/m3/h, which is 2 fold of the elimination capacity of conventional biotrickling filter.
     (2) In this research, the removal performance and impact relationship of toluene and n-hexane in the binary gas system was studied and discussed. Toluene and n-hexane are typical insoluble VOCs, and these compounds are sometimes coexisting in the groundwater. Firstly when the inlet concentration of toluene was low, the removal performance of toluene was not impacted by n-hexane, but when the inlet concentration was high, toluene degradation was inhibited by n-hexane. Secondly, no obvious inhibition on n-hexane caused by toluene was observed. The maximum elimination capacity of toluene is above 700 g/m3/h based on the lumen volume of the hollow fiber, which is several fold of elimination capacity of conventional biotrickling filter.
     (3) TCE dechlorination in anaerobic biotrickling filter was conducted, dechlorination performance, number and activity of genes under ORP(Oxidation Reduction Potential) variation, oxygen content variation, different electron donor and methane inhibitor were investigated as well. The elimination capacity of this reactor is above 12.0 g/m3/h. Results of ORP variation showed that after the addition of oxidants, the dechlorination performance turned to be bad but the activity of tce A gene was not inhibted too much, so the vcrA gene played the more important role in the dechlorination. Also vcrA gene was more sensitive with vitamin B12 than tceA gene.
     (4) In this research, kinetic parameters of TCE dechlorination were determined, the activated coefficients of ORP and oxygen variation were obtained as well. The maximum degradation rate of TCE is the biggest one among TCE, cis-DCE(cis-dichloroethylene) and VC(Vinyl Chloride). The half-saturation constant of cis-DCE is the biggest one among TCE, cis-DCE and VC which shows the affinity of enzyme of cis-DCE is the worst.
引文
[1]熊玲,鄢贵权.浅谈我国地下水的污染现状及防治措施.贵州科学.2009,27(4):86-90
    [2]王焰新.地下水污染与防治.高等教育出版社.2007
    [3]Nolan B T, Ruddy B C, Hitt K J, et al. Risk of nitrate in groundwaters of the united states-a national perspective. Environmental Science and Technology,1997,31(8): 2229-2236
    [4]Koreimann C, Grath J., Winkler G, et al. Groundwater monitoring in Europe. European topic center on Inland waters, European Environmental Agency,1996
    [5]季泰.我国水污染状况与防治.城市地质.2007,2(4):16-18
    [6]王玉秋.浅谈地下水污染来源危害及防治对策.山东环境.2000年增刊.
    [7]张永波,时红,王玉和.地下水环境保护与污染控制.中国环境科学出版社.2003
    [8]李君,常莉.我国城市地下水污染状况与治理对策.开封大学学报.2006,20(4):89-91
    [9]尹国勋,李振山.地下水污染与防治.中国环境科学出版社.2005
    [10]姜建军.中国地下水污染现状与防治对策.环境保护.2007.10A.16-17
    [11]上海市环境保护局.常用环境标准选编.上海:2000年12月
    [12]Squillace P J, Scott J C, Moran M J, et al. VOCs, pesticide, nitrate, and their mixtures in groundwater used for drinking water in the united states. Environmental Science and Technology,2002,36(9):1923-1930
    [13]李建.涂料和胶粘剂中有毒物质及检测技术.北京:中国计划出版社.2002
    [14]ASTM D3960-05 Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings. US standard.
    [15]Noel de Nevers. Air pollution control engineering. McGraw Hill, Inc.1995
    [16]Metcalf & Eddy.Inc Waste water Engineering. Disposal and Reuse,3rd Fdition Mc Graw-Hill, Inc.1991
    [17]《民用建筑工程室内环境污染控制》(GB 50325-2005)
    [18]吴祺.挥发性有机物污染.知识介绍.2001,7:17-18
    [19]伊冰.室内空气污染与健康.国外医学卫生学分册.2001,28(3):167-216
    [20]陶有胜.“三苯”废气治理技术.环境保护.1999,8:20-21
    [21]张义等.室内空气中苯系物污染及防治.四川建材.2009,35(4):91-92
    [22]Rafael Hernandez, Mark Zappi, Jose Colucci, Robert Jones. Comparing the performance of various advanced oxidation processes for treatment of acetone ontaminated water. Journal of Hazardous Materials.2002,92:33-50
    [23]Stringer, R.; Johnston, P. Chlorine and the environment:An overview of the chlorine industry; Kluwer Academic Publishers. Boston, MA,2001
    [24]于奭,严毅萍,康彩霞.浅议我国地下水现状及地下水的污染防治.广西轻工业.2010,134(1):42-8
    [25]赵勇胜,地下水污染场地污染的控制与修复.吉林大学学报.2007,37(2):303-310
    [26]Alan S. Goldfarb; Gregory A. Vogel; Dennis E. Lundquist. Technical aspects of site remediation:soil vapor vacuum extraction. Waste Management.1994,14(2):153-159
    [27]J.H. Langwaldt, J.A. Puhakka. On-site biological remediation of contaminated groundwater:a review. Environmental Pollution.2000,107(2):187-197
    [28]Antonio Alves Soares, Remediation of soils combining soil vapor extraction and bioremediation:Benzene. Chemosphere.2010,80(8):823-828
    [29]张婷.地下水中三氯乙烯污染修复技术研究进展.环境.2005,z1,8-10
    [30]J. Sutherland, C. Adams*, J. Kekobad. Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation:technical and economic comparison for five groundwaters. Water Research.2004,38(1):193-205
    [31]钱家忠.地下水污染控制.合肥工业大学出版社.2009.
    [32]郑西来.地下水污染控制.华中科技大学出版社.2009.
    [33]陈秀成,曹瑞钰.地下水污染治理技术的进展.中国给水排水.2001,17(4):23-2
    [34]Alvarez-Cohen, L.; Speitel, G. E. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation.2001,12(2):105-126
    [35]Loffler, F. E.; Edwards, E. A. Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology.2006,17(3):274-284
    [36]Blowes D W, Ptacek C J, Jambor J L. In-situ remediation of chromate contaminated groundwater using permeable reactive walls. Laboratory studies. Environ Sci Technol, 1997,31(12):3348-3357
    [37]Suthan S Suthersan. Natural and enhanced remediation systems. New York:Lewis Publisher,2002
    [38]Scherer, M. M.; Richter, S.; Valentine, R. L.; Alvarez, P. J. J. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Rev. Environ. Sci. Technol.2000,30(3):363-411
    [39]Kohn, T.; Livi, K. J. T.; Roberts, A. L.; Vikesland, P. J. Longevity of granular iron in groundwater treatment processes:Corrosion product development. Environ. Sci. Technol. 2005,39(8):2867-2879
    [40]Kirstem S. Jφrgensen. In Situ Bioremediation. Advances in applied microbiology,2007, 61:285-305
    [41]简华逸.应用现地生物整治技术处理受三氯乙烯污染之地下水.博士学位论文.国立中山大学(台湾).2010
    [42]Siegrist R. L., Urynowicz M.A., West O. R., et al. Genesis and effects of particles produced during in situ chemical oxidation using permanganate. Journal of Environmental Engineering,2002,128(11):1068-1079
    [43]高霏,刘霏,陈鸿汉.三氯乙烯污染土壤和地下水污染源区的修复研究进展.地球科学讲展.2008.23(8):821-829
    [44]郝吉明,马广大.大气污染控制工程(第二版).北京:高等教育出版社.2002
    [45]Joseph S. Devinny, Marc A Deshusses, Todd S. Webster. Biofiltration for air pollution control. Lewis publishers
    [46]Sudeep C. Popat, Marc A. Deshusses. Reductive Dehalogenation of Trichloroethene Vapors in an Anaerobic Biotrickling Filter. Environmental Science and Technology. 2009,43(20):7856-7861
    [47]唐运雪.挥发性有机物处理技术及前景展望.湖南有色金属.2005,21(5):31-35
    [48]Yusaku Miyake. Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water. Water Research.2003,37(8):1852-1858
    [49]樊奇,羌宁.挥发性挥发性有机物净化技术研究进展.四川环境.2005,24(4):40-44
    [50]王建龙.生物固定化技术与水污染控制.北京:科学出版社.2002
    [51]刘永慧.生物过滤法处理挥发性有机物.硕士学位论文.大连:大连理工大学.2002
    [52]陈建孟,王家德.生物技术在有机废气处理中的研究进展.环境科学进展.1998,6(3):30-36.
    [53]杨豪,李彦旭,卢姿.生物法处理挥发性有机废气(VOCs)的研究.广东化工.2009,36(8):125-127
    [54]Pomeory, R.D.1957. Deodorizing gas streams by the use of microbiological growths. US Patent 2.793.096
    [55]C. Kennes, M.C. Veiga. Bioreactors for waste gas treatment. Kluwer Academic Publishers.2001.
    [56]朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用.重庆建筑大学学报.2000,22(5):95-101
    [57]裴海燕,胡文容,李力,王仲鹏.聚氧化乙烯作为固定化细胞包埋剂的研究.山东工业大学学报.2001,31(6):511-518
    [58]赵树欣 梁慧珍 程丽娟 曹井国.固定化丙酸菌的初步研究.食品与发酵工业.2005,31(4):17-20
    [59]Kimitoshi Fukunaga, Katsumi Nakao. Removal of mixtures of acetaldehyde and propionaldehyde from waste gas in packed column with immobilized activated sludge gel beads. Biochemical Engineering Journal.2001,8(1):9-18
    [60]Elena Ionata,Paola De Blasio & Francesco La Cara. Microbiological degradation of pentane by immobilized cells of Arthrobacter sp.. Biodegradation.2005,16(1):1-9
    [61]袁志文,何品晶,邵立明.固定化微生物法处理含甲硫醇恶臭气体.上海环境科学,2000,19(3):108-111
    [62]姜安玺,刘波,程养学等.利用黄单胞菌He4和排硫杆菌Au16固定化生物滴滤技术去除乙硫醇臭气.高技术通讯.2003,13(1):85-88
    [63]王燕燕,黄兵,廖雄稳,武淑文.净化SO2气体的固定化微生物方法的研究.环境污染与防治.2005,27(2):105-108
    [64]马艳玲,赵景联,杨伯伦.固定化脱氮硫杆菌净化硫化氢气体的研究.现代化工2004,24(2):30-33
    [65]武淑文,黄兵,曹桂萍,刘子国.固定化微生物处理SO2气体的实验研究.贵州环保科技.2004,10(2):1-4
    [66]曾二丽,黄兵,孙石.固定化微生物与游离菌净化SO2性能的初步对比实验.昆明理工大学学报(理工版).2005,30(1):61-64
    [67]赵新巧,耿冰,邸进申.固定化微生物脱除工业酸性废气中H2S的研究.精细石油化工.2003,2:29-30
    [68]邵立明,何品晶,傅钟,李国建.固定化微生物处理含H2S气体的试验研究.环境科学.1999,20(1):19-22
    [69]Punjai T Selvaraj. Analysis of immobilized cell bioreactors for desulfurization of flue gases and sulfate/sulfateladen wastewater. Biodegradation.1997,8(4):227-236
    [70]马红,李国建.固定化微生物处理含氨臭气的研究.中国环境科学.1995,15(4):302-306
    [71]Ying-Chien Chung, Chihpin Huang, Ching-Ping Tseng. Biological elimination of H2S and NH3 from waste gases by biofilter packed with immobilized heterotrophic bacteria. Chemosphere.2001,43(8):1043-1050
    [72]徐晓军,余光辉,贾佳海.固定化优势菌种处理NH3和H2S恶臭气体.化工环保.2006,26(1):9-12
    [73]Zarook Shareefdeen. Ajay Singh(Eds.).Biotechnology for Odor and Air Pollution Control. Germany, Springer-Verlag Berlin Heidelberg,2005
    [74]王宝庆.挥发性挥发性有机物净化技术研究进展.环境污染治理技术与设备.2003,4(5):47-51
    [75]Kennes C., Veiga M.C., Bioreactor for Waste Gas Treatment. Netherlands, Kluwer Academic Publishers,2001
    [76]Kumar, A.; Dewulf, Jo; Langenhove, Herman Van. Membrane-based biological waste gas treatment. Chemical Engineering Journal.2008,136(2-3):82-91
    [77]Parvatiyar M.G., Govind R., Bishop D.F.. Biodegradation of toluene in a membrane biofilter. Journal of Membrane Science.1996,119(1):17-24
    [78]Parvatiyar, M.G., Govind, R., Bishop, D.F.. Treatment of trichloroethylene(TCE) in a membrane biofilter. Biotechnology and Bioengineering.1996,50(1):57-64
    [79]Reij, M. W., Hartmans, S.. Propene removal from synthetic waste gas using a hollow fiber membrane bioreactor. J. Appl. Microbiol. Biotechnol.1996,45(6):730-736
    [80]Reij, M. W., Hamann, E.K., Hartmans,S.. Biofiltration of air containing low concentration of propene using a membrane bioreactor. Biotechnology Progress.1997, 13(4):380-386
    [81]Ergas S.J., McGrath M.S.. Membrane bioreactor for control of volatile organic compound emissions. Journal of Environmental Engineering.1997,123(6):593-598
    [82]Dolasa, A.r., Ergas, S.J.. Membrane bioreactor for cometabolism of trichloroethene air emissions. Journal of Environmental Engineering.2000,126(10):969-973
    [83]M. Fitch, J. Neeman, E. England. Mass transfer and benzene removal from air using latex rubber tubing and hollow fiber membrane module, Applied Biochemistry and Biotechnology.2003,104(3):199-214
    [84]M. Fitch, E. England, B. Zhang.1-Butanol removal from a contaminated air stream under continuous and diurnal loading conditions. J. Air Waste Manage. Assoc.2002, 52(11):1288-1297
    [85]Luisa M. Dos Freitas Santos, Uwe Hommerich, Andrew G Livingston. Dichloroethane Removal from Gas Streams by an Extractive Membrane Bioreactor. Biotechnology Progress.1995,11(2):194-201
    [86]Jose L. Sanz, Thorsten Kochling. Molecular biology techniques used in wastewater treatment:An overview. Process Biochemistry.2007,42(2):119-133
    [87]Ward DM, Weller R, Bateson MM.16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature.1990,345(3):63-65
    [88]Ito T, Okabe S, Satoh H, Watanabe Y. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Applied and Environmental Microbiology.2002,68(3): 1392-1402
    [89]Jetten M, Schmid M, van de Pas-Schoonen K, Sinninghe Damste J, Strous M. Anammox organisms:enrichment, cultivation, and environmental analysis. Methods in Enzymology. 2005,397:34-57
    [90]Mladenovska Z, Dabrowski S, Ahring BK. Anaerobic digestion of manure and mixture of manure with lipids:biogas reactor performance and microbial community analysis. Water Science and Technology.2003,48(6):271-278
    [91]Ferrera I, Massana R, Casamayor EO, Balague V, Sa'nchez O, Pedros-Alio C, et al. High-diversity biofilm for the oxidation of sulfide-containing effluents. Applied Microbiology Biotechnology.2004,64(5):726-734
    [92]Chen CL, Macarie H, Ramirez I, Olmos A, Ong SL, Monroy O, et al. Microbial community structure in a thermpohilic anaerobic hybrid reactor degrading terephthalate. Microbiology.2004,150(10):3429-3440
    [93]Zhang T, Ke SZ, Liu Y, Fang HP. Microbial characteristics of a methanogenic phenol-degrading sludge. Water Science and Technology.2005,52(1-2):73-78
    [94]Lapara TM, Nakatsu CH, Pantea L, Alleman JE. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Applied and Environmental Microbiology.2000,66(9):3951-3959
    [95]Silvey P, Pullammanappallil PC, Blackall L, Nichols P. Microbial ecology of the leach bed anaerobic digestion of unsorted municipal solid waste. Water Science and Technology.2000,41(3):9-16
    [96]Ueno Y, Haruta S, Ishii M, Igarashi Y. Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Applied Microbiology and Biotechnology.2001, 57(1-2):65-73
    [97]孙寓姣,王勇,黄霞.荧光原位杂交技术在环境微生物生态学解析中的应用研究.环境污染治理技术与设备.2004,11(5):14-20
    [98]Alison M. Cupples. Real-time PCR quantification of Dehalococcoides populations: Methods and applications. Journal of Microbiological Methods.2008,72(1):1-11
    [99]He, J.Z., Ritalahti, K.M., Aiello, M.R., Loftler, F.E.,2003a. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology.2003,69(2):996-1003
    [100]Duhamel, M., Mo, K., Edwards, E.A.,2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Applied Environmental Microbiology.2004,70(9):5538-5545
    [101]Magnuson, J. K., M. F. Romine, D. R. Burris, and M. T. Kingsley. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes:sequence of tceA and substrate range characterization. Applied and Environmental Microbiology.2000,66(12): 5141-5147
    [102]He, J., Y. Sung, R. Krajmalnik-Brown, K. M. Ritalahti, and F. E. Loffler. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)-and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology.2005,7(9): 1442-1450
    [103]Muller, J. A., B. M. Rosner, G. von Abendroth, G. Simon-Meshulam, P. L. McCarty, and A. M. Spormann. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Applied and Environmental Microbiology.2004,70(8):4880-4888
    [104]Krajmalnik-Brown, R., T. Holscher, I. N. Thomson, F. M. Saunders, K. M. Ritalahti, and F. E. Loffler. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Applied and Environmental Microbiology.2004, 70(10):6347-6351
    [105]Seshadri, R., Adrian, L., Fouts, D.E., Eisen, J.A., Phillippy, A.M., Methe, B.A., et al, 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science.2005,307(7):105-108
    [106]He, J.Z., Holmes, V.F., Lee, P.K.H., Alvarez-Cohen, L.. Influence of vitamin B-12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Applied and Environmental Microbiology.2007,73(9):2847-2853
    [107]Behrens, S.; Azizian, M. F.; McMurdie, P. J.; Sabalowsky, A.; Dolan, M. E.; Semprini, L.; Spormann, A. M. Monitoring abundance and expression of "Dehalococcoides" species chloroethene reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Applied and Environmental Microbiology.2008,74(18):5695-5703
    [108]Ritalahti, K.M., Amos, B.K., Sung, Y.,Wu, Q.Z., Koenigsberg, S.S., Loffler, F.E. Quantitative PCR targeting 16S rRNAand reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology. 2006,72(4):2765-2774
    [109]Holmes, V.F., He, J.Z., Lee, P.K.H., Alvarez-Cohen, L.. Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Applied and Environmental Microbiology.2006,72(9): 5877-5883
    [110]Johnson, D.R., Lee, P.K.H., Holmes, V.F., Alvarez-Cohen, L., An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with a application to the tceA reductive dehalogenase gene. Applied and Environmental Microbiology.2005,71(7):3866-3871
    [111]Johnson, D.R., Lee, P.K.H., Holmes, V.F., Fortin, A.C., Alvarez-Cohen, L. Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. Applied and Environmental Microbiology.2005,71(11):7145-7151
    [112]Fung, J.M., Morris, R.M., Adrian, L., Zinder, S.H.. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Applied and Environmental Microbiology.2007,73(14):4439-4445
    [113]Lee, P.K.H., Johnson, D.R., Holmes, V.F., He, J.Z., Alvarez-Cohen, L.,2006. Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Applied and Environmental Microbiology.2006,72(9):6161-6168
    [114]Lee, P. K. H.; Macbeth, T. W.; Sorenson, K. S.; Deeb, R. A.; Alvarez-Cohen, L Quantifying genes and transcripts to assess the in situ physiology of "Dehalococcoides" spp. in a trichloroethene-contaminated groundwater site. Applied and Environmental Microbiology.2008,74(9):2728-2739
    [115]Benjamink Amos, Kirstim Ritalahti. Oxygen Effect on Dehalococcoides Viability and Biomarker Quantification. Environmental Science and Technology.2008,42(15): 5718-5726
    [116]Brian L. Burback, Jerome J. Perry. Biodegradation and Biotransformation of Groundwater Pollutant Mixtures by Mycobacterium vaccae. Applied and Environmental Microbiology.1993,59(4):1025-1029
    [117]杨乐巍.土壤气相抽提(SVE)现场试验研究.博士论文.天津大学.2006
    [118]Ergas S.J., Shumway. L., Fitch M.W., Neeman J.J.. Membrane processes for biological treatment of contaminated airstreams. Biotechnology and Bioengineering.1999,63(4): 431-441
    [119]Aisner, J., Baird, W. Bioremediation of Bedrock Groundwater contaminated with Tetrachloroethene, Trichloroethene, Trichloroethane, Toluene and Hexane. Soils, Sediments and Water.2004
    [120]Kimberley A. C. C. Taylor. A simple colorimetric assay for muramic acid and lactic acid. Applied Biochemistry and Biotechnology.1996,56(1):49-58
    [121]John O. Hutchens, Beatrice M. Kass. A colorimetric micro analytical method for acetate and fluoroacetate. Journal of Biological chemistry.1949,177:571-575.
    [122]中华人民共和国国家标准,水质氯化物的测定硝酸银滴定法,GB 11896-89.
    [123]Gunsch, C. K.; Kinney, K.A.; Szaniszlo, P.J.; Whitman, C.P.. Relative Gene Expression Quantification in a Fungal Gas-Phase Biofilter. Biotechnology and Bioengineering.2007, 98(1):101-111
    [124]Frank E. Loffler, Kirsti M. Ritalahti, James M. Tiedje. Dechlorination of chloroethenes is inhibited by 2-Bromoethanesulfonate in the absence of methanogens. Applied and Environmental Microbiology.1997,63(12):4982-4985
    [125]Ruijter, J. M.; Ramakers, C.; Hoogaars, W. M. H.; Karlen, Y.; Bakker, O.; van den Hoff, M. J. B.; Moorman, A. F. M. Amplification efficiency:linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res.2009,37(6):e45
    [126]Ramakers, C.; Ruijter, J. M.; Deprez, R. H. L.; Moorman, A. F. M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters.2003,339(1):62-66
    [127]顾国维,何义亮.膜生物反应器.北京:化学工业出版社,环境科学与工程出版中心.2002
    [128]孙佩石,黄兵,黄若华等.生物法废气净化专用微生物菌种及其应用.中国环境科学.2000,22(1):28-31
    [129]王丽萍,吴光前,何士龙等.高效生物滴滤系统净化甲苯废气快速启动研究.哈尔滨工业大学学报.2004,36(4):446-449
    [130]Sorual G. A., Smith F. L.. Evaluation of trickle bed air biofilter performance for BTEX removal. Journal of Environmental Engineering, ASCE.1997,123(6):530-540
    [131]Wu G, Conti B.. A high performance biofilter for VOC emission control. Journal of the Air & Waste Management Association,1998,48(7):627-636
    [132]姜安玺,王晓辉,马立等.优势菌混合接种泥炭滴滤塔去除混合硫系.哈尔滨工业大学学报.2004,36(2):140-142
    [133]Zillima, Borghid, Converti. Toluene vapor removal in a laboratory-scale biofilter. Applied Microbiology and Biotechnology.2000,54(2):248-254
    [134]李章良.高流量负荷下生物法净化低浓度甲苯废气的性能研究.硕士学位论文.昆明理工大学.2004
    [135]EPA,1985. Survey conducted for the EPA on the frequency and occurrence of chemical contaminants in the groundwater in the vicinity of 180 hazardous waste disposal sites. Lockheed Engineering and Management Services Co., Inc.
    [136]Philip Morgan, Stephen T. Lewis and Robert J. Watkinson.Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condensate-contaminated ground-water. Environmental Pollution.1993,82(2):181-190
    [137]K. Berry-Sparks, J.F. Barker. Petroleum Hydrocarbons and Organic Chemistry. Groundwater. (1986)613.
    [138]L.A. Lemon, J.R. Barbaro, J.F. Barker. Process FOCUS Conference on Eastern Regional Groundwater Issues, Waterloo Center for Groundwater Research, Waterloo, Ontario.1989,213.
    [139]Perry L. McCarty, Mark N. Goltz, Gary D. Hopkins, Mark E. Dolan, Jason P. Allan, Brett T. Kawakami, T. J. Carrothers. Full-Scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environmental Science and Technology.1998,32(1):88-100
    [140]王德民.生物滴滤器系统处理挥发性有机物及其动力学模式研究.博士学位论文.华东理工大学.2001
    [141]K. Pielech-Przybylska, K. Zieminski, J.St. Szopa. Acetone biodegradation in a trickle-bed biofilter. International Biodeterioration & Biodegradation.2006, 57(4):200-206
    [142]李清彪,陈洪钫.固定化细胞内组分有效扩散系数测定时无反应发生条件的确定.食品与发酵工业.1993,39(3):20-23
    [143]Pu H T, Yang R Y K. Diffusion of sucrose and yohinobine in calcium alginate gel beads with or without entrapped plant cells. Biotechnology and Bioengineering,1988, 32(1):891-896
    [144]Estape D,Codia F,Sola C. Determination of glucose and ethanol effective diffusion coefficients in Ca-alginate gel. Enzyme and Microbial Technology.1992,14(5):396-401
    [145]Tanaka H, Matsumara M, Veliky I A. Diffusion characteristics of substrates in calcium alginate gel beads. Biotechology and Bioengineering.1984,26(1):53-58
    [146]Chai Yi, Mei Lehe, Lin Dongqiang, et al. Diffusion coefficients in intrahollow calcium alginate microcapsules. Journal of Chemical and Engeering Data.2004,49(3):475-478
    [147]肖美添,黄雅燕,郭养浩.固定化细胞海藻酸钙凝胶内的扩散特性.华侨大学学报(自然科学版).2005,26(4):408-411
    [148]王康,何志敏.海藻酸凝胶颗粒对蛋白质扩散的影响.化学工程.2004,32(5):53-56
    [149]Brennan R.A., Nirmalakhandan N., Speece R. E.. Comparison of predictive methods for Henry's law coefficients of organic chemicals. Water Research.1998,32(6): 1901-1911
    [150]Shareefdeen Z., Baltzis B.. Biofiltration of methanol vapor. Biotechnology and Bioengineering.1993,41 (5):512-524
    [151]Lin, J. A model for volatile organic compounds removal from waste gases by a trickle-bed air biofilter:[MS Thesis]. Taichung, Taiwan:Department Environmental Engineering, National Chung Hsing University,2002.
    [152]Shareefdeen Z., Shaikh A.A., Ansar Z., et.al. Biofiltration of volatile organic compound (VOC) mixtures under transient conditions. Chemical Engineering Science,1997, 52(11):4135-4142
    [153]黄华江.实用化工计算机模拟——MATLAB在化学工程中的应用.上海:化学工业出版社,2004.
    [154]孙佩石,杨显万,黄若华,等.生物膜填料塔对低浓度甲苯废气的净化性能研究.环境污染与防治.1997,19(3):8-11
    [155]Chou M. S.. Treatment of 1,3-butadiene in an air stream by a biotricking filter and a biofilter. Journal of Air and Waste Management Association.1998,48(8):711-720
    [156]Sorial G. A., Smith F. L., Suidan M. T.. Removal of Ammopia from Contaminated Air by Trickle Bed Air Biofilters. Journal of Air and Waste Management Association.2001, 51(5):756-765
    [157]羌宁,季学李,都基峻等.苯系混合气体生物滴滤器非稳态工况性能.环境科学.2005,26(1):16-19
    [158]Okkerse W. I. H., Ottengraf S. P. P., Diks R. M. M,, ea al. Long term performrnce of biotrickling filters removing a mixture of volatile organic compounds from an artificial waste gas:dichloromethane and methylmethacrylate. Bioprocess Engineering.1999, 20(1):49-57
    [159]Kirchner K, Hauk G, Rehm HJ. Exhaust gas purification using immobilized monocultures. Appl Microbiol Biotechnol.1992,37(2):579-587
    [160]李章良,孙佩石.生物法净化处理高流量负荷下低浓度甲苯废气的初探.贵州环保科技.2003,9(3):1-5
    [161]张书景,李坚,李依利等.恶臭假单胞菌生物滴滤塔净化甲苯废气的研究.环境科学.2007,28(8):1866-1871
    [162]王鹏飞,王艺,宫曼丽,等.生物滴滤塔处理“三苯”废气的影响因素研究.哈尔滨工业大学学报.2003,35(1):73-75
    [163]王娟,钟秦等.生物膜法净化甲苯二甲苯混合废气的研究.环境科学与技术.2006,29(6):91-93
    [164]刘永慧.生物过滤法净化高浓度多组分VOCs工艺研究.博士学位论文.大连理工大学.2004
    [165]Attaway H., Gooding C.H. and Schmidt M.G., Biodegradation of BTEX vapors in a silicone membrane bioreactor system. Journal of Industrial Microbiology and Biotechnology.2001,26(5):316-325
    [166]Attaway H., Gooding C.H. and Schmidt M.G.. Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams. Journal of Industrial Microbiology and Biotechnology.2002,28(5):245-251
    [167]Sun, A. K.; Wood, T. K. Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively toluene ortho-monooxygenase. Biotechnology and Bioengineering.1997,55(4):674-685
    [168]Kan, E. S.; Deshusses, M. A. Cometabolic degradation of TCE vapors in a foamed emulsion bioreactor. Environmental Science and Technology.2006,40(3):1022-1028
    [169]Awadhesh K. Shuklaa, R.S. Singhb, S.N. Upadhyayb and Suresh K. Dubey. Kinetics of bio-filtration of trichloroethylene by methanotrophs in presence of methanol. Bioresource Technology.2010,101(21):8119-8126
    [170]Shukla AK, Vishwakarma P, Singh RS. Bio-filtration of trichloroethylene using diazotrophic bacterial community. Bioresource Technology.2010,101(7):2126-2133
    [171]Jianzhong He, Youlboong Sung, Mike E. Dollhopf, Babu Z. Fathepure, James M. Tiedje and Frank E. Loffler. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environmental Science and Technology.2002,36(18):3945-3952
    [172]Donna E. Fennell, James M. Comparison of butyric acid, ethanol, lactic acid and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environmental Science and Technology.1997,31(3):918-926
    [173]Yanru Yang, Perry L. Mccarty. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environmental Science and Technology.1998, 32(22):3591-3597
    [174]Wei-min Wu, Jeffery Nye, Mahendra K. Jain, Robert F. Hickey. Anaerobic dechlorination of trichloroethylene to ethylene using complex organic materials. Water Research.1998,32(5),1445-1454
    [175]Fisher, R.T.; Newell, C.J.; Haas, P. E.; Hughes, J. B. In engineered approaches for in situ bioremediation of chlorinated solvent contamination; Leeson, A., Alleman, B. C., Eds.; Battelle Press:Columbus, OH,1999
    [176]Yanru Yang; Perry L. McCarty. Biomass, oleate, and other possible substrates for chloroethene reductive dehalogenation. Bioremediation Journal.2000,4(2): 125-133
    [177]Jan Gerritse, Oliver Drzyzga, Geert Kloetstra, Mischa Keijmel, Luit P. Wiersum, Roger Hutson, Matthew D. Collins, Jan C. Gottschal. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by desulfitobacterium frappieri TCE1. Applied and Environmental Microbiology.1999,65(12):5212-5221
    [178]Richard Sparling, Lacy Daniels. The specificity of growth inhibition of methanogenic bacteria by bromoethanesulfonate. Canadian Journal of Microbiology.1987,33(12): 1132-1136
    [179]Jeffrey M. Boyd, Ashley Ellsworth, and Scott A. Ensign. Characterization of 2-Bromoethanesulfonate as a selective inhibitor of the coenzyme M-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism. Journal of Bacteriology.2006, 188(23):8062-8069
    [180]Thomas D. Distefano, James M. Gossett, Stephen H. Zinder. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Applied and Environmental Microbiology.1992,58(11):3622-3629
    [181]Babu Z. Fathepure, Stephen A. Boyd. Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiology Letters.1988,49(2):149-156
    [182]David L. Freedman, James M. Gossett. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology.1989,55(9):2144-2151
    [183]Jianzhong He, Victor F. Holmes, Patrick K. H. Lee, Lisa Alvarez-Cohen, Influence of vitamin B12 and cocultures on the growth of dehalococcoides isolates in defined medium. Applied and Environmental Microbiology.2007,73(9):2847-2853
    [184]Zhenya Zhang, Taisheng Quan, Pomin Li, Yansheng Zhang, Norio Sugiura, Takaaki Maekawa. Study on methane fermentation and production of vitamin B12 from alcohol waste slurry. Applied Biochemistry and Biotechnology.2004,115(1-3):1033-1039
    [185]Yingnan Yang, Zhenya Zhang, Jun Lu, Takaaki Maekawa. Continuous methane fermentation and the production of vitamin B12 in a fixed-bed reactor packed with loofah. Bioresource Technology.2004,92(3):285-290
    [186]Bhaskar S. Ballapragada, H. David Stensel, J. A. Puhakka,(?) and John F. Ferguson. Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes. Environmental Science and Technology.1997,31(6):1728-1734
    [187]Marc A. Deshusses, Geoffrey Hamer, Irving J, Dunn. Behavior of biofilters for waste air biotreatment:1. Dynamic Model Development. Environmental Science and Technology.1995,29(4):1048-1058
    [188]Marc A. Deshusses, Geoffrey Hamer, Irving J, Dunn. Behavior of biofilters for waste air biotreatment:2. Experimental Evaluation of a Dynamic Model. Environ. Sci. Techno. 1995,29(4):1059-1068
    [189]Sudeep, Trichloroethene removal from waste gases in anaerobic biotrickling filters through reductive dechlorination. Ph.D. Thesis. University of California, Riverside. 2010.
    [190]James M. Gossett. Measurement of Henry's law constants for C, and C2 chlorinated hydrocarbons. Environmental Science and Technology.1987,21(2):202-208
    [191]Pin Chang, C.R. Wilke. Some measurement of diffusion in liquids. Journal of Physical Chemistry.1955,59 (7):592-596
    [192]Philip S. Stewart. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnology and Bioengineering.1998,59(3):261-272
    [193]Melanie Duhamel, Kaiguo Mo, and Elizabeth A. Edwards. Characterization of a highly enriched dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Applied and Environmental Microbiology.2004,70(9):5538-5545
    [194]Alison M. Cupples, Alfred M. Spormann and Perry L. McCarty. Growth of a dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Applied and Environmental Microbiology. 2003,69(2):953-959
    [195]Zachary C. Haston, Perry L. Mccarty. Chlorinated ethene half-velocity coefficients (KS) for reductive dehalogenation. Environmental Science and Technology.1999,33(2): 223-226
    [196]Jian Yu and Kenneth L. Pinder. Intrinsic fermentation kinetics of lactose in acidogenie biofilms. Biotechnology and Bioengineering, Vol.41, Pp.479-488 (1993)
    [197]Wade H. Jeffrey, John H. Paul. Activity of an attached and free-living vibrio sp. as measured by thymidine incorporation, p-Iodonitrotetrazolium reduction, and ATP/DNA Ratios. Applied and Environmental Microbiology.1986,51(1):150-156
    [198]Charles E. Schaefer, Charles W. Condee, Simon Vainberg, Robert J. Steffan. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.:Comparison between batch and column experiments. Chemosphere.2009,75(2):141-148
    [199]Fennell, D. E.; Gossett, J. M. Modeling the production of and competition for hydrogen in a dechlorinating culture. Environmental Science and Technology.1998,32(16): 2450-2460
    [200]Garant, H.; Lynd, L. Applicability of competitive and noncompetitive kinetics to the Reductive dechlorination of chlorinated ethenes. Biotechnol. Biong.1998,57(6): 751-755
    [201]Maymo-Gatell, X.; Chien, Y. T.; Gossett, J. M.; Zinder, S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science.1997,276(6): 1568-1571
    [202]Haest, P.J.; Springael, D.; Smolders, E. Dechlorination kinetics of TCE at toxic TCE concentrations:Assessment of different models. Water Research.2010,44(1):331-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700